
Triggered Placeholder July 29, 1998 8:07 am 1
Copyright 1998, Joe Hoffert. Permission is granted to copy for the PLoP-98 conference.

Triggered Placeholder
An Object Creational Pattern for Delaying Object Creation

Joe Hoffert
joeh@cs.wustl.edu

Distributed Programing Environments Group
Department of Computer Science,

Washington University, St. Louis, MO. 63130, U.S.A.

Abstract

There are times when delaying an object’s creation is desirable to avoid untimely side effects
or the use of resources before they are actually needed. It is non-trivial to receive a request to
create an object and delay that object’s creation until a later time. The Triggered Placeholder
pattern decouples a request for an object’s creation from its actual creation. An example usage
is shown along with the benefits and liabilities of using the pattern. An implementation outline is
also provided along with some sample code. Finally, patterns related to the Triggered Place-
holder pattern are listed.

1.0 Intent
Delay the creation of an object until a particular method on the object has been invoked to
provide a finer grain control of resource management or to delay side effects of object creation
until absolutely needed.

2.0 Also Known As
Stub

3.0 Classification
Object Creational

4.0 Motivation
There are times when the creation of an object is delayed to avoid the untimely side effects of
object creation or to avoid the use of resources before they are actually needed. A request for an
object may be received but the object may not actually be needed at that moment. Creating the
object at request time may use resources that could be used elsewhere when the object will not
access or use those resources until a later time. The motivation for delayed creation in this
instance is efficient resource management.

The creation of an object may also create undesirable side effects since its creation may affect
other parts of the system. For instance, the creation of an element in a container object such as a
list or an array has ramifications on the list or array. There may be times when a request is made

Triggered Placeholder July 29, 1998 8:07 am 2
Copyright 1998, Joe Hoffert. Permission is granted to copy for the PLoP-98 conference.

to create an element in an aggregate but the element needs to be created with some initial value.
This initial value may only be known after the request for the element has been made and
therefore the creation of the element needs to be delayed until the initial value is available. The
motivation for delayed creation in this instance is management of creation side effects.

5.0 Example

The example application deals with manipulating and analyzing files. The motivation for using
the Triggered Placeholder pattern in this instance is to manage file descriptors and memory
efficiently both potentially scarce resources. Initially, small portions of a file are retrieved (e.g.,
looking at the first paragraph for a summary or abstract). Eventually, some analysis and
comparison will be done on the entire file.

In this application, there areFile objects that represent the files. The interface supported by the
Files would have methods likeread() andload(). Read() is used to bring in only a portion of the
file. Load() is used to bring in the entire file for analysis such as word counting or spell checking.
Initially, a PartialFileMgr is created. It hold an open file descriptor and small buffers to store the
small portions of the file that are needed at first. When theload method is invoked, the
PartialFileMgr creates aWholeFileMgr to store the entire contents of each file in memory for
faster analysis. ThePartialFileMgr triggers on theload method, creates theWholeFileMgr, and
then deletes itself. TheWholeFileMgr reads in the entire file and releases the file descriptor
previously opened by thePartialFileMgr since it would not be needed any more. This frees up
file descriptors which are typically limited by an operating system.

Since objects are being deleted and created some dependency management may be needed. A
PartialFileMgr would need to know who was dependent upon it or using it in order to update
them with theWholeFileMgr when the trigger method was called. In this specific example, the
File may have a method to notify itsFileManager reference. In general, thePublisher-
Subscriber pattern [1] would be applicable. Any objects that use or are dependent upon the
FileManager would register themselves with it. When the trigger method is called, the
PartialFileMgr would call thenotify method on all its dependents passing as a parameter the
WholeFileMgr.

FIGURE 1. A File Example

ClientFileManager
read()

PartialFileMgr

load()

WholeFileMgr
read()

file information

create WholeFileMgr
& transfer relevant file
information to it

load()

File
read()
load()

read()
load()

file information

Triggered Placeholder July 29, 1998 8:07 am 3
Copyright 1998, Joe Hoffert. Permission is granted to copy for the PLoP-98 conference.

6.0 Applicability:

Use the Triggered Placeholder pattern when you want to:

• manage resources involved with object creation;or

• delay the side effects of object creation.

Do not use the Triggered Placeholder pattern if you:

• want a permanent go-between for the actual object. Use theProxy pattern instead;or

• need to have object identity at the time the object is requested. The identity of the place holder
will be returned instead. This will cause problems later when the place holder is deleted in lieu
of creating the actual object.

It will also cause problems if methods are invoked on the place holder which are not defined.
This will occur if the place holder does not define all the methods of the real subject;or

• want to manage resources with object creation but the place holder uses just as many resources
as the real subject. Using the pattern in this instance will only add complexity and will not
reduce the resources needed. For instance, if memory is the only resource being managed and
the place holder takes as much memory as the real subject then there is nothing to be gained by
using this pattern.

