
Fundamental Elements of an Extendible Java
Framework

Their are many views of what a framework is. Those who have studied them closely and have written
about them in an academic sense seem to center their definition around the concept of abstract classes
(see Johnson). Many who market them to the industry tend to focus on functionality and APIs. The Java
programming language offers a series of underpinnings that make one reconsider the wording of the
earlier definitions. When those underpinnings are exploited in the development of a framework, one can
get a level of extendability and understandability in a framework which is a step above what one might
get in the more established object-oriented programming languages (such as C++ and Smalltalk). 

We will discuss the patterns we have used in developing frameworks in Java that encourage extendible
and understandable frameworks. While doing this we do not intend to take part in the battles over how
much more productive or powerful an environment Smalltalk is, how much more efficient a language like
C++ is, etc. We are merely attempting to illustrate how one should approach building a framework in
Java to meet these two goals of extendibility and understandability. 

There are many patterns in this paper that are tied together in many ways. We are still struggling to
figure the best way to help our readers see the big picture. Here are a couple of attempts: 

 

Figure 1: Many Patterns Lead to Other Patterns 

One could also read them with the following understanding of the general categories: 

General Principles

Developer Audience 

1 of 15



Use Patterns 
Defined Roles 
Interface-Oriented Code 
Packages as Building Blocks 
Concurrently Developed Packages 

Types of Interfaces and Classes

Refocused Abstract Class 
Fundamental Roles 
Common Roles 
Existing Classes As Roles 
Simple Classes 

Types of Packages

Interface Package 
Foundation Class Package 
Utilities Package(s) 
Feature Kit Packages 
Tool Kit Package(s) 
Example Packages 

Techniques useful for Interface-Oriented Programming

Protected Private Natives 
Interface Cast 
instanceof Interface 
Attribute-free Interfaces 
Overloaded Cast 

Although we certainly believe that one could use a subset of these patterns without undesirable
consequences, we strongly believe that these patterns should be used together to get the most significant
leverage in a framework. 

Note: This is a work in progress. The raw material of this is taken from a PowerPoint presentation of
the same name which is not in pattern form although much of the spirit of patterns (not just the problem
and solutions but the whys and the examples) are contained therein. I'm working on moving it into
pattern form but got a late start. Due to personal time constraints and focus of "10 pages" for PLoP,
I've chosen to ignore the details of the coding techniques patterns, letting them just sit as placeholders
until I get feedback on the rest…I might actually have several groups of patterns here. The focus on
roles and packages is the heart of what I will be focusing on for PLoP. I'd like to get feedback as to
whether they should stand alone and/or whether I should finish the rest of the stuff I put around it. 

Developer Audience

Problem

There are so many definitions and sub-definitions of frameworks. These definitions typically assume

2 of 15



something about the customer/audience for the framework. When the need for a framework is
determined, how should one choose the audience? 

Forces

"In theory, there is no difference between theory and practice; in practice, however, there is" -
Brian Neal. The theories about Black-Box, White-Box, Gray-Box are basically ways to categorize
frameworks once they are built and they don't always fit so cleanly into a category 
Just about all frameworks are surrounded by people in roles which would like to look at it as a
black-box (understand and use the interface, don't care about how it works), white-box
(understand the details of how it works to maintain, improve, extend it), or gray-box (don't want
to know all the details). 
The only thing developers hate more than long meetings and having to read volumes of
documentation is creating the documentation in the first place. They want to code. 
Good developers accept the fact that they need to understand what they are working with before
hacking away. However, they are quickly discouraged by being forced to read irrelevant details
that do not contribute to the understanding of the particular problem they are attempting to tackle.
They want to code. 
Gray-box and Black-box frameworks are derived from white box frameworks via documentation
and packaging by people who understand the details well enough to package it. These are its
developers. Developers do not want to write prose. They want to code. 
Often, reverse engineering the details of a black-box or gray-box framework from documentation
which is not targeted at framework developers is not simple. 

Solution

When building a framework, assume there are people who will come after you which would like to look
at it as a white-box, with all of the details exposed but who don't want to read a voluminous manual in
order to gain the exposure. With that in mind, structure your code and documentation with these people
in mind. If this is done, the person who comes behind you will not curse your mother's grave. Realize
there is often a strong possibility that the person coming after you will be you. 

