
A Componentware Development Methodology
based on Process Patterns

Klaus Bergner, Andreas Rausch
Marc Sihling, Alexander Vilbig

Institut für Informatik
Technische Universit¨at München

D-80290 München
http://www4.informatik.tu-muenchen.de

29th July 1998

Abstract

We present a new approach to a componentware development methodology based on a system of process patterns.
We argue that organizing the development process by means of a pattern system results in higher flexibility compared
to traditional ways of defining development processes. This is especially important in the context of componentware.
Finally, we propose a pattern catalog with a selection of suitable process patterns.

1 Introduction
Componentware is concerned with the development of software systems by using components as the essential build-
ing blocks. The most common understanding of a component is that of an encapsulated unit of software with well-
documented and therefore well-understood interfaces. Via those interfaces, a component can be connected to other
components. Systems built of loosely coupled components promise a higher degree of software reuse and improved han-
dling of the inherently involved complexity. Ideally, system development can thus be reduced to a simple composition of
existing components and their adaptation to specific needs.

To leverage the technical advantages of componentware and to support the reuse of existing components, the intro-
duction of new roles, tasks, and results in the process model is immanent. This leads, for example, to the separation
of the rolesComponent DeveloperandComponent Assembleras well as to new development tasks like searching and
evaluating existing components (cf. Section 3).

Obviously, the introduction of new roles and tasks requires a process model tailored to componentware. However, this
doesn’t imply that the process model in question has to be completely new and revolutionary. After all, componentware
itself is an evolutionary approach based on the foundations of earlier paradigms like object-orientation. Therefore, a
proposed componentware methodology should represent an adapted and improved version of established methodologies.
We believe that a pattern-based approach suits especially well, as patterns inherently try to capture proven solutions and
established practice.

The use of patterns also allows for additional flexibility because neither the context nor the proposed solution is
defined formally. This is particularly suited to the situation in project management, as formal definitions and hard rules
are not adequate in this area. Accordingly, the rigidity of prescriptive process models is widely felt as a strong drawback
and there is common agreement about the need to adapt the process to the actual needs. Jacobson, for example, talks
about the future UML process as a “strawman” [Jac98] serving only for explanatory purposes and probably never applied
exactly as proposed. Henderson-Sellers states in [HS96] that “a method has NO ROLE as a recipe book by which a series
of steps is followed slavishly”. In our opinion, statements like these and common practice clearly indicate deficiencies in
traditional process models or, at least, in the sequential and prescriptive form in which they are presented.

In our impression, the key requirement for a componentware process model is the efficient combination of top-down
and bottom-up development. This results in systems which fulfill the customer’s requirements while reusing existing
high-quality components. Cyclic and iterative process models try to merge the advantages of top-down and bottom-up
approaches by structuring the whole process as a series of iterated short phases. These phases are typically organized in
a top-down fashion themselves. Thereby experience gained at the end of a given cycle may influence the next iteration
in a bottom-up way. However, we feel that even cyclic approaches are too rigid in the context of componentware. Taken

1



seriously, a project manager may only react to changes of the current situation by starting a complete development cycle—
otherwise, the cyclic nature of the process model is violated. This criticism also applies to other prescriptive approaches
to componentware, like the reuse-driven development process presented in [Sam97]. Although the suggested sequence
of tasks seems quite reasonable, it is obviously not adequate for all componentware projects or project situations.

In this paper, we propose a pattern-oriented process model that may dynamically be adapted to the current situation
of the project. After outlining the basic concepts in Section 2, we present its main constituents, namely roles (Section 3),
result structure (Section 4), and a catalog of process patterns (Section 5). After covering related approaches in Section 6,
a short conclusion ends the paper. The appendix contains a number of exemplary process patterns which illustrate our
approach.

2 A Pattern-Based Process Model
The conceptual framework of the presented pattern-based process model consists of three main building blocks:

� A well-defined hierarchicalresult structurewith units of development information representing results of the vari-
ous development activities.

� A set of consistency criteriawhich apply to the different units of development information and the relationships
between them.

� A set ofprocess patternsproviding guidelines about the organisation of the actual development process. A given
pattern suggests a sequence of development activities which are advisable in the current situation of the project.
The state and the consistency of the result structure constitute essential parts of this context.

Result Structure: The result structure is comparable to a filing cabinet with drawers for the different development
documents. In the following chapters we present a particular result structure which is suited to the development of
component-based systems. Because the actual results and their structure depend on the nature of the development project
in question, we distinguish two ways of customizing the result structure. Whiletailoring allows to simply exclude
irrelevant results,adaptationalso comprises the introduction of additional results. Consequently, in the latter case,
modified or even new process patterns have to be introduced as well. Note, however, that we do not allow for the
modification of the result structure during the course of a project which seems to be an acceptable restriction in practice.

Once a development project has started, the result structure is continually “filled” by individuals or groups performing
specific development actions. The crucial point is that we donotprescribe the sequence of the individual actions a priori—
instead, the actual process will be designed and continually modified by the project manager according to a catalog of
process patterns.

Consistency Criteria: Various consistency criteria applying to the results of the development process may be derived
from the syntactical and semantical relationships between them. An example of such a relationship between units of
development information isrefinement. It expresses the concept that a document contains additional, more concrete—
albeit not conflicting—information compared to another, more abstract document.

We distinguish between certain parts of a development document which are related to other documents, and other
parts which are considered to contain strictly internal information. Only the former parts are subject to the application
of consistency criteria and may therefore be regarded as the “interface” of this document. For example, aComponent
Repository Document may contain a detailed report about existing components on the market. From the large variety of
covered aspects, however, theSystem Architectis only concerned with the technical characteristics of particular, selected
components.

Process Patterns: According to most authors, patterns consist of three main parts: Thecontextis an overall situation
giving rise to a certain recurringproblemthat may be solved by a general and provensolution [BMR+96]. Within our
approach, these parts may be described as follows:

� The contextis defined by the current internal state of the development project and its external state with respect
to the customers, the competitors, and the market situation. The internal state is characterized by the state and
consistency of the result structure. The context is subject to the sectionsApplicability and Structure of the
proposed pattern description format as shown in Section A of the appendix.

� The problemdescribes a concrete problem that typically arises in the given development context. It mentions
internal or external forces, namely, the influences of developers, customers, competitors, component vendors, the
time and money constraints, and the requirements and desirable properties the solution should have. A problem
reflects an unbalance between these involved forces and therefore implies a call for action. We address a problem
description in the sectionsIntent andMotivation of the description format. Note, however, that the theoretical
distinction between problem and context is often not very clear in practice.

2



� Thesolutioncomprises the involved roles and parts of the result structure and provides concrete recommendations
for an appropriate sequence and priority of development actions. It is represented in the sectionsStructure, Tasks
and Roles, andApplication Guidelines (cf. Section A).

The application of process patterns may be outlined as follows: Based on the project’s current situation as partly rep-
resented by the state and consistency of the result structure, theProject Coordinatortries to identify current development
problems. This information leads to the selection of one or more process patterns which may be applied because their
context and problem descriptions match the current situation. After a careful consideration of the implied consequences,
a pattern is chosen which recommends a number of development actions, their sequence and priority. An example for
such a process pattern isExplorative Prototyping1 (cf. Section B.3), stating under which preconditions it is advisable to
build an explorative prototype, and the way this may be accomplished.

