
The Reflective State Pattern1

Luciane Lamour Ferreira

1 Abstract

2 Introduction

1 Copyright 1998, Luciane Lamour Ferreira.
 Permission is granted to copy for the PLoP-98 conference.

In this work we present the Reflective State pattern which uses the Reflection architectural
pattern to separate the State pattern in two levels, the meta level and the base level, implementing the
control of states and transitions by means of metaobjects. The Reflective State is a generic pattern that
intends to solve the same problems of the State pattern in the same context. However, this pattern also
implements complex dynamic behavior of an object transparently, separating its control aspects from the
functional aspects.

3 The Reflective State Pattern
Intent
To separate the control aspects related to states and their transitions from the functional aspects of the
State pattern. These control aspects are implemented in the meta level by means of the metaobjects which

Motivation

open()

open()

Open [if received SYN &
ACK] / display a message

Closed Established

Close [if received ACK
of FIN] /display a message

Context

the corresponding state machine using object-oriented approach should be made in a structured manner,
representing the states and their transitions as much explicit as possible, to keep the complexity of the
system under control.

Problem
We can use the State pattern to localizes state-specific behavior in State subclasses, which implement the
state-dependent services. The Context object delegates the execution of its services to the current State
object. However, the implementation of the State pattern deals with design decisions related to the
control aspects of the statechart. These decisions are summarized in the following questions:
(1) Where should the definition and initialization of the possible State objects be located?
(2) How and where should the input events and guard-conditions be verified?
(3) How and where should the execution of state transitions be implemented?

When the object has a complex behavior, the implementation of these issues can also become
very complex. According to the implementation guidelines of the State pattern, the control aspects can be
located either in the Context object or in the State objects. In the first approach, the Context object is
responsible for creating and initializing the State objects, maintaining the reference to the current State
object, and performing the transition to the next state. Moreover, it is also responsible for delegating the
state-dependent service execution to the current State object. In the second approach, the State objects
have the knowledge of their possible next states, and have the responsibilities for handling the events or
conditions that causes transitions. Both approaches have some disadvantages:
• Centralizing the control aspects in the Context object can make its implementation very complex

since its functional aspects are implemented together with the control aspects. Moreover, it makes the
Context class high coupled with the State classes, which makes it difficult to reuse and extend them.

• Decentralizing the responsibilities of the transition logic, by allowing State subclasses themselves
specify their successor states, can make them high coupled, introducing implementation
dependencies between State subclasses. It also prevents the State class hierarchy from being
extended easily.

The following forces are related with these implementation problems:
• Ideally, the implementation of the control aspects of the State pattern should be separated from the

functional aspects implemented by the Context object and the State objects. These control aspects
should be implemented transparently, ideally in a non-intrusive manner, so that they do not
complicate the design.

• The Context and State class hierarchies should be loosely coupled, to facilitate their reutilization and
extension.

• The State subclasses should also be independent, with no implementation dependencies between
them, so that the addition of a new subclass does not affect other subclasses.

Solution
To solve the problems related with the implementation aspects of the State pattern we propose the use of
the Reflection architectural pattern [BMRS+96]. The meta-level classes are responsible for implementing
the control aspects of the state machine, separating them from the functional aspects that are
implemented by the Context class and the State classes at the base level. In the meta level, the elements
of the state diagram (states and transitions) are represented by the MetaState and the MetaTransition

Structure

MetaState
initTransitions()
initState()
handleEvt()

Context

service()

State

service()

ConcreteStateA

service()

ConcreteStateB

service()

MetaController
config()
createMetaStates()
createMetaTransitions()
configMetaTransitions()
configMetaStates()
changeState()
handle()

MetaConcreteStateA
initState()
handleEvt()

MetaConcrete
TransAB

handleTransition()

MetaTransition
initNextState()
handleTransition()

Next Transitions

 Next State

*1

*1

* *

1

<<Reflect>>

<<Reify>>

Meta level

Base level

<<Reflect>> <<Reflect>>

MetaConcreteStateB
initState()
handleEvt()

MetaConcrete
TransBA

handleTransition()

Figure 2: Class diagram of the Reflective State pattern using the UML notation.

To illustrate our solution, we can design the TCPConnection example using the Reflective State
pattern structure. Figure 3 shows the object diagram for an instance of the TCPConnection class, with its

 :TCPConnection :Client

 :MetaControllerTCP

 :MetaEstablished

 :TCPEstablished :TCPClosed

currentState

<<Reflect>>

<<Reify>>

Meta level

Base level

 :MetaClosed

<<Reflect>> <<Reflect>>

NextTransition NextTransition

NextStateNextState

 :MetaTransCE :MetaTransEC

Figure 3: An object diagram for a TCPConnection instance, applying the Reflective State pattern.