In order to make the documentation more approachable to developers and achieve the flexible goals of a
white-box framework, you will want to Use Patterns. You should be careful in identifying Defined Roles
and then write Interface-Oriented Code around these roles to make it extensible and understandable. You
will also want to use Packages as Building Blocks to help organize the code to reflect these roles and to
allow the developer audience to easily identify components. All of these things will reduce the necessary
amount of textual documentation that is difficult to keep in sync with the reality of the framework, and is
about the last thing a developer wants to do. 

Side benefits of this approach includes many of those found in Coplien's Development Process Patterns
such as Developer Controls Process and Architect Also Implements. One could argue that following
these patterns might lead you to this conclusion (which is the chicken, which is the egg?). 

Examples

Ralph Johnson once stated "the easiest way to document a framework is with commented code".
JavaDoc attempts to do just that. On the other hand, following agreed upon standards and patterns has
proven to drastically reduce the need for commented code in situations (such as eXtreme Programming)
where adherence to those standards are encouraged and used. Both approaches assume a developer

3 of 15



audience. 

HotDraw has been a very popular framework for a variety of reasons. The openness of its source code is
just one. There are at least two implementations in Java which have been studied by many developers.
Others who had to write specific applications have used it as their starting point and have benefited
greatly from having the source code available and would not have done so without it. Smalltalk versions
of it have been used as a black box basis for commercial tools (e.g. Object Explorer, from First Class
Software). 

Many developers of Java frameworks (e.g. IFC, JFC, etc.) purchased source code licenses for the JDK in
order to better understand how to build on top of it. 

Use Patterns

Problem

How do I build my framework in such a way as to minimize documentation and allow for flexibility as
the framework is used in a variety of ways? 

Forces

Frameworks, by their very nature are expected to be used in a variety of contexts. Frameworks are
often built to handle a series of related complex problems. This may encourage a lot of
documentation to explain how the framework achieves these goals. 
Good frameworks aren't really built, but they evolve (see Johnson & Roberts), therefore it is
important that flexibility be thought of as early as possible and consistency be encoded and
maintained in the framework (or potential framework) from start to finish. 
Flexibility often means a level of abstraction must be encoded that is very hard to describe to
people without a common vocabulary with which to do it. 
Developers are turned off by shelf-feet of documentation. 
As frameworks evolve, there must be cooperation between their users and their developers or the
typical goals of building the framework (e.g. total cost savings, scalability, maintainability, leverage
from changes) will never be realized. This requires efficient communication in order to allow for
time where the actual work occurs. 

Solution

Use patterns which capture best practice in meeting your goals whenever possible. Organizational
patterns may help you structure your team(s) well. Many design patterns have been mined from
successful frameworks and have flexibility as one of their primary motivations. Implementation (or
coding) patterns provide for a consistent style and cause less surprises when looking at code for the first
(or Nth) time. Lastly, patterns have proven to provide significant leverage in both documents illustrating
the use of a framework, and the design of a framework. 

Examples

HotDraw has made pervasive use of design patterns (e.g. those found in GOF) and implementation
patterns (derived from Smalltalk Best Practice Patterns, Self-Encapsulation, and Doug Lea's Java Coding
Standards). There was at least one version in Java implemented by a Solo Virtuoso who has also worked
on many successful pre-Java frameworks which followed many other organizational patterns such as

4 of 15



Architect Also Implements. A Smalltalk version of HotDraw was successfully documented with patterns
in 1992, and many have followed this example. The author has successfully documented the design of
several frameworks leveraging patterns throughout to significantly reduce the total new documentation
for the framework which needed to be maintained as the framework evolved to a manageable size (e.g. a
Database Broker framework, and an GUI Application Framework). Even in a framework which has no
design documentation, the author's HotDraw for Java was explained to another developer with the aid of
the use of patterns in a few hours… both parties agreed this could not have been so effectively and
efficiently communicated without reference to the patterns. 

Defined Roles

Problem

How do you begin to determine what objects are important in providing functionality in a framework? 