Despite its inherent flexibility, a process constructed by applying process patterns is quite easy to control because
the consistency of the result structure and the actual extent to which it is elaborated serve as valuable indicators for the
progress of the project. This way, even more detailled and meaningful information about the project is provided compared
to the number of finished cycles which is usually taken as a progress indicator in a cyclic process model.

Explorative Prototyping as well as other process patterns are presented in the pattern catalog in Section 5. They have
familiar names and are obviously not revolutionary. This is in accordance with the inherent principles behind all pattern-
based approaches. Patterns are used to capture well-known knowledge and proven solutions in a given area of work.
However, most of the process patterns described in this paper stem from older paradigms and have not yet been tested in
the context of componentware. Although this violates in some sense the principle of a “proven solution”, we believe that
the evolutionary nature of the componentware approach itself permits the use and adaptation of process techniques from
other development paradigms.

At present, we have no experience with the use of our process patterns in an industrial project—the practical evaluation
of our approach will be the next step after consolidation of the pattern catalog. The current patterns try to capture the
project management techniques applied during numerous practical project courses that have been conducted over the last
five years [Tec94, Tec95, BBHP95, Ber96, Tec96, Tec97, BH97, Tec98b, Tec98a].

3 Roles
Componentware introduces a number of new roles for developers and project managers. Particularly noticeable are the
separation ofComponent Developerfrom Component Assembler, and the introduction of a dedicatedSystem Architect
and aProject Coordinator. Other traditional roles, likeSystem Analyst, will probably persist, although their focus and
responsibilities will change. In our proposed methodology, the different developer and manager roles are defined as
follows:

Component Developer: Components are developed by specialized component vendors or by in-house reuse centers as a
part of large enterprises. The responsabilities of aComponent Developerare to recognize the common requirements
of many customers or users and to construct reusable components accordingly. If a customer requests a component,
theComponent Developeroffers a tender and sells the component.

Component Assembler: Usually, complicated components have to be adapted to match their intended usage. TheCom-
ponent Assembleradapts and customizes pre-built standard components and integrates them into the system under
development.

System Analyst: As in other methodologies, aSystem Analystelicits the requirements of the customer. Concerning
componentware, he also has to be aware of the characteristics and features of existing systems and business-relevant
components.

System Architect: TheSystem Architectdevelops a construction plan and selects adequate components as well as suit-
ableComponent DevelopersandComponent Assemblers. During the construction of the system, theSystem Archi-
tectsupervises and reviews the technical aspects and monitors the consistency and quality of the results.

Project Coordinator: A Project Coordinatoras an individual is usually only part of very large projects. He supervises
the whole development process, especially with respect to its schedule and costs. TheProject Coordinatoris
responsible to the customer for meeting the deadline and the cost limit.

4 Result Structure
Figure 1 illustrates our proposal for the organization of the result structure underlying the process model. The main
parts are resembling the phases of conventional process models although we explicitly separate business-oriented design

1For better understanding the names of patterns are printed inbold font, the names of roles are printed initalic font, and the names of development
results are printed inserifless font.

3



from technical design:Analysis, Business Design, Technical Design, Specification, andImplementation. All main
development results, likeBusiness Design, consist of subresults likeArchitecture Design, Component Design,
Evaluation, andSearch. The consistency conditions between certain parts of the main results are visualized by arrows.

Implementation

Code

System Test

Technical Design

Component
Design

Evaluation

 Search

Architecture
 Design

Business Design

Component
Design

Evaluation

Search

Architecture
 Design

Specification

Component
Specification

Architecture
 Specification

Component
Test

Component
Assignment

Analysis

Interaction
Analysis

Responsibility
Analysis

Risk Analysis

Market Study

Figure 1: Result Structure

Note that there are no arrows between the subresults in a main result. This is due to the fact that these subresults are
even closer coupled than the main results and are usually developed together. As componentware is based on reusing
existing software, it is not plausible, for example, to design the technical architecture (subresultArchitecture Design of
main resultTechnical Design) without searching for and evaluating existing technical components (subresultsSearch
andEvaluation of the same main result). In the following sections we describe the result structure in more detail.

4.1 Analysis
TheAnalysis main result contains the specification of the customer requirements.

The subresultInteraction Analysis is concerned with the interaction between the system and its environment. It
determines the boundary of the system, the relevant actors (both human and technical systems), and their usage of the
system to be developed. Contained may be parts like an overallUse Case Specification, aBusiness Process Model,
Interaction Specifications includingSystem Test Cases, and an explorativeGUI Prototype.

The subresultResponsibility Analysis, on the other hand, specifies the expected functionality of the system with
respect to the functional and non-functional user requirements. It describes the required services and use cases of the
system in a declarative way by statingwhat is expected without prescribinghow this is accomplished. Contained are
parts likeService Specifications, Class Diagrams, and aData Dictionary.

The subresultRisk Analysis identifies and assesses the benefits and risks associated with the development of the
system under consideration. In the context of componentware, this requires aMarket Study with information about
existing business-oriented solutions, systems, and components.

Note thatAnalysis usually not only covers functional and non-functional requirements, but also technical require-
ments restricting the technical architecture of the system to be built. While the functional requirements must be fulfilled
by theBusiness Design main result, the non-functional and technical requirements must be compliant with theTechni-
cal Design main result. Furthermore, theImplementation must pass theSystem Test Cases.

4



4.2 Business Design
Business Design defines the overall business-oriented architecture of the resulting system and specifies the employed
business components.

The subresultsArchitecture Design andComponent Design are comparable to theInteraction Analysis andRe-
sponsibility Analysis subresults ofAnalysis. However, they do not address technical issues, but instead provide a
detailed specification of the business-relevant aspects, interactions, algorithms, and responsibilities of the system and its
components.Search corresponds to a preselection of potentially suiting business components and standard business
architectures that are subject to a final selection within theSpecification main result. WithinEvaluation, the character-
istics of the found components and architectures are balanced against the criteria identified inArchitecture Design and
Component Design.

4.3 Technical Design
Technical Design comprises the specification of technical components, like database components, for example, and their
overall connection architecture which together are suited to fulfill the customer’s non-functional requirements. As this
result deals with technical aspects of the system like persistence, distribution, and communication schemes,Technical
Design represents a dedicated part of the development results that should be logically separated fromBusiness Design.

In the context of componentware, however, the applied development principles are the same for both areas. Conse-
quently, the involved subresults are analogous to those ofBusiness Design.

4.4 Specification
The main resultsBusiness Design andTechnical Design are concerned with two fundamentally different views on
the developed system. TheSpecification main result merges and refines both views, thereby resulting in complete and
consistentArchitecture andComponent Specifications.

As said above, bothBusiness Design andTechnical Design cover an evaluation of existing components from the
business and technical point of view, resulting in a preselection of potentially suitable components for the system. The
Specification subresultComponent Test contains the results and test logs of these components with respect to the user
requirements and the chosen system architecture.

Some of the desired components may simply be ordered whereas other components are not available at all and
must be developed. TheComponent Assignment subresult specifies which components are to be developed in the
current project and which components are ordered from external component suppliers or in-house profit centers. If a
component is to be developed outside of the current project, a new, separate result structure has to be set up. Note
the close correspondence betweenArchitecture Specification andComponent Specification on the one hand, and
Interaction Analysis andResponsibility Analysis on the other hand. It allows for a clear hand-over of a component
specification to a component developer outside the project.