7.0 Structure

8.0 Participants

• Subject (FileManager)

- defines the interface forRealSubject andPlaceHolder. Specifically, it declares the method(s)
theRealSubject will implement and on which thePlaceHolder will trigger.

• RealSubject (WholeFileMgr)

- defines the real object thePlaceHolder will create when it is triggered.

• PlaceHolder (PartialFileMgr)

FIGURE 2. The Triggered Placeholder Pattern

ClientSubject
trigger()

PlaceHolder

trigger()

RealSubject

trigger()

creation information

createRealSubject &
transfer relevant creation
information to it. Optionally,
invokeRealSubject’s trigger
method

Triggered Placeholder July 29, 1998 8:07 am 4
Copyright 1998, Joe Hoffert. Permission is granted to copy for the PLoP-98 conference.

- takes the place of theRealSubject until it is triggered by the trigger method. It then creates an
appropriateRealSubject and deletes itself.

9.0 Collaborations

• A Placeholder creates aRealSubject when its trigger method is invoked. ThePlaceholder then
deletes itself.

10.0 Consequences

10.1 Benefits

The Triggered Placeholder pattern offers the following benefits:

Fine grained control of object creation resources: TheTriggered PlaceHolder pattern decou-
ples object creation requests from actual object creation. This allows finer grained control over the
creation of a desired object. This can be helpful in delaying resource allocation until absolutely
needed. Resources used by an object can be used elsewhere after the request for an object has been
made. The resources are only used when the object is created and this only happens when the trig-
ger method has been invoked.

Fine grained control of object creation side effects: TheTriggered PlaceHolder pattern allows
fine grained control over timing of side effects from object creation. The creation of certain objects
implies certain ramifications to other objects. For instance, when an element in an array or list is
created it modifies the array or list. Using this pattern can bring fine grained control as to when
creation occurs and accordingly when creation side effects occur.

10.2 Liabilities

The Triggered Placeholder pattern has the following liabilities:

Potential Interface Bloat: There needs to be a method that thePlaceHolder can override as the
trigger. This may not always be readily available. Therefore, a method may need to be
introduced to theSubject interface as the trigger method.(In C++, the trigger method will need
to be virtual.)

Additionally, aRealSubject may have several methods that could be triggers. It may be the case
that the exact method that will be triggered is not known. It may be one of several possible
methods depending on the execution of the application. In this case, all possible methods will
need to be treated as trigger methods and will need to appear in theSubject interface. This may
increase the size of the interface for theSubject class.

An existing method can be made into a trigger method to avoid interface bloat. However, the
object is made more complicated since users of the trigger method will potentially need to be
aware of its extra functionality.

Slower Execution(C++) : All potential trigger methods need to be virtual in theSubject class.
This will add execution overhead in C++ if the trigger methods were not originally virtual.

Triggered Placeholder July 29, 1998 8:07 am 5
Copyright 1998, Joe Hoffert. Permission is granted to copy for the PLoP-98 conference.

Dependency Management:When thePlaceHolder creates theRealSubject any objects holding
references to thePlaceHolder must be updated to refer to theRealSubject. It can be non-trivial to
manage all the updates when objects hold references to thePlaceHolder. However, use of the
Publisher-Subscriber pattern [1] can help with this management. ThePlaceHolder could send
out anotify message to all its dependents and pass as a parameter the newly createdRealSubject.

In general, it can be tricky to manipulate references toPlaceHolder objects since these references
will become invalid after the trigger method has been invoked. It is usually helpful to have some
class to encapsulate this behavior and shield a user from stale references such as theFile class in
the example above.

11.0 Implementation

This section describes how to implement the Triggered Placeholder pattern in C++. The
implementation described below is influenced by Playground [2], a distributed program-
ming environment, which uses the Triggered Placeholder pattern to delay creation of
aggregate elements until an initial value has been provided.

• Determine the relevant classes/objects: The developer needs to determine the objects whose
creation resources or side effects need to be decoupled from the requests to create the objects.
The class of these objects will become theRealSubject class in theTriggered Placeholder pat-
tern.

• Determine the trigger method(s): The method(s) on which thePlaceHolder will be triggered
to create theRealSubject needs to be determined. This trigger method may only exist in the
RealSubject interface. This method needs to be promoted to theSubject interface.(C++) All
trigger methods must be declared in the Subject interface as virtual.