Forces

Classes have been described by many as the basic unit of object-oriented design. 
There have been many concepts added to OO methods and languages that introduce complexity
when it is found that objects play multiple roles. 
Some have tried to reduce classes to data types and have missed the entire responsibility aspect of
objects. 
Many have claimed that objects can be used to communicate from developers to non-developers
and at many levels. However, when complex implementation details impact the details of objects,
communication with non-experienced developers is lost before the implementation level of detail is
relevant. 

Solution

Define the signficant roles in the system before determining which objects fulfill them. Throughout
implementation, focus on the roles objects are playing and define roles that weren't discovered during
higher level activities. Roles map better to use cases and tends to be a better means of communication for
many activities with a wider variety of participants than just developers. Additionally, it is easier to focus
on the purpose of individual objects when their roles are clearly defined. There are many experienced OO
developers (see Roles Before Objects) that are promoting roles as "what gets defined before
implemented objects". 

It is great when you can identify the significant roles played in the framework and document them. There
should be significantly fewer roles than classes. If all the roles can be understood by the audience, the
chance of the understandability of the entire framework is drastically increased as developers can place
each class the come to in a mental model of the entire framework. If the entire framework can be
described in 7+/-2 significant roles, you have gained a major victory. This allows people to more easily
understand the entire framework as they can keep it all in their memory at once <need reference to
7+/-2>. In order to really use a framework it must be understood. There is a better chance of getting
"7+/-2" from roles than classes. Classes can be mapped to roles much more easily than the other way
around. So, start with roles before going for a deeper level of understanding. 

Defined Roles can be mapped to code in three basic ways: Fundamental Roles, Common Roles, and
Existing Classes as Roles. 

5 of 15



Interface-Oriented Code

Problem

Once roles have been defined, how do we preserve the separation of roles and implementation? 

Forces

Roles are concepts. Implementation is hard cold logic 
Multiple objects may be able to play the same roles. 
Framework developers are not omniscient or omnipresent. In frameworks, it is expected that each
application employing a framework will define custom objects which fill the generic roles. 
When someone realizes they want another class to fulfill a particular role, he'd rather not have to
modify other parts of the framework or even have to understand the rest of the framework at a
level of depth to know if this new approach to fulfilling a role will impact it. The barrier to entry of
a new object to fulfill a role should be rock bottom. 
Roles, although only concepts, imply a cohesive set of behaviors. Java method signatures imply
atomic behavior. Java interfaces imply a cohesive set of atomic behaviors. 
Use of interfaces adds a bit of overhead that direct access to attributes don't add. 
Interfaces allow multiple players of same roles. 
Interfaces are very lightweight. 

Solution

Define roles with interfaces which are basically a group of related method signatures which implies
behavior. Individual classes which fulfill the roles may often vary within the framework. When new
applications employ the framework there will be additional classes fulfilling the same roles. All code
which refers only to interfaces allows any object which implements the interface to play the implied role
without necessitating changes. 

Always refer to interfaces when writing code rather than concrete (or even abstract) classes. The only
time code can not be written referring to interfaces is at object creation time. This can typically be limited
to a handful of methods that can easily be overridden by specialized subclasses and everything will work
as advertised. You can get around limitations of Java by respecting Protected Private Natives, making
Interface Casts, testing for necessary properties via instanceof Interface, using Attribute-free Interfaces,
and avoiding false implications via Overloaded Casts 

Taking this approach will lead to Refocused Abstract Classes. Examples of and access to useful classes
that fulfill the roles implied by this interface-oriented approach can be created and found as Simple
Classes. All of these increase the approachability of the framework to the developer. 

A disadvantage of this is that interfaces may share the same namespace as classes. This can be helped by
Interface Packages which provide their own namespace, but using full package names to identify classes
and interfaces makes code more awkward to read. 

In practice, a well-factored framework usually doesn't suffer noticeable performance problems due to the
use of interfaces. Significant performance problems usually come from less optimal approaches to the
problem at a higher level than language features. Some developers worry about performance issues too
early and at the wrong level. They should "Make it run, Make it right, Make it fast" (see Lazy
Optimization). 

6 of 15



Refocused Abstract Class

Problem

If the framework is oriented around interfaces, what is the role of the abstract class which the literature
points to as a fundamental unit of a framework? 