4.5 Implementation
The most important subresult of theImplementation main result is of course theCode of the system under consideration.
It comprises source code as well as binary-only components. The other subresult covers theSystem Test results.

5 A Process Pattern Language
In our approach, a process may be designed on multiple levels of detail, ranging from very fine-grained patterns, providing
advice for the creation of a single subresult, to high-level patterns for the organisation of the overall development process.
Like in other pattern-based approaches, the single patterns may also be combined with each other, forming a multi-level
system of patterns. In the following sections, we present a proposal for such a pattern system at four different levels:
project patterns, inter-result patterns, main result patterns, and subresult patterns.

We use the format explained in Section A of the appendix to describe the individual patterns. The format is based on
the template in [GHJV95] which should be familiar to most readers and allows to structure the information in a concise
and uniform way. Each pattern description is preceded by the pattern name which conveys the essence of the pattern.
Selected process patterns are described in detail in Section B of the appendix whereas a short form is used in the following
sections to provide an overview of the proposed pattern catalog.

5.1 Project Patterns
Project patterns apply to the overall development approach chosen. They are concerned with the logical and temporal
relations between the creation of the main resultsAnalysis, Business Design, Technical Design, Specification, and

5



Implementation:

� Top-Down (alias Sequential, Waterfall): Create the main results sequentially, starting withAnalysis, contin-
uing withDesign andSpecification, and ending withImplementation.

In some projects, the duration and effort of the development activities may be planned very well. An example is a devel-
opment project for a host-based bank accounting system in which the user requirements are well-known and there are no
particular technical and organisational risks involved.
The project starts with the analysis of the complete set of user requirements by theSystem Analyst. Based on this result,
the System Architectdevelops matchingBusiness Design andTechnical Design main results. TheSpecification is
outlined by theSystem Architectand further elaborated by theComponent Assembler, who subsequently implements and
tests the system against the customer requirements.
In a Top-Down process, work on a new main result may begin only after the previous main results have been finished.
If errors are discovered, it is possible to redo already finished results. However, in this case all dependent results must
be reworked, too. The main advantage of applying this pattern is a manageable and traceable development process with
clear milestones after each main result phase. The main risks involve unforeseen technical or organisational issues and
unrecognized or modified customer requirements which may remain undiscovered over long periods of time, leading to
a costly reworking of already elaborated results. There may also be negative effects on the motivation of the developers
because a runnable system is becoming apparent only at the very end of the process. �

� Bottom-Up (alias Reverse Waterfall): Starting out from proven solutions and existing components, elaborate
a matching design and reasonable requirements in a linear process.

Such an overall process applies to situations in which inital user requirements are only roughly stated, but well-known
standard solutions and many reusable components exist. As an example, consider the development of a web-based
database interface. The particular query features are not specified in detail by the customer but are rather supposed to be
“as usual”.
TheSystem Architecttogether with theComponent Assemblerstart out from well-known solutions—most likely involving
standard components—and together elaborate or select a reasonableDesign of the system. Existing implementations
may be analyzed to gather useful development information. At the end of this process, theSystem Analystcreates the
documentsInteraction Analysis andResponsibility Analysis of Analysis in compliance with the features of the built
system.
After finishing the process, the customer may now refine his requirements, probably necessitating a rebuild of the system
supported by a different project pattern likeTop-Down or Iterative . A Bottom-Up process is particularly suited to
projects with tight time constraints, as only few efforts have to be spent for analysis, and the system is largely built from
existing components. �

� Architecture-Driven: After creating the mainDesign results, elicitate reasonable user requirements and specify
and implement the system.

�! See appendix, Section B.1. �

� Roundtrip: Start working on theAnalysis main result and progress fromBusiness Design, Technical Design
andSpecification to Implementation, then reverse the sequence to ensure consistency ofSpecification, Design, and
Analysis results withImplementation. Repeat as necessary.

The Roundtrip process may be understood as a combination of interleavingTop-Down andBottom-Up processes; it
corresponds to a variant of Booch’s roundtrip approach as introduced in [Boo94]. The main motivation for this pattern is
to remove inconsistencies in the result structure which may arise, for example, in aTop-Down process when changes in
theImplementation are not documented in theDesign documents.
The Roundtrip approach is especially suited if a consistent and complete result structure is important for the further
development and maintenance of a system in the long run. However, the pattern does also encourage a certain amount
of temporary inconsistencies, allowing the developers to experiment with new variants and to diverge from specified
solutions. �

� Iterative (alias Cyclic, Incremental, Evolutionary Prototyping): Create the main results in a cyclic fashion
by repeated application of theTop-Down pattern. In every iteration, extend and adapt the result structure to consider
additional or modified requirements.

Oftentimes, requirements are extended, modified or even redefined during the course of a project. An iterative process

6



copes with this uncertainty by restarting the development process after implementing a partial version of the system,
called an “evolutionary prototype”. As this prototype is not discarded, but used as the basis for the final system, its
corresponding development documents are part of the original project’s result structure.
Although the length of one iteration cycle depends mainly on the size of the increment to be implemented, it should not
be too long—typical values are some weeks to few months. Short increments have positive effects on the motivation
of the developers and the resulting evolutionary prototypes may even be marketed as preliminary product versions if
time-to-market is important.
The main risk with an iterative approach is that new requirements may invalidate the evolutionary prototype’s architecture.
If this is the case, the effort needed for the conversion to a new architecture may be considerably high. �

5.2 Inter-Result Patterns
An Inter-Result Pattern suggests a solution which produces subresults in at least two different main results.

� Tune Performance: Analyze an occurring performance problem. Either redesign the overallBusiness Design
andTechnical Architecture or change the systemSpecification andImplementation.

If a performance problem occurs during the creation of theSystem Test subresult, theSystem ArchitectandComponent
Assembleranalyze the problem and decide whether a local code optimization (without violating theSpecification results)
or a reworking of the overall design is required to solve the problem.
In the former case theComponent AssembleroptimizesCode, Architecture Specification, andComponent Speci-
fication individually. Considerable care has to be taken that these subresults remain consistent. If tests show that the
optimization does not reach the expected performance, it may be necessary to redesign the architecture.
In case of an architectural redesign theSystem Architectreconsiders both technical and businessArchitecture Design as
well asComponent Design. During this process he has to ensure that the resulting integratedArchitecture Specifica-
tion andComponent Specification yield the expected performance gain. If this cannot be reached, business design and
technical design are probably not compatible, and the overall architecture has to be questioned. �

� Re-Engineering: Analyze an existing system in order to reuse and improve as many parts as possible.