There may be several potential trigger methods. The developer needs to determine which meth-
ods might be the first invoked after the request for theRealSubject’s creation. All of these meth-
ods will need to be trigger methods. Otherwise, a method will be called on thePlaceHolder that
is undefined. For this reason, it is best to make all the trigger methods declared in theSubject
interface undefined(e.g., pure virtual in C++) so that these calls can be caught.

• Determine relevant creation information: Some information may be needed to create the
RealSubject properly. The developer needs to determine what information thePlaceHolder
needs to have to create theRealSubject appropriately. The developer also needs to determine
when this information will be available to store in thePlaceHolder. It may be that several dif-
ferent pieces of information will need to be stored at different times to have all the applicable
information at the time of theRealSubject creation.

Use of theAbstract Factory pattern [3] may be helpful to reduce the amount of information the
PlaceHolder needs to create theRealSubject. Some of the relevant information can be managed
by theAbstract Factory.

• Determine RealSubject memory management:(C++) If thePlaceHolder creates theReal-
Subject from memory off the heap then this memory will need to be deleted when theRealSub-
ject is no longer needed. In this case, some object will need to hold a pointer to the allocated
RealSubject to avoid a memory leak. ThePlaceHolder will be deleted by this time and is there-
fore not an appropriate candidate to manage theRealSubject’s memory.

Triggered Placeholder July 29, 1998 8:07 am 6
Copyright 1998, Joe Hoffert. Permission is granted to copy for the PLoP-98 conference.

Alternately, other memory management strategies may be applicable. ThePlaceHolder may
call some other object (such as a factory) to create theRealSubject. This other object could have
the memory management responsibility and thePlaceHolder need do nothing special to avoid a
memory leak.

(Smalltalk, Java) In garbage-collected languages references to thePlaceHolder will need to be
updated to references to theRealSubject in order to have thePlaceHolder garbage collected.

Variations:

Cascading Place Holders: The developer may want to build up portions of a requested object
incrementally to facilitate a finer-grained control of resources. APlaceHolder’s trigger method
may be invoked but the resources needed to service that particular request may only be a subset of
the total resources included for theRealSubject. ThePlaceHolder could create an intermediate
object able to service the particular request.

The newly created intermediate object could itself act as aPlaceHolder and have trigger methods
of its own. When its trigger method is invoked it could in turn create another “fuller” or “more
nearly complete”PlaceHolder that would be able to handle both the original and most recent trig-
ger methods. This building up of theRealSubject could go on indefinitely with only those
resources being allocated that are essential to handling the methods that have currently been
invoked.

12.0 Sample Code
When aPlaceHolder’s trigger method is invoked, it creates theRealSubject and forwards on the
method invocation to theRealSubject. The PlaceHolderimplementation oftrigger might look
something like this in C++:

void
PlaceHolder::trigger()
{
 // Create the RealSubject
 RealSubject* realSubject = new RealSubject();

 // Perform any registration or initialization that may be necessary for
 // the RealSubject and any other interested objects. This includes managing
 // the memory of the newly created RealSubject.
 ...

 // Delete the Placeholder since it is no longer needed
 delete this;

 // Forward the trigger method call to the RealSubject
 realSubject->trigger();
}

In the code example below, an abstract factory is used to create theRealSubject. This can reduce
the size of thePlaceHolder since it will not need to keep as much creation information.

If the RealSubject’s trigger method returns a value thePlaceholder’s trigger method should
return theRealSubject’s trigger value.

Triggered Placeholder July 29, 1998 8:07 am 7
Copyright 1998, Joe Hoffert. Permission is granted to copy for the PLoP-98 conference.

int
PlaceHolder::trigger()
{
 // Create the RealSubject
 Subject* subject = factory->createSubject();

 // Perform any registration or initialization that may be necessary for
 // the RealSubject and any other interested objects. We will not need to worry
 // about memory management here if the factory will manage it for us.
 ...

 // Delete the Placeholder since it is no longer needed
 delete this;

 // Forward the trigger method call to the RealSubject
 return (subject->trigger());
}

The use of the factory to create theRealSubject in the code above also decreases coupling. The
PlaceHolder no longer needs to know about theRealSubject type. It only needs to know about
theSubject base type. The trigger method will be serviced by theRealSubject polymorphically.

13.0 Known Uses

13.1 Playground Distributed Programming Environment [2]
The Triggered Placeholderpattern is used in the Playground C++ class library. It is used to
delay object creation for certain objects until a value has been received for that object from
another component.