Forces

Traditional abstract classes are responsible for defining 

1. The interface of a set of concrete classes 
2. The types or roles in a system 
3. Much of the concrete behavior implied by the abstract class 

Interfaces provide the first two responsibilities 

Solution

Create an abstract class to provide as much concrete behavior as possible for concrete classes which
implement a non-trivial Defined Role. Provide default behavior wrapped around a few critical methods
whose implementation must be defined by its subclasses. Typically, you won't create these abstract
classes until you find that you need at least two concrete classes which will implement the role (possibly
while implementing Feature Kit Packages). However, there are times when foresight can lead to this.
Often this occurs when developing Simple Classes. Abstract classes will be more common for
Fundamental Roles than other Defined Roles. 

Why the term "Refocused"? "Abstract Class" has been defined by previous literature (e.g. Johnson and
Woolf). There is a lot this pattern leaves out about Abstract Classes that is in this other literature. This
literature also assigns abstract classes all the responsibilities of interfaces. This was mostly due to the fact
that previous mainstream OO languages, namely C++ and Smalltalk, did not provide a simple mechanism
for separating these responsibilies. In conversations with the others of both of these named authors, they
agree that Java's interfaces rightly encourage this separation of concerns. 

Examples

In version 1.0 of HotDraw for Java, there is an interface which defines Figure. Figure defines 32 public
protocols. BasicFigure is an abstract class which defines 46 methods, many protected. Only 3 of those
methods are abstract and must be defined by subclasses to get meaningful, comprehensive behavior. The
remaining methods rely directly or indirectly on those core 3 methods. 

Fundamental Roles

Problem

During early design activities there are several roles that become obvious. How do you map these to the
implementation of a framework? 

7 of 15



Forces

Roles can best be defined as interfaces. 
For most domains, there is a lingua franca used among non-developers that will show up during
enumeration of use cases. 

Solution

Define interfaces for each of the Fundamental Roles identified during exploration and early design
activities. Realize that this interface will evolve, but the names of these interfaces will have a one to one
mapping with concepts in the language of non-developers of the framework. Keeping these interfaces
prominent will help developers and non-developers in their communication of critical concepts. In some
cases these Fundamental Roles will be indistinguishable from either Common Roles or Existing Classes
as Roles. In these situations, these should be explicitly identified when talking to non-developers as
synonyms. 

Sometimes when you have more than 7+/-2 Defined Roles, you may still only have 7+/-2 Fundamental
Roles. By focusing on these as the primary roles (which they usually are) one may be able to fully
understand the framework at a fundamental level. 

Examples

HotDraw for Java has about seven fundamental roles: Figure, DrawingCanvas, DrawingStyle, Handle,
Tool, Locator, and Rectangle. In addition there are a couple of specialized roles: LineFigure and
PolygonFigure. All but two of these had an interface defined by name. At implementation time it was
found that Tool was no different than the Common Role of EventHandler. It was also decided that the
class Rectangle fell into the category of an Existing Class as Role. 

Common Roles

Problem

There are often commonalities seen between objects during implementation that were missed completely
during high-level design. When these are found, what should be done? 

Forces

Multiple inheritance is very difficult to maintain and resolve conflicts between inherited versions of
messages with identical signatures. 
Objects often play multiple roles 
Single inheritance can lead to misleading assumptions about the fact that an object plays multiple
roles. 

Solution

As you find duplicate code acoss object groups, determine if there is some Common Role that can be
named that these multiple objects are playing. For each one, create an interface, and then have each of
the classes which play the role implement and adhere to it. 

8 of 15



Existing Classes As Roles

Problem

The JDK and other libraries don't consistently take the same view of the role of interface. What do we do
when we find classes that fulfill much of the responsibility but do not have a correponding interface. 

Forces

If part of the audience is future developers, confusing them by redefining terms they are used to
can be counterproductive 
Redefining others classes, especially foundational ones, is srongly discouraged by Java's loading
model. 

Solution

When classes exist which accurately fulfill an identified role, and there is no obvious alternative
implementations on the drawing board that are worth a wait, simply treat the existing class as you would
an interface until such time as alternative implementation of the role is required. 