Many development projects do not implement a system from scratch but integrate, extend, or partly replace existing
systems. This may necessitate an in-depth evaluation of these systems, leading to an extensive amount of development
information. In order to integrate this information into the current project, additionalCurrent State Analysis and
Current State Evaluation documents within several subresults of all main results are produced.
TheSystem Analyststarts with creating these current state results within theAnalysis main result in order to figure out
obsolete, changed and new user requirements. After this task is partially completed, theSystem Architectdecides which
other areas of the result structure are concerned and which components of the existing systems should be examined. Most
of the involved results may then be elaborated in parallel.
After the current state analysis and evaluation have been completed, bothSystem ArchitectandComponent Assembler
subsequently transform the remaining (and therefore still valid) results in theCurrent State Analysis andCurrent State
Evaluation documents into “ordinary” results of the currently developed system.
An example for such an approach, consider a host-based legacy system which is to be re-engineered for a client/server
environment. In this case, it may be vital to reuse theBusiness Design as far as possible while dismissing theTechnical
Design. In contrast, if a company developed a CASE tool on top of an object-oriented repository and currently plans to
implement a CAD tool, it is the technical design which may probably be reused for the new project. �

� Reverse Engineering: Analyze existing code in order to understand and reuse as many aspects as possible of the
existing desing and implementation.

Oftentimes duringRe-Engineering, one has to consider design and architecture of legacy systems although their doc-
umentation is not available anymore. In this case,Component AssemblerandSystem Architectfirst produce aCurrent
State Analysis document for the subresultCode of the main resultImplementation. TheSystem Architectthen recov-
ers and figures out theCurrent State Analysis andCurrent State Evaluation documents of the appropriate subresults
in Business Design andTechnical Design. This process is usually supported by CASE tools and code analyzers.
Note that this pattern may also be applied to acquire information and know-how from competitors. �

7



� Periodical Build: Build a compilable or runnable version of the system to assess or ensure the consistency of and
betweenImplementation andSpecification.

In large projects with many sub-teams the consistency of interfaces is often problematic, especially if there is no adequate
tool support. This is not only critical because it leads to unnecessary efforts for re-establishing the consistency later
on, but also because inconsistencies in the result structure make it impossible for the project managers to measure the
progress of the project.
The Component Assemblerperiodically links and compiles builds within theCode subresult of theImplementation
main result. The time between such builds depends on the size of the project and the effort needed for the build, but
should be short enough to prevent the emerging of larger inconsistencies (typically, builds are done daily to at most
weekly). If the build does not succeed, theComponent Assembleranalyzes the reason and revises theImplementation
andSpecification main results. If the overall design is affected, theSystem Architecthas to rework theBusiness Design
andTechnical Design main results as well.
The process for periodical builds of runnable systems is similar, with the additional benefit that the results of the build
may be used by theSystem Analystfor Explorative Prototyping to gain feedback from the customer or to gather further
requirements. Runnable system builds may also positively effect the motivation of the developers because the progress
of the project is apparent at all times. �

� Technical Foundation: Design and implement the technical infrastructure with a small subset of the business
functionality before completing the whole system.

Sometimes, a working technical infrastructure is essential in order to implement and test the business functionality of a
large system. As an example, consider a large product planning system depending on various specialized services for
persistency, transactions, and communication.
In order to realize the necessary technical foundation, theTechnical Design has to be completely elaborated by theSys-
tem Architect. Furthermore, theAnalysis andBusiness Design main results should clearly define at least one typical
business process. It should also be evident that the remaining business processes may be realized with the chosenTech-
nical Design, either because the technical design is very general and powerful or because the the business functionality
is homogeneous and well-understood in principle.
Based on the completedTechnical Design and a small part of theBusiness Design, System ArchitectandComponent
Assemblerelaborate a first version of theSpecification andImplementation main results. If theEvaluation andTest
subresults for this first version are positive, the remaining parts ofBusiness Design are specified and implemented based
on the technical infrastructure. �

� Combined Experimental Prototyping: Build a preliminary, throw-away version of the full system in order to
evaluate the integration of business-oriented and technical design aspects.

For complex systems it is a critical question whetherBusiness Design andTechnical Design match with each other
and can be combined to a consistent systemSpecification. An example is a system supporting mobile workers during
the maintenance of aeroplanes—it is not only critical how to represent the business-relevant data and computations, but
also how to distribute them technically onto the mobile computers of the workers. In the context of componentware, it is
furthermore interesting whether the components found in theSearch subresult are suitable and sufficient to implement
the overall design.
Based on reasonably complete sections ofBusiness Design andTechnical Design, theSystem Architectcreates simpli-
fied, but consistentArchitecture Specification andComponent Specification subresults of the overallSpecification.
If this attempt is successful, theComponent Assemblermay implement this specification and test the resulting prototype
for its compliance with existing components as well as for certain critical properties.
As the resulting prototype is only intended to demonstrate certain, critical aspects of the full system, it is usually built
using specialized prototyping tools and a very simplefied process, resulting in poor overall software and documentation
quality. To prevent the reuse ofCombined Experimental Prototype, it is archived in a recursive result structure of its
own as a part of theSpecification main result. �

� Component Assessment: Assess the impact of a new component on requirements, design, and implementation
of the developed system.

During the course of a development project, it is likely that promising new components or updated versions of already
used components become available. Based on the current state of the project, it is necessary to assess the impact of a
potential integration of these components into the system.
Component Assemblerand System Architectperform an extensive risk study. First, they include the new or updated
components in theSearch and Evaluation subresults ofBusiness Design and Technical Design. Subsequently,

8



the subresults ofComponent Test and Component Specification have to be updated or amended as well. Based
on these results, aIntegration Risk Analysis document is produced as part of theArchitecture Specification and
Component Specification subresults. This document mentions the involved risks and costs as well as the potential
benefits and improvements of the integration. Attention should be paid to the effects on the overall architecture, the
expected performance of the system and potential inconsistencies with existing components.
Additional aspects considered by theSystem Analystcover the influence on the user requirements stated in theAnalysis
documents. The resulting system is liable to offer new or improved functionality that has to be balanced against the user’s
needs. Based on the outcome of theIntegration Risk Analysis, theSystem Architect, theSystem Analyst, and possibly
theProject Coordinatordecide on the integration of the new component. �

� Component Update: React to an updated version of an existing component which is used in the developed
system.

Frequently, improved and extended versions of an existing component become available. Oftentimes, these updated
components are of a higher quality (due to bug fixes or optimizations, for example) and may offer several new features.
In order to decide if these improvements justify an integration of the updated component, it is advisable to apply a
Component Assessmentwhich evaluates the potential impacts on the system. If there are only minor changes, the
Component Assemblerintegrates the new component version into the system as part of theCode subresult. It may
be necessary to adapt the component’s interface (see the adaptation subresult patterns) or to remove workarounds that
are now obsolete due to the removal of bugs. After the integration of the component into the system, regression tests
should be performed to ensure correct system behavior. In case of major changes that extend to the technical or business
architecture, it is advisable to treat the updated component as a novel component and apply the patternComponent
Innovation. �

� Component Innovation: React to a novel component which becomes available during the course of the devel-
opment project.

From time to time, components with novel capabilities become available on the market during the course of the devel-
opment project. Sometimes, these components could replace or substantially improve an already developed part of the
system. However, it is likely that the integration of a new component leads to considerable changes of the current ar-
chitecture and component specifications. In order to decide if the potential improvements justify an integration of this
component into the system, it is advisable to apply aComponent Assessmentwhich evaluates the potential impacts on
the system. If the producedIntegration Risk Analysis indicates a net positive effect, the integration requires a number
of critical operations and transformations on the existing results. In most cases, it involves drastic changes to parts of the
already existingSpecification andImplementation, leading to detailed tests of these parts by theComponent Assembler.
They are documented in theComponent Test subresult of theSpecification. If a complete redesign seems adequate
and economic, theSystem Architecthas to rework and evaluate the subresults ofBusiness Design, Technical Design,
andSpecification. �

5.3 Main Result Patterns
Main result patterns are concerned with the way a given main development result is elaborated. They do not imply
new consistency criteria as the individual subresults of a main result usually have to be produced in a strongly coupled
process.