In the Playground distributed programming environment, element-to-aggregate functionality

allows a connection to be made from a variable of a certain type in one distributed component to
an aggregate variable in another distributed component whose elements are of the same type. For
instance, an element-to-aggregate connection can be made from aPGint variable to aPGlist
variable composed ofPGint elements. The data values actually flow between thePGint elements
but this abstraction is useful for certain applications. By default, the Playground C++ class

FIGURE 3. The Playground Example

ClientPGvariable
assignFromDataStream()

PGplaceHolder

assignFromDataStream()

PGint
assignFromDataStream()

connection setup information

create new element &
transfer connection
information to it

Triggered Placeholder July 29, 1998 8:07 am 8
Copyright 1998, Joe Hoffert. Permission is granted to copy for the PLoP-98 conference.

library will create an element in the aggregate for the actual connection if applicable.
Additionally, send-on-connect functionality (which can be specified as part of a connection
request) sends a value across once the connection is made.

If an element-to-aggregate connection is made with the send-on-connect property, the element
created in the aggregate should not actually be created until a value is received. However,
connection information will be needed by the element when it is created. This information comes
from the connection negotiation process that has already completed. This information needs to be
stored somewhere between the time the negotiation process has completed and the time the
element is created.

An example helps to illustrate the pattern. An element-to-aggregate connection is being made
from a PGint variable in one distributed component to aPGlist of PGints variable in another
distributed component with the send-on-connect property specified. During connection
negotiation theTriggered Placeholder pattern proscribes the creation of aPGplaceHolder to
store the needed connection negotiation information and to create the newPGint element when
the first data value is sent over.

The PGplaceHolder triggers on the demarshallingassignFromDataStream method (which
indicates that an initial value has been received). It overrides this method to create the newPGint
element in its containing aggregate, pass the needed connection negotiation information to the
new element, register the new element with its associated aggregate, and send on the incoming
data value to the newly createdPGint element for processing. Finally, thePGplaceHolder
unregisters itself from intercepting the trigger method and then deletes itself.

13.2 Dynamically Linked Libraries
Operating systems that support dynamically linked libraries use theTriggered Placeholder
pattern in a non-object-oriented way. The operating system will insert a stub in the executable in
place of the library routine requested. When the library routine is actually invoked the stub
replaces itself with the actual code.

14.0 Related Patterns

The following patterns relate to the Triggered PlaceHolder Pattern:

• A PlaceHolder may use theAbstract Factory pattern [3] to create the appropriateRealSubject
concrete object. Then thePlaceHolder does not need to keep extra creation information about
theRealSubject which decreases the size of thePlaceHolder. Also, the client may use an
Abstract Factory initially to create the appropriateSubject subclass (i.e.,PlaceHolder). The cli-
ent then only holds a reference to aSubject which can refer to aPlaceHolder or aRealSubject.

• ThePublisher-Subscriber pattern [1] may be used to manage dependencies objects have with
thePlaceHolder. When thePlaceHolder creates theRealSubject it can update all its depen-
dents with theRealSubject as a parameter. This can be done by adding a parameter to theSub-
scribers’ update method which is a pointer to aSubject. TheSubscriber can check this pointer
against its previous pointer to see if itsPublisher has changed.

Triggered Placeholder July 29, 1998 8:07 am 9
Copyright 1998, Joe Hoffert. Permission is granted to copy for the PLoP-98 conference.

• TheTriggered Placeholder pattern is similar to theProxy pattern [3] and theGhost pattern [4]
but has a distinct use case. APlaceHolder is not intended as a permanent go-between for
another object. It is temporary and will go away once the triggered method has been called.
This implies a lifetime typically much shorter than theRealSubject.

TheTriggered Placeholder pattern differs from theProxy pattern in that thePlaceHolder and
theRealSubject will not co-exist from the user’s point of view. There is a brief time when the 2
objects physically co-exist but this is only when thePlaceHolder is creating theRealSubject.
This is transparent to the user.

TheTriggered Placeholder pattern differs from theGhost pattern in that the placeholder does
not change itself into theRealSubject. As noted in theGhost pattern, this is difficult to facilitate
in a statically typed language such as C++. ThePlaceHolder and theRealSubject are distinct
from each other.

References

[1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,Pattern-Oriented Software
Architecture: A System of Patterns. West Sussex, England: John Wiley & Sons, 1996.

[2] Kenneth J. Goldman, Bala Swaminathan, T. Paul McCartney, Michael D. Anderson, Ram Sethura-
man, “The Programmers' Playground: I/O Abstraction for User-Configurable Distributed
Applications”.IEEE Transactions on Software Engineering, 21(9):735-746, September 1995.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns: Elements of Reusable Object-
Oriented Software. Reading, MA: Addison-Wesley, 1995.

[4] K. Wolf and C. Liu, “New Clients with Old Servers: A Pattern Language for Client/Server Frame-
works,” in Pattern Languages of Program Design (J. Coplien and D. Schmidt, eds.), Reading, MA:
Addison-Wesley, 1995