The states of the TCPConnection are represented by the TCPEstablished object and the
TCPClosed object at the base level, which implement the state-dependent services. The MetaEstablished
and MetaClosed metaobjects are responsible for initializing their corresponding State objects, and
controlling the execution of the state-dependent service. The MetaTransition metaobjects represent the
transitions of the statechart and they are: MetaTransEC (established-to-closed transition) and
MetaTransCE (closed-to-established transition). Each MetaTransition has information about the
transition function (the event, the guard-conditions and the exit action) that should be verified unless a
transition is triggered. The MetaControllerTCP metaobject maintains a reference to the current MetaState
metaobject, and changes it when a MetaTransition signals that a transition has occurred. The

Participants

•

Class
MetaController

• Configures the meta level, instantiating and initializing
the concrete MetaState and MetaTransition subclasses,
according to the state diagram specification.

• Intercepts all messages sent to the Context object.
• Maintains the reference to the MetaState metaobject

that represents the current state, and delegates to it the
handling of the intercepted messages.

• Performs the state transition, changing the reference to
a new current MetaState metaobject, that is passed by a
MetaTransition object.

 Collaborators

 In the metalevel:

• MetaState
• MetaTransition

 In the base level:
• Context

• MetaState

• MetaConcreteState subclasses

• MetaTransition

 Class
 MetaConcreteState

• Handles all events delegated to it by the

MetaController.
• Creates and initializes the corresponding State object at

the base level, and delegates to it the execution of the
state-dependent services.

• Broadcasts each event to the MetaTransition
metaobjects so that they can verify if the event causes a
transition.

• Receives the result of the service execution from the
state object at the base level, and can also handle the
result, if necessary.

• Returns the result of the service execution to the
MetaController.

Class
MetaTransition

• Defines an interface to handle transitions.
• Defines a method that initializes itself with a reference

to a MetaState metaobject that represents the next state
to be activated when the transition is triggered.

 Collaborators

 In the meta level

• MetaConcreteTrans subclasses

 In the base level
• ConcreteState subclasses

 Collaborators

 In the meta level

• MetaState

 Class
 MetaState

• Defines an interface for handling an event that

represents a state-dependent service.
• Defines an interface for initializing the State object at

the base level.
• Defines a method that initializes itself with a list of

MetaTransition references that represent the transitions
that can exit from this state.

 Collaborators

 In the meta level

• MetaTransition

• MetaConcreteTrans subclasses

• Context class

• State class

• ConcreteState subclasses

Class
MetaConcreteTrans

• Has all information that defines a transition function,
i.e., the current state, the event/guard-condition and the
next state.

• Verifies if an event causes a transition and/or if a
guard-condition is satisfied.

• If the transition is triggered, it requests the
Metacontroller metaobject to change its current state,
passing to it the reference to the next MetaState.

 Collaborators

 In the meta level

• MetaConcreteState subclasses
• MetaController

Class
Context

• Defines the service interface of interest to clients, as
defined in its functional requirements.

Class
ConcreteState

• Each subclass implements a behavior associated with
a state of the Context(as defined in the State pattern).

 Collaborators

 In the meta level

• MetaController

 Collaborators

 In the meta level

• MetaConcreteState subclasses

Class
State

• Defines an interface for encapsulating the behavior
associated with a particular state of Context (as
defined in the State pattern)

 Collaborators

Collaborations
The metaobjects represent a direct mapping of the state diagram elements. The configuration of the meta
level consists of: instantiation of each concrete subclass of the MetaState class and MetaTransition class;
initialization of the MetaState metaobjects with their corresponding MetaTransitions metaobjects;
initialization of each MetaTransition metaobject with its corresponding next MetaState metaobject. The
MetaController metaobject is responsible for implementing all these configurations according to the state

handle()

Figure 4: Interaction diagram for the Reflexive State Pattern

The MetaController metaobject intercepts the service request targeted to the Context object and
delegates its handling to the current MetaConcreteState metaobject. The current MetaConcreteState
metaobject verifies if the request corresponds to a state-dependent service. If so, the current
MetaConcreteState metaobject delegates the service execution to its corresponding ConcreteState object

Consequences
• The Reflective State pattern localizes state-specific behaviors and partitions behavior for different

states, as in the case of the State pattern. The state objects make implementation of the state-
dependent services more explicit, and consequently, the design becomes more structured and easier to
understand, maintain and reuse.

• The Reflective State provides a solution for implementing the control aspects of the State pattern,
separating them from the functional aspects implemented by the Context object and State objects.
This characteristic is provided by the Reflection architectural pattern. This solution makes the
implementation of the dynamic behavior of a class (that might be specified by a complex state
diagram) more explicit, also making the design more structured, keeping the complexity of the system
under control.