� Customer-Driven Analysis: Determine the requirements in theAnalysis main result predominantly based on
information from the customer.

Many developed systems are targeted at a single customer who expects support for certain parts of his business processes.
It is therefore necessary to carefully analyze these business processes and the intended functionality of the system in
close dialog with the customer. Hence, theSystem Analystfirst elaborates the subresults ofInteraction Analysis and
Responsibility Analysis beforeRisk Analysis andMarket Study. Only if the latter subresults indicate potential draw-
backs or existing solutions that imply a modification of the original requirements, the former subresults are reconsidered
accordingly. �

� Market-Driven Analysis: Determine the requirements in theAnalysis main result predominantly based on the
characteristics of existing components and systems.

Sometimes the customer has yet no clear understanding of his requirements or there exists no defined customer for a

9



developed system because it is targeted at a larger market. In this case, the gathering of requirements begins with an
extensiveMarket Study that provides an overview of existing systems and their features as well as generally desired
features of new systems in this area. Based on this information, theSystem Analystderives plausible requirements that
are documented in the subresultsInteraction Analysis andResponsibility Analysis. Once tentative requirements have
been elaborated, it is necessary to evaluate the involved development risks as part of theRisk Analysis subresult. In the
case of a market-driven analysis, it is especially important to consider the predicted future development of the market and
the strategy of competitors. Note that in case of an existing customer, it is possible to applyExplorative Prototyping
based on existing components to help the customer discover and clearly state the system’s requirements. �

� Experimental Prototyping: Build a preliminary throw-away version of the full system or important parts to get
familiar with the business or technical architecture.

�! See appendix, Section B.2. �

� Explorative Prototyping: Build a preliminary throw-away version of the system or some of its vital components
in order to explore and analyze the customer requirements.

�! See appendix, Section B.3. �

� Design-Driven Evaluation: Derive the criteria for theEvaluation of existing, reusable components and archi-
tectures withinBusiness Design andTechnical Design main results from already createdArchitecture Design and
Component Design subresults.

A comprehensiveEvaluation of existing components and architectures forBusiness Design andTechnical Design is
a critical step in the development of component-oriented systems. The relevant evaluation criteria may be derived in a
top-down approach from already present results ofArchitecture andComponent Design by theSystem Architect. This
ensures compliance with the already specified or developed components and the chosen architecture. Such an approach
to evaluation is advisable if widely used or even standardized components and architectures (both technical and business-
oriented) dominate system development in the given area. In this case it is conceivable that there exist standard evaluation
criteria and conformance test procedures which may be applied. �

� Component-Driven Evaluation: Derive the criteria for theEvaluation of existing, reusable components and
architectures withinBusiness Design andTechnical Design main results from the features of these components, the
best of which are selected and combined in the design.

An inverse approach toEvaluation in Business Design andTechnical Design (as compared toDesign-Driven Eval-
uation is to gather comprehensive evaluation criteria from an analysis of the existing components and architectures as
stated in the createdSearch subresult. It is likely that many of the discovered components and architectures in the given
application domain share a set of core features and fulfill a set of common requirements. These aspects of existing solu-
tion are a good starting point for their evaluation by theSystem Architect, especially if there are yet only few results in
Architecture andComponent Design. Once suitable components and architectures have been preselected as a result
of Evaluation, it is possible to elaborateArchitecture andComponent Design and apply the patternDesign-Driven
Evaluation to further refine theEvaluation subresult. �

5.4 Subresult Patterns
Subresult patterns apply to the creation of single subresults. For technical subresults likeArchitecture Specification
or Component Specification, this leads to specialized componentware design patterns similar to those developed for
object-oriented software systems. Obviously, componentware requires certain specific variants. Adaptation patterns,
for example, deal with the process of adapting existing components by means of wrappers, inheritance, or even source
code modification. Two examples of these rather technical patterns which concern the subresultCode of the main result
Implementation are given below:

� Adaptation by Wrapping: Adapt the behavior of an existing component by embedding it in a “wrapping” com-
ponent.

Sometimes, an existing business or technical component has to be adapted in order to be reused in the current develop-
ment project. Although many components provide a predefined means to customize them, it may still be necessary to
change other parts of their behavior or interaction patterns due to the requirements stated inArchitecture or Component
Specification. These modifications are done by theComponent Assembleras part of theCode within Implementation.

10



They may be accomplished by introducing a dedicated wrapper component that contains the existing component and
exposes the required interfaces to the environment. The implementation of these visible interfaces uses functionality of
the contained component in a way that fulfills the given specifications. This approach is only feasible if no fundamental
modifications of the original component’s behavior are necessary. �

� Adaptation by Reimplementation: Adapt the behavior of an existing component by reimplementing it accord-
ing to the current specification.

Another, albeit drastic approach to adapt an existing component to a new context is to reimplement it from scratch. This
may become necessary, for example, if the original component is not compatible with the intended technical platform,
does not meet performance expectations or an initial wrapping approach seems too complex and error-prone. The re-
quired development efforts of theComponent Assemblerduring the production of theCode are considerably higher
compared toAdaptation by Wrapping . Still, the study of the original component’s behavior and interfaces may provide
valuable guidelines for the reimplementation. In this respect,Adaptation by Reimplementation is closely related to the
inter-result patternReverse Engineering. �

Composition patterns, on the other hand, mention different possibilities for the composition of existing components.
These patterns are similar to the the structural patterns of [GHJV95]. Other subresult patterns are involved with subresults
like Search andEvaluation, which could be realized by performing a market survey, for example. Even further subresult
patterns are test and integration patterns likeWhite-box Testing, Black-Box Testing, Review, and so on. Due to the large
number of conceivable subresult patterns, we currently do not attempt to propose a detailed and sufficiently complete
pattern catalog, but only present one further, non-technical pattern for the subresultComponent Assignment of the
main resultSpecification:

� Make-or-Buy: Prepare and conduct the decision whether to develop a specified component as a part of the current
project, as a separate in-house project, or to order it from an external component vendor.

�! See appendix, Section B.4. �

6 Related Approaches
There already exists established literature about process and organizational patterns [Cop97]. A vaguely related approach
can be found, for example, in [MM97]. This book contains a rather inhomogeneous collection of patterns, most of them
concerning various technical and architectural aspects in the context of CORBA systems. However, it does also contain
the organizational pattern “Software Development Roles” which suggests a clear role structure with roles similar to
those proposed in Section 3. The fundamental difference to our approach is that all our proposed patterns stronglyrely
on the presence of such a role structure. We are convinced that the separation of responsibilities by roles is mandatory to
every real-world componentware project.