Examples

HotDraw for Java uses Rectangle out of the box (java.lang.Rectangle) to fulfill the role of the
rectangular boxes often used to determine the size, shape, etc. of a Figure. 

Packages as Building Blocks

Problem

So you've created some interfaces, abstract classes, and concrete classes. How do we put them together
in a form that meets the needs of those using the framework without unduly overloading them with
information that might not be relevant? 

Forces

White box frameworks expose all the details of all the classes and interfaces being used. 
Until users become familiar with the framework, they will be spending time reading code. 
Unfocused reading often makes it difficult to glean information efficiently. 

Solution

Divide the framework into several packages which will encourage the user to know exactly where to
look for a prescibed context. Categorize and name the package so they fall into the following categories
for easy identification: Interface Package, Foundation Package, Utility Package(s), Feature Kit Packages,
Example Package(s), and optional Tool Kit Package(s). These packages should build cleanly on one
another so that they can be easily replaced by alternate versions without impacting other packages. See
Figure 2. 

9 of 15



 

Figure 2: Packages as Building Blocks 

Interface Package

Problem

How do we define and identify the foundational concepts of our framework? 

Forces

Interfaces define roles 
Code should be written to interfaces 

Solution

Put all interfaces that are specific to the framework in a single package. Therefore, the basic roles of a
framework can be easily identified without dragging in all of the gory details. 

Some have suggested that the core of Framework documentation should be this package and some
diagrams to show the relationship between the interfaces (or Defined Roles). We believe this could be a
fundamental part of any framework documentation. Unfortunately we don't know of enough thorough
and proven examples to back this up. We are also suspect of documentation that does not include prose,
as a picture takes a thousand words to describe. 

Foundation Class Package

Problem

10 of 15



Other than method signatures, interfaces give no leverage for concrete classes. How do we quickly find
the leverage we need so we can avoid implementing relevant interfaces from scratch. 

Forces

There is some basic collection of concrete or nearly concrete classes that can give us an almost
working application of the simplest type that uses the framework. 
Finding these should be the first step in getting an application up in some form. 

Solution

Put all Refocused Abstract Classes and/or Simple Classes in a single package that is dependent on no
other packages than the interface package and/or possibly some interfaces and/or classes in Utilities
Packages. 

These classes typically implement interfaces defined in the Interface Package. One might question
whether there may be exceptions to this. For example, some Simple Classes may need helper classes to
be useful but they may never need to be identified or modified by anyone. Would these helper classes still
go in this package? I would think these would be associated with Common Roles. The interface should
be created if it is not already. If not, you would be limiting users of your framework if they did want to
make a modification because you didn't write Interface-Oriented Code. 

Utilities Package(s)

Problem

Another package could use a few of the classes in your framework, but it is overkill to reuse the whole
framework. How do you develop and communicate their reusability? 

Forces

Frameworks are often used in larger systems. Parts of these systems aren't even aware of a
particular framework. Developers are not about to dig through the framework in hopes that they
might find the one gem that will help them without some strong impetus. 
If the gem exists, you certainly don't want other developers to miss it. 

Solution

Create one or more packages for the utilities interfaces and classes which do not rely on anything. This
will allow other applications which do not use the framework benefit from the utilities developed without
having to take the rest of the framework. 

Examples

HotDraw for Java uses an interface, StringRenderer, and some classes that implement the interface in
order to efficiently draw text in a rectangular region. Some of these classes figure out where to wrap so
words don't get awkwardly divided. This could be useful for many applications that don't use HotDraw
and is included in a separate utility package. This same utility package provides a ReverseEnumerator to
go iterate through Vectors in reverse order. Since there are not many utility classes they are all put into

11 of 15



one package. However, one could easily imagine reasons for creating several packages: some for UI
issues, others for useful classes which add functionality for standard non-graphic or I/O classes, etc. 

Feature Kit Packages

Problem

There are many features that are optional in a framework. How should these features be made accessible
without overwhelming the user with all the details? 

Forces

Many developers want one feature, but not another. 
Developers want to easily be able to identify the source of a feature they desire. 

Solution

For each family of features, create a software package. Make sure each package employs only the
Interface, Foundation, and Utility Packages whenever possible. More abtractions can be added as
necessary to allow siblings to gracefully be excluded. This is somewhat of a refinement of the Component
Library pattern in Patterns for Evolving Frameworks. 