• The State and Context class hierarchies are independent and they can be designed to be highly
coherent and loosely coupled, facilitating the adaptability of the system to the changes of
requirements, its reuse and extension.

• The Reflective State pattern has some limitations related to the use of the Reflective architecture. In
general, a Reflective architecture increases the number of indirections in the execution of a method,

Implementation

Where should the definition and initialization of the possible State objects be located?

initState()

How and where should the input events and guard-conditions defined in the state machine be
verified

Where should the configuration of the meta level be performed?

CreateMetaStates() CreateMetaTransitions()

ConfigMetaStates()
ConfigMetaTransitions()

handle()

Known Uses

behavior phase of the environmental entities. C.M.F.Rubira [Rub94] proposes a solution for the design of
environmental fault-tolerant components using the State pattern, implementing the normal and abnormal

Related patterns

Sample Code

reconfigure()

that associates an object with a metaobject, and can also replace an old metaobject with a new one,

Meta-level classes

MetaController class:

import BR.unicamp.Guarana.*;

public abstract class MetaController extends Composer{
 protected MetaObject[] metaStatesArray;
 protected MetaState currentMetaState;

 protected abstract void createMetaStates();
 protected abstract void createMetaTransitions();
 protected abstract void configMetaStates();
 protected abstract void configMetaTransitions();

 public final void config(){
createMetaTransitions();
createMetaStates();
configMetaTransitions();
configMetaStates();

 }

 public void changeState(MetaState nextState){
currentMetaState = nextState;

 }

 public Result handle(Operation operation, Object object){
if (operation.isConstructorInvocation())
//

MetaControllerTCP class:

 protected void createMetaStates(){
metaEstablished = new MetaEstablished();
metaClosed = new MetaClosed();
currentMetaState = metaClosed; //initializes with a default state.

 }

 protected void createMetaTransitions(){

metaTransCE = new MetaTransCE(this);
metaTransEC = new MetaTransEC(this);

 }

 protected void configMetaTransitions(){
//Configures the metaTransitions with its next MetaStates
metaTransCE.initProxState(metaEstablished);
metaTransEC.initProxState(metaClosed);

 }

 protected void configMetaStates(){
//Configures the MetaState metaobjects with the array of next MetaTransitions metaobject
metaEstablished.initTransitions(new MetaTransition[]{metaTransEC});
metaClosed.initTransitions(new MetaTransition[]{metaTransCE});

//initiliazing the array of MetaStates that the MetaController delegates to.
metaStatesArray = new MetaState[]{metaClosed,metaEstablished};

 }
}

MetaState abstract class:

import BR.unicamp.Guarana.*;
import java.lang.reflect.*;

public abstract class MetaState extends SequentialComposer{
 protected State stateObject;

 protected abstract void initState(Object object);

 public void initTransitions(MetaTransition[] arrayNextTransitions){
//calls the method in the SequentialComposer base class.
super.setMetaObjectsArray(arrayNextTransitions);

 }
}

MetaEstablished concrete class

import BR.unicamp.Guarana.*;

public class MetaEstablished extends MetaState{
 public void initState(Object object){

stateObject = new TCPEstablished();
 }

 public Result handle(Operation operation,Object object){
//Verifies if an operation is a state dependent service.
String name = operation.getMethod().getName();
Class[] parameters = operation.getMethod().getParameterTypes();
//it can modify the parameter array if the state method defines another parameter, as a TCPConnection reference.
//....
Result res = null;
if (stateObject == null) initState(object); //it’s initialized only if it’s necessary.

 if (operation.isMethodInvocation()){

 Object resultObj;
 try {

//returns a public method of the class.
Method methodEx = stateObject.getClass().getMethod(name,parameters);
Object[]arguments = operation.getArguments();
resultObj = methodEx.invoke(stateObject,arguments);
if (resultObj == null){
 res = Result.returnVoid(operation);
}
else {
 res = Result.returnObject(resultObj,operation);
}

 }
 catch (IllegalAccessException e1){

//do some exception handling
 }
 catch (NoSuchMethodException e2){}
 catch (InvocationTargetException e3){}
}

MetaClosed concrete class

MetaTransition abstract class

MetaTransEC concrete class

import BR.unicamp.Guarana.*;
import java.lang.reflect.Method;

public class MetaTransEC extends MetaTransition{
 public MetaTransEC(MetaController metaController){

super(metaController);
 }

 public Result handle(Operation operation,Object object){
//define the transition function.
String eventName = "close";
protected int paramNum = 0;
if (operation.isMethodInvocation()){

Method opMethod = operation.getMethod();
if ((eventName.equals(opMethod.getName())) &&
 (opMethod.getParameterTypes().length == paramNum)){

//the event is correct. It can also test some guard-conditions using the

MetaTransCE concrete class

Base-level classes

The TCPConnection class and its respective State classes implement only their functional requirements,
without any information about the execution control of the state machine.