An important contribution in the area of process and organizatorial patterns has been made by Coplien who proposes a
generative pattern language to describe existing and to construct new organisations [Cop94]. He considers rather general
patterns that mostly cover the organizational and social aspects of the software development process, referring to problems
like choosing the ideal size of an organization, the importance of finding the right communication structure, and the choice
of an adequate role structure. These patterns are not closely tied to an underlying methodology, claiming that a good set of
organizational patterns helps to indirectly generate the right process. Compared to most of Coplien’s patterns, our patterns
are more concrete because they are tailored to the context of componentware and rely on a pre-defined role and result
structure. However, there are also overlapping areas, for example with theReviewandPrototype patterns which are also
present in our catalog. Other patterns, likeCode Ownership, Patron, orOrganization Follows Location, are orthogonal
to our approach and may therefore be combined with the patterns proposed in this paper. Similar considerations apply
to the approaches of Beedle [Bee98] and Cockburn [Coc97].

A closely related approach to a flexible software development process suited to componentware has very recently
been proposed in the scope of the Catalysis methodology [DW98]. It allows for a choice of alternative “routes” through
the development process which create and elaborate a given result structure, consisting of parts like a business model, a
system specification or system design documents. These different work-products are semantically related to each other
and may be checked for consistency and completeness. The development process itself is customized by applying process
patterns on different levels of concern: Development context patterns likeObject Development from Scratchor Re-
engineeringdetermine the overall sequence of the main development phases, similar to the project patterns proposed in
this paper. Within each phase several local patterns likeMake a business modelor Implement technical architecture
suggest possible development activities that may be applicable.

Based on a preview version of the pattern catalog, we believe the Catalysis patterns are mainly intended to provide
general guidelines in applying this particular development method. In contrast, the patterns presented in Section 5 focus

11



more on the development process itself and its implications in the context of componentware. The proposed result
structure is more clearly defined and serves as a solid backbone when choosing and applying the individual patterns. The
actual activity of producing a development result is not covered by our patterns (after all, the technical architecturehasto
be implemented at some point), allowing for more advanced application of development knowledge, featuring key aspects
like reuse and definition of subprojects. Still, it is interesting that the common problem of defining a flexible development
process model leads to convergent solutions relying on a defined result structure and appropriate process patterns. This
seems to justify the chosen approach and encourages further work in this area.

7 Conclusion
We have presented a methodology for organizing the development process of component-oriented systems based on a
given, standardized result structure together with a first, preliminary version of a pattern language. We believe that this
approach allows for the flexibility and modularity needed in real-world development.

Currently, the proposed process model and its accompanying pattern language are far from being complete—both
structure and content of the pattern catalog are not sufficiently elaborated. Furthermore, the presented patterns need to
be expanded and improved. Especially example applications and counter-examples are urgently missing at this point, as
well as application guidelines with detailed recommendations for tools, metrics, and techniques. We also plan to include
economical aspects and implications in our approach, possibly by defining additional tasks and roles. The elaboration
and consolidation of the pattern catalog is the focus of our current work.

References
[AG83] Albrecht and Gaffney. Software function, source lines of code, and development effort prediction: a software

science validation.IEEE Transactions SE, 9(6), 1983.

[BBHP95] Wolfgang Bartsch, Klaus Bergner, Rudolf Hettler, and Barbara Paech.StudentenEntwickelnUniverselles
Hochschulinformationssystem: Erfahrungen aus einem Softwaretechnik-Praktikum. InProceedings of
SEUH. German Chapter of the ACM, Teubner-Verlag, 1995.

[Bee98] Michael Beedle. BPRPatternLanguage home page,http://www.bell-labs.com/cgi-user/Org
Patterns/OrgPatterns?BPRPatternLanguage , 1998.

[Ber96] Klaus Bergner. Under pressure – recommendations for managing a practical course in software engineering.
In Proceedings of Software Engineering: Education and Practice ’96. IEEE Press, 1996.

[BH97] Klaus Bergner and Franz Huber. Systems development with Java: Experiences from a practical project
course in software engineering. InProceedings of the Eighth International Workshop on Software Technology
and Engineering Practice ’97. IEEE Press, 1997.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.Pattern-Oriented Software Architecture
– A System of Patterns. Wiley & Sons, 1996.

[Boe81] B. W. Boehm. Constructive cost model.Software Engineering Economics, 1981.

[Boo94] G. Booch.Object-Oriented Analysis and Design with Applications. Benjamin/Cummings, 2nd edition, 1994.

[Coc97] Alistair Cockburn.Surviving Object-Oriented Projects. Addison-Wesley, 1997.

[Cop94] J. O. Coplien. A development process generative pattern language. InPLoP ’94 Conference on Pattern
Languages of Programming, 1994.

[Cop97] Jim Coplien. OrgPatterns home page,http://www.bell-labs.com/cgi-user/OrgPatterns/
OrgPatterns?FrontPage , 1997.

[DW98] Desmond D’Souza and Allan Wills.Objects, Components, and Frameworks with UML: The Catalysis
Approach. to appear,http://www.iconcomp.com/catalysis , 1998.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[HS96] Brian Henderson-Sellers. The need for process,http://www.sigs.com/publications/docs/
oc/9612/oc9612.sellers.html . Object Currents – The monthly On-Line Magazine, December
1996.

[Jac98] Ivar Jacobson. Component-based development using UML. Talk at SE:E&P’98, Dunedin, Newzealand,
1998.

[MM97] Thomas J. Mowbray and Raphael C. Malveau.CORBA Design Patterns. Wiley Computer Publishing, 1997.

[Sam97] Johannes Sametinger.Software Engineering with Reusable Software Components. Springer-Verlag, 1997.

12



[Tec94] Technische Universit¨at München, Institut f¨ur Informatik.TIS Project Pagehttp://tis.informatik.
tu-muenchen.de/tis.html , 1994.

[Tec95] Technische Universit¨at München, Institut f¨ur Informatik.FEEDBACK Project Pagehttp://tis.infor
matik.tu-muenchen.de/stp95/ , 1995.

[Tec96] Technische Universit¨at München, Institut f¨ur Informatik. AutoFocus Project Pagehttp://autofocus.
informatik.tu-muenchen.de/ , 1996.

[Tec97] Technische Universit¨at München, Institut f¨ur Informatik. SimCenter Project Pagehttp://autofocus.
informatik.tu-muenchen.de/simcenter , 1997.

[Tec98a] Technische Universit¨at München, Institut f¨ur Informatik. CARE Project Pagehttp://autofocus.
informatik.tu-muenchen.de/stp98/ , 1998.

[Tec98b] Technische Universit¨at München, Institut f¨ur Informatik. JAMES Project Pagehttp://wwwbruegge.
informatik.tu-muenchen.de/scp98/index.html , 1998.

13



A Description Format

Intent A concise summary of the pattern’s rationale and intent. It mentions the particular development
issue or problem that is addressed by the pattern.

Also Known As Other possible names for the pattern, if any.

Motivation An illustration of the particular development issue or problem that is addressed by the pattern.
If possible, a scenario is provided which motivates the use of the pattern.

Applicability A description of the context in which the pattern may be applied. It is largely based on
the current state of the development project, but sometimes also external circumstanecs have to be
considered.

Structure A visual representation of the pattern’s structure based on the result structure as shown in Fig-
ure 1. The results involved in the pattern are emphasized with a grey background whereas grey arrows
denote the involved relationships between them. The state of the development project is visualized by
different fill styles of the involved subresults: a dark grey background indicates a completely devel-
oped result structure, a gradient fill represents a partially developed result structure whereas a white
background denotes missing or irrelevant development information.

The suggested development activities within a pattern, namely, creating results and evaluating and
establishing consistency criteria, are denoted by sequence numbers attached to the corresponding
boxes and arrows.