Examples

HotDraw for Java has feature kits for Lines, Text, Shapes, Polygons, and Rectangles. 

Example Packages

Problem

How do you verify the framework is complete enough to serve its purpose and prove this to others? 

Forces

Prerequisite for reuse is use 
Nothing seems to explain the abstract like concrete examples. 

Solution

Write some simple example applications which use the framework and include them in one or more
example packages. This will both verify the framework is viable and serve as useful documentation. 

Tool Kit Package(s)

Problem

Frameworks often have unique properties that invite customized tools to help developers understand
what's going on, tune performance, etc. Where would we put the classes that make up these tools? 

12 of 15



Forces

These tools help make the framework developer and user more effective. They should be available
as part of the framework 
When deploying applications which use the framework, these tools just take up space as they are
meant for development only. 

Solution

Put all of the tools into a package that is separate from those needed to provide end user functionality.
This package can then be removed from deployed applications which use other parts of the framework
Typically all of the tool classes will go in one package. However, when there are a lot of tools available,
one should consider breaking them into smaller subsets for organizational purposes. 

One drawback of this pattern in Java is the lack of ability to add methods to a class at load time due to
the security model. In Smalltalk and other dynamically bound languages without such a security model,
methods that exist solely for development purposes can easily be added to or removed from a class. In
Java, these methods have to live in the package the class lives in. This encourages keeping these methods
to a minimum to avoid baggage at run-time. 

Simple Classes

Problem

If frameworks are based on collaboration of abstract classes, each application may have to provide
several concrete classes before any one can be tested. How can this be avoided? 

Forces

Want to minimize barrier to entry 
Want to maximize flexibility 

Solution

For each fundamental role, provide simple versions of classes that are completely functional. These
classes can be used as stubs when application developers are working on the details of their own
individual classes. They also serve as an example of how one might create their own concrete versions of
objects fulfilling particular roles. 

Null Object is actually an often useful specialization of Simple Class. 

Examples

In HotDraw for Java, SimpleDrawingCanvas doesn't do any double buffering for animation, or anything
else more advanced, but it works if you want to use it while working on other things. In the JDK 1.0.2
version of the framework, SimpleEventHandler is really a Null Object because it doesn't do anything with
any of the events it receives. 

13 of 15



Concurrently Developed Packages

Problem

In what order does one develop each of these packages 

Forces

It is difficult to go from the abstract to the concrete. 
Abstractions can not be tested, only concrete classes can. 

Solution

Develop these packages simultaneously. Realize that getting concrete classes to work may imply fixing
abstract classes and interfaces. Additionally, abstractions are often not realized until two or more
concrete examples of common code are written. 

Protected Private Natives

Problem

Forces

Solution

Interface Cast

Problem

Forces

Solution

instanceof Interface

Problem

Forces

Solution

Attribute-free Interface

Problem

Forces

14 of 15



Solution

Overloaded Cast

Problem

Forces

Solution

Acknowledgements

Special thanks go to Ralph Johnson who shepherded this paper and made many excellent observations
and made me rethink many of the patterns (and discard several of the ones that weren't). He also helped
me bring a better focus to the raw material. I couldn't have asked for a more qualified shepherd. I'd also
like to thank the subgroup of TriPLUG (Dan Holmes, Duff O'Melia, Margaret Mahoney, Graham Poor,
Matt Walter) who exchanged the experience of a Writer's Workshop for what I learned from being the
fly on the wall for an earlier version of this paper… I got the better end of the deal. I'd also like to thank
Bobby Woolf for moderating that event. Most importantly, I'd like to thank Jesus Christ for not only
being my Lord and Savior, but also giving me whatever talents I have and the ability to put my ego aside
for at least long enough to take the constructive criticism I need to help improve the paper. 

Copyright © 1998, Ken Auer

last updated 3-Aug-98 

Ken Auer <kauer@rolemodelsoft.com> 
RoleModel Software, Inc. 
5004 Rossmore Dr.
Fuquay-Varina, NC 27526 

(v) 919-557-6352
(f) 919-552-8166 

15 of 15