TCPConnection class: The state-dependent methods do not have any implementation. Optionally, they
can present some default behavior that can be executed if a TCPConnection object has not been
associated with a MetaControllerTCP metaobject.

 public void close(){}

 //other methods and attributes
}

TCPState class

public abstract class TCPState{
 //If there are some state attributes, defines them here

 public abstract close(TCPConnection);
 public abstract open(TCPConnection);
}

TCPEstablished class

public class TCPEstablished extends TCPState{
 public close(TCPConnection tcpCon){

//closes the connection
 }

 public open(TCPConnection tcpCon){
//does nothing, because the Connection is already open.

 }
}

TCPClosed class: The implementation is similar to the Established class.

TCPApplication class: This class represents the application class which implements the main() method.
First, the main() method creates a MetaControllerTCP metaobject and calls the method config() that
configures the MetaControllerTCP. Then, it creates a TCPConnection object and call the method
reconfigure() reconfigure()

public class TCPApplication{
 public static void main(String[] argv){

MetaControllerTCP metaControllerTCP = new MetaControllerTCP();
metaControllerTCP.config();
TCPConnection aTCPConnection = new TCPConnection();
Guarana.reconfigure(aTCPConnection, null, metaControllerTCP);

 }
}

4 Acknowledgments

), grant 97/11060-0 for Luciane Lamour Ferreira, grant 96/1532-9 for LSD-IC-UNICAMP
();
and by CNPq (), grant 131962/97-3.

5 References

[BMRS+96] F. Buschmann, R. Meunier, H Rohnert, P. Sommerlad, M. Stal. A System
of Patterns: pattern-oriented software architecture. John Wiley & Sons,
1996.

[BRL97] L.E.Buzato, C.M.F.Rubira and M.L.Lisboa. A Reflective Object-Oriented
Architecture for Developing Fault-Tolerant Software. Journal of the
Brazilian Computer Society, 4(2):39-48, November, 1997.

[Buz94] L.E.Buzato. Management of Object-Oriented Action-Based Distributed Programs. Ph.D.
Thesis, University of Newcastle upon Tyne, Department of Computer Science,
December 1994.

[Cha96] M. de Champlain. A Design Pattern for the Meta Finite-State Machines.
,

Hellenic Naval Academy, Piraeus, Greece, June 1996.
[DA96] P.Dyson and B. Anderson. State Patterns.

 Addison-Wesley, 1997. Eds. R.Martin, D.Riehle, F.Buschmann.
[FR98] L.L.Ferreira and C.M.F.Rubira. Integration of Fault Tolerance Techniques: a System of

Pattern to Cope with Hardware, Software and Environmental Fault Tolerance. 28 th

International Symposium on Fault-Tolerant Computing(FastAbstract), june 1998.
[GHJV95] E.Gama, R. Helm, R Johnson e J. Vlissides.

 Addison-Wesley Publishing, 1995.
[Har87] D.Harel. Statecharts: A Visual Formalism for Complex Systems.

, 8: 231-274, North-Holland, 1987.
[JZ91] R.E.Johnson and J. Zweig. Delegation in C++.

, 4(11):22-35, November 1991.
[Lis98] M.L.B.Lisboa. A New Trend on the Development of Fault-Tolerant

Applications: Software Meta-Level Architectures.

, Johannesburg, South Africa, January, 1998.
[OB98] A.Oliva, L.E.Buzato. An Overview of MOLDS: A Meta-Object Library

for Distributed Systems.
, April 1998.

[OGB98] Technical
Report IC-98-14, Institute of Computing, State University of Campinas

. (http://www.cs.wustl.edu/~schmidt/PLoP-96/Worshops.html)
[Pal97] G.Palfinger. State Action Mapper.

(http://st-www.cs.uiuc.edu/hanmer/PLoP-97/Workshops.html).
[Ran95] A. Ran. MOODS: Models for Object-Oriented Design of State.

 Addison-Wesley, 1996.
Eds.J.M.Vlissides,J.O.Couplien e N.L. Kerth.

[Rub94] C.M.F. Rubira.
. Ph.D. Thesis, Dept. of Computing Science, University of Newcastle

upon Tyne, October 1994.
[SM92] S.Shlaer and S.J.Mellor. . Prentice-Hall,

New Jersey, 1992.