Tasks and RolesA description of the participating tasks or roles as well as their responsibilities and inter-
actions in application of the pattern. This section complements the structure diagram in illustrating
the solution provided by the pattern.

ConsequencesA short discussion of the results, consequences and trade-offs associated with the pattern.
It allows an evaluation of the pattern’s usefulness.

Application Guidelines Practical guidelines, hints and techniques useful to apply the pattern. Particular
methods, measures or tools are mentioned which support the application of the pattern.

Application Examples Known uses of the pattern in practical development projects. These application
examples illustrate the acceptance and usefulness of the pattern, but also mentions counter-examples
and failures.

Related Patterns A list of related patterns that are either alternatives or useful in conjunction with the
described pattern.

B Selected Patterns
B.1 Architecture-Driven (Project Pattern)

Intent Organizing the overall development process by first establishing a system architecture. Starting out from this
architecture, the developer tries to gather reasonable user requirements, designs appropriate business as well as
technical components and builds an implementation strongly based on this architecture.

Also Known As Inside-Out

Motivation Certain application domains like telecommunication systems for example, are dominated by existing system
architectures. Most of the available software components are meant to be used in the context of a given architecture.
The overall development process should be adapted to this situation.

Applicability The application domain is dominated by a small number of system architectures. These architectures
are well-understood, widely used, and stable. Ideally, they are open architectures and subject to international
standardization (ANSI, ISO, OSI, etc.). The products of system development are not so much targeted at a single
customer, but are likely to apply to a larger market.

14



Implementation

Component
Composition

System Test

Component
Adaptation

Business Design

Component
Design

Component
Evaluation

Component
 Search

Architecture
 Design

Technical Design

Component
Design

Component
Evaluation

Component
 Search

Architecture
 Design

System
Specification

Component
Specification

Architecture
 Specification

Component
Test

Component
Assignment

Analysis

Interaction
Analysis

Responsibility
Analysis

Risk Analysis

Market Study

1

2

2

2

2

3

Figure 2: Structure of the PatternArchitecture-Driven

Tasks and RolesTheSystem Architecthas a clear understanding of the available technical and business-oriented archi-
tectures in the given application domain. He is responsible for searching and evaluating these architectures and
the appropriate components. Although tentative customer requirements may exist due to market studies, for exam-
ple, they are not the primary evaluation criterion. After a certain technical and business-oriented architecture has
been chosen, theSystem Architectprepares the according design documents which serve as input to the results of
Analysis, System Specification and finallyImplementation.

While elaborating theAnalysis documents, a product profile needs to be established according to the market
demands. Once tentative requirements based on the given system architecture have been identified, it is possible to
elicit concrete user requirements and supply them to the other development tasks.

Specification requires the integration of both technical and business-oriented architecture to produce a complete
and consistent specification document which allows implementation of the system. The available components are
mainly tested against predefined requirements of the chosen system architecture until the actual user requirements
are provided by the results ofAnalysis. Note that there may even exist standardized test procedures provided by
the original achitecture specification. Once the suitable components have been identified, they are either handed
over to implementation within the current project or set up as clearly defined subprojects.

ConsequencesThe quality of the products relies strongly on the chosen system architecture. Choosing a widely used
or even standardized system architecture as the starting point of system development facilitates the production of
capable and reliable software systems. The finished products or even part of the developed components apply to a
wider market.

However, many of the existing standard architectures cover a large area and require a lot of effort to understand and
use them adequately. It is probably necessary to design a whole line of products on a given architecture as a single
product usually does not justify these efforts.

Furthermore, it is not advisable to cling to a given standard architecture if it is simply not appropriate for the devel-
opment project in question. A careful evaluation procedure has to ensure the adequacy of the chosen architecture.

Application Guidelines If there exists a widely used or even standardized system architecture, it is likely that many
supporting tools and frameworks have already been developed. Frameworks in particular are well suited for rapid
application or prototype developement that helps to understand and evaluate the given architecture. However,
they may not be appropriate for the actual system implementation as frameworks usually rely on a strong coupling
between functionality and interaction. This is generally not a desired characteristic of component-oriented systems.

Application Examples Telecommunication systems, SAP R/3

Related Patterns Variants of this pattern areTechnical Architecture Driven andBusiness Architecture Drivenwhich
focus on a dedicated part of the overall system architecture. The mentioned aspects and consequences of the
architecture-driven approach, however, also apply to these variants.

The patternsExperimental Business Prototyping, Experimental Technical Prototyping, andCombined Ex-
perimental Prototyping may be applied to understand as well as to evaluate the conceivable architectures and
available components. Based on these prototypes, it may be possible to analyze the development risks and obtain
more concrete user requirements.

15



B.2 Experimental Prototyping (Main Result Pattern for Business Design or Technical Design)

Intent Building a preliminary throw-away version of the system or some of its vital components to get familiar with a
possible architecture. Depending on the nature of the architecture, this pattern subsumes two subpatterns concern-
ing business architecture and technical architecture, respectively. The experience gained has to be transferred to
Architecture Design.

Also Known As —

Motivation Many tentative system architectures look promising in theory but are actually hard to implement and exploit
in practice. Building an experimental prototype of the system or some of its vital components leads to a better
understanding of the architecture and the way it should be used. This is especially important in the architecture-
driven development approach which relies strongly on the appropriate system architecture. Furthermore, the time
spent to develop the prototype may serve as an indicator of the total development time needed using the given
architecture. For example, a project may involve tight requirements regarding the system’s response times. An
experimental technical prototype would be very useful to evaluate possible technical infrastructures with respect to
these requirements.

Applicability One or several new system architectures have been proposed. These architecures are not widely used in the
application domain or there exists little in-house experience and knowledge about them. Ideally, the specifications
of the system or some of its vital components are known although it is possible to build a purely technical prototype
without them.

Implementation

Code

System Test

Technical Design

Component
Design

Evaluation

 Search

Architecture
 Design

Business Design

Component
Design

Evaluation

Search

Architecture
 Design

Specification

Component
Specification

Architecture
 Specification

Component
Test

Component
Assignment

Analysis

Interaction
Analysis

Responsibility
Analysis

Risk Analysis

Market Study

1

2

3

4

Figure 3: Structure of the PatternExperimental Technical Prototyping

Tasks and RolesTheSystem Architectmakes a preselection of available, reasonable architectures and proposes a suit-
able one for the prototype inArchitecture Design. Naturally, as the information regarding the architecture is rather
incomplete at this early stage, the results ofSearch within Business Design andTechnical Design comprise
a set of components which only roughly meet the customer’s requirements but allow theComponent Assembler
to build a prototype quickly. Experience gained from the prototype’s development like, for instance, deficiencies
or peculiarities of the architecture, time spent to implement and understand the architecture or degree and quality
of tool support are collected in the results ofArchitecture Design, conceivably in the form of aTechnical Ex-
perience Report. Note that the development documents of the experimental prototype itself should be kept in a
separate result structure to prevent its reuse.

ConsequencesThe practical experience gained by building an experimental prototype proves very valuable when having
to decide for a certain system architecture. Many unexpected problems or deficiencies of a system architecture may
be identified during the process of implementation. If the architecture is finally selected for product development,
there already exists a solid understanding and knowledge about all relevant aspects. These experiences help to
minimize the risk of designing the wrong system architecture. As an additional benefit, it may be possible to
easily extend the experimental prototype into an explorative prototype which facilitates the analysis of customer
requirements.

In general, the experimental prototype should not be used as the basis of further system development. It is built for
purely technical or analytical reasons with the least possible effort and will, therefore, usually not meet the quality
standards of a finished product.

Application Guidelines Any rapid prototyping tool based on the system architecture is helpful.

Application Examples —

Related Patterns Architecture-Driven, Explorative Prototyping

16



B.3 Explorative Prototyping (Main Result Pattern for Analysis)

Intent Build a preliminary throw-away version of the system or some of its vital components in order to explore and
analyze the customer requirements.

Also Known As —

Motivation It is often very difficult to collect all relevant system requirements and state them unambigously in theAnal-
ysis documents. Presenting an early prototype of the system’s GUI, for example, facilitates communication with
the user about his requirements and may even lead to the discovery of new requirements that were not considered
before.

The patternExplorative Prototyping is generally useful in the context of a more requirements-driven approach,
but it may also be be valuable in an approach focusing on existing components.

Applicability Although preliminary system requirements were collected, it is obvious that some of them are not refined
enough or even inconsistent. There may be indications that some requirements have not been discovered yet.

Implementation

Code

System Test

Technical Design

Component
Design

Evaluation

 Search

Architecture
 Design

Business Design

Component
Design

Evaluation

Search

Architecture
 Design

Specification

Component
Specification

Architecture
 Specification

Component
Test

Component
Assignment

Analysis

Interaction
Analysis

Responsibility
Analysis

Risk Analysis

Market Study

1

2

2

3

Figure 4: Structure of the PatternExplorative Prototyping

Tasks and RolesThe System Analysthas provided initial requirement specification documents within the subresults
Interaction Analysis andResponsibility Analysis. They serve as the starting point for the implementation of a
GUI or even functional prototype that represents a dedicated part of the main resultAnalysis. If there is good tool
support, the development of the prototype may be done by theSystem Analyst, who is supported by theComponent
Assembler.

The explorative prototype is presented in discussions with the customer, and the resulting changes and additions
to the required interactions and responsibilities are recorded in the respective subresults. It may be necessary to
update the results ofRisk Analysis due to additionally introduced requirements.

Note that the development documents of the explorative prototype itself should be kept in a separate result structure
to prevent its reuse.

ConsequencesUsing Explorative Prototyping leads to a better understanding and a more complete capturing of the
system’s requirements. This in turn minimizes the risk that the finished product does not meet the user’s expecta-
tions.

In general, the explorative prototype should not be used as the basis of further system development. It is built for
purely analytical reasons with the least possible effort and will therefore usually not meet the quality standards of
the finished product.

Application Guidelines Any rapid prototyping tools suited to componentware are helpful.

Application Examples —

Related Patterns Requirements Driven, Experimental Prototyping

17



B.4 Make-or-Buy (Subresult Pattern for Component Assignment)

Intent Prepare and conduct the decision whether to develop a specified component as a part of the current project, as a
separate in-house project, or to order it from an external component vendor.

Also Known As —

Motivation Once the results ofComponent Specification are sufficiently completed and stable, a decision about the
further development of the specified components has to be reached duringComponent Assignment. In principle,
there are three conceivable options for every concerned component:

1. Develop the component as part of the current project.

2. Develop the component as a separate in-house project.

3. Order the component from an external component vendor.

As an example, consider the development of a specialized tree-view GUI component that is needed to present
hierarchically structured application data. It seems reasonable to realize such a specific GUI component entirely
within the current project as part of a normal system development. However, it may be justified to set up a new
project for this component because this particular kind of tree-view is likely to be reused in other projects as well.
This approach allows a dedicated team of developers within the same company to build the component in parallel
to normal system development. It is also conceivable that such a tree-view is already available on the market or
there are well-known vendors of GUI components who are willing to accept a development order. In this case it
could be advisable to draw the tree-view component from them.

This decision is not straightforward as it depends on technical, economical and strategical considerations that must
be carefully balanced against each other.

Applicability TheSpecification documents for the component in question have to be complete, consistent and stable.
Moreover, bothEvaluation andSearch subresults ofBusiness Design andTechnical Design should be suf-
ficiently elaborated to judge the market situation. Moreover, there may also exist preliminaryComponent Test
results about existing components. Finally, the specified component itself is demanding and important enough to
justify the efforts of a make-or-buy decision.

Implementation

Code

System Test

Technical Design

Component
Design

Evaluation

 Search

Architecture
 Design

Business Design

Component
Design

Evaluation

Search

Architecture
 Design

Specification

Component
Specification

Architecture
 Specification

Component
Test

Component
Assignment

Analysis

Interaction
Analysis

Responsibility
Analysis

Risk Analysis

Market Study
1

Figure 5: Structure of the PatternMake-or-Buy

Tasks and RolesWhen performing a make-or-buy decision, theSystem Architectand theProject Coordinatorhave to
consider three main areas of concern:

Technical Aspects If the component’s functionality is sufficiently generic and reusable or important as part of a
larger technical infrastructure, it is advisable to set up a new project by transferring the results ofSpecifi-
cation to theAnalysis documents of the new result structure. This allows to decouple further development
of the component and to facilitate its reuse with the extensive amount of dedicated development information
available.

Economical AspectsThe definition as a separate in-house project allows to speed up development if the required
resources for this project are available. This speed-up may be very important if the time-to-market for the
developed system is critical. Even further speed-up and possibly substantial cost reductions may be achieved
if the component in question may be purchased or ordered from an external vendor. The component vendor is
likely to possess specific know-how and resources to quickly develop (or deliver) a component of high quality
with respect to efficiency, reliability, etc. Still, cost estimations which compare expected in-house versus
external development costs should be performed by applying an appropriate method.

18



Strategical Aspects Depending on the overall strategy of the developing company, it may be advisable to keep the
development of a particular component in-house. If the required infrastructure or development know-how fall
within the core competences of the company, it is not desirable to source out this subproject. Moreover, if the
component in question is critical for the developed system, it seems reasonable to realize it in-house in order
to minimize the risk of failure and dependance on external partners.

ConsequencesIn-house development of a given component leads to important potential benefits: The knowledge and
experience gained during development may result in a competetive edge on the market, and reduces the dependence
on external partners. Producing a component in-house may even allow a company to act as a component vendor
itself and to earn additional money by selling the component in question.

However, the decision to buy a component from a dedicated vendor implies different potential benefits: The nec-
essary investment in know-how and resources may be saved for other parts of the development project. As the
component is likely to be sold in higher numbers by the component vendor, it is probably cheaper compared to
in-house development. In case of standard components which are also offered by different vendors, the dependence
on a single vendor is diminished as well.

Application Guidelines The application of adequate and effective cost estimation methods are obviously vital for per-
forming a make-or-buy decision. Although there already exist a number of established methods like Function Point
Analysis [AG83] or Constructive Cost Model (COCOMO) [Boe81], it is likely that methods which are specifically
tailored to componentware will be available in the future.

The strategical aspects of a make-or-buy decision with respect to market ratings and determination of core compe-
tences should be supported by managerial-economics: it is likely that the results and experiences gained in other
areas like the car industry may partly be transferred to software engineering.

Application Examples —

Related Patterns —

19


