
Copyright © 1999, Frank Metayer. Permission is granted to copy for the PLoP 1999 conference. All other rights reserved.

Matcher-Handler
Frank Metayer

Intent
The Matcher-Handler pattern defines a generalized mechanism for delivering spontaneous data
to one or more data handlers in a loosely coupled way.  This pattern explicitly separates the
responsibilities of data identification (matching) from data handling.

Motivation
Many industrial computer systems are equipped with a variety of input devices that are capable of
accepting many different types of data from the environment.  For example, point-of-sale devices
like cash registers and lottery terminals are often equipped with one or more optical scanning
devices.  One such device is a vertical barcode reader attached to a cash register.  This barcode
reader is expected to read barcode data off of store products, coupons, customer cards, etc.
Once a barcode has been scanned, the cash register application front-end must process the raw
data enough to identify the type of data (e.g., a coupon) so that it may deliver it to the appropriate
application object for processing.  It is beneficial to develop a generic data routing framework to
deliver such spontaneous data.

Such a framework should have the following characteristics.  Provide consistent behavior for
the input device regardless of the type of data being handled. Clearly define an application-
programming interface (API) for introducing support for new input data formats.  Minimize the risk
of introducing a bug into the application when adding support for new types of data.

The Matcher-Handler pattern can be used as a basis to develop such a framework because
of the way that it generalizes data recognition and data delivery.  Figure 1 shows the classes
involved in the barcode example described here.

Figure 1  Barcode data handler class relationship

getMatcher()
getHandler()

Pair

process(data)

BarcodeDataHandler

isMatch(data)

BarcodeDataMatcher

    matcher/handlers

isMatch(data)

ProductNumberMatcher

isMatch(data)

CustomerCardMatcher

process(data)

ProductNumberHandler

process(data)

CustomerCardHandler

deliverData(data)

BarcodeReader

delivered = false

for each pair
  if pair.getMatcher().isMatch(data)
    pair.getHandler().process(data)
    delivered = true

return delivered



BarcodeReader  is the class that implements the application front-end that is responsible for
accepting data1 from a device and delivering the data to the proper entity for processing. Its
implementation is generic and extendible.  It manages a list of matcher/handler pairs and defers
all data recognition and processing to those objects respectively.

The abstract classes BarcodeDataMatcher  and BarcodeDataHandler  define the
generalized interface for performing data matching and data handling.  Concrete matchers such
as CustomerCardMatcher  interrogate the raw data to determine if the data matches a specific
criteria such as data size, header content, etc., and return true  from isMatch()  if the data is
recognized or false  otherwise.  Concrete handlers such as CustomerCardHandler  are only
notified when the data has been identified as being specifically for them.

Notice in the pseudo-code for the BarcodeReader  deliverData()  method that more than
one handler might receive the same data.  This might be beneficial for certain types of data
processing.  If this is not the desired behavior, the for  loop can be reconstructed to ensure that
only one handler receives the data.  (To create an even more flexible implementation of
BarcodeReader , this for  loop behavior can be extracted out of the BarcodeReader  class and
placed into a strategy [Gamma+95] object that is passed to the BarcodeReader  instance during
construction.)

Applicability
Use the Matcher-Handler pattern when

• You want to deliver data to objects without specifying the receivers explicitly.

• A data event may need to be processed simultaneously and independently by more than one
object.

• The set of objects that handle spontaneous data events should be specified dynamically.

• A handler may need to process data from more than one data source.

• You expect that new data types are likely to be introduced into the application over time.

Structure
See Figure 2.

Figure 2  Class relationship

                                                     
1 Often, the data is not an object in its own right, but simply raw data that is yet to be identified.

getMatcher()
getHandler()

Pair

process(data)

Handler

isMatch(data)

Matcher

    matcher/handlers

isMatch(data)

ConcreteMatcher

process(data)

ConcreteHandler

addHandler(matcher,handler)
removeHandler(handler)
deliverData(data)

ConcreteDataSource



Participants
• ConcreteDataSource  (BarcodeReader ):

- Manages the data source (i.e., the device) and accepts or generates a data event.  It
invokes deliverData()  on itself to initiate the delivery of the data to the data handlers.

- Delivers data to the appropriate handler(s) after first querying a matcher to determine if
the associated handler should receive the data.

- Manages a list of matcher/handler pairs through the registry methods addHandler()
and removeHandler() .

• Matcher  (BarcodeDataMatcher ):
- Declares the interface that the data source uses to determine if a particular data event

matches the criteria required by a particular handler.

• ConcreteMatcher  (CustomerCardMatcher ):
- Implements the matcher interface for determining whether or not data is recognized.

• Handler  (BarcodeDataHandler )
- Declares the interface used by the data source to deliver data to a data handler.

• ConcreteHandler  (CustomerCardHandler )
- Processes the data that is passed to it by the data source in an application defined way.

Collaborations
1. A ConcreteDataSource  asks each matcher if the data event is recognized as matching

whatever criteria the matcher was designed to encapsulate.

2. If the data is matched (i.e., isMatch()  returns true ), the ConcreteDataSource  will
deliver the data to the handler associated with the matcher.  The handler will process the
data.

3. If the matcher does not recognize the data, the handler will not be notified at all.  The next
matcher in the list is queried.

Consequences
The Matcher-Handler pattern has these advantages.

• Reduced coupling.  The pattern frees a data source from knowing which other objects
process the data events.  A data source only knows if the data was accepted or ignored by
the application.  The data source and the data handler need not have any explicit knowledge
of each other.

• Runtime flexibility of data handling.  Since the list of handlers is specified dynamically, the
application can change the current handler set at any time.  An application can add or
removed handlers because of some mode change and later restore the previous handler
configuration using the Memento [Gamma+95] pattern or some similar mechanism.

• Allows an application to evolve over time.  Matcher-Handler provides the basis for a
framework that allows the application to respond to spontaneous data events that are
significant to it while allowing unrecognized or unsupported data to be gracefully ignored.
This is particularly important during the early development of a new application when whole
portions of the application do not yet exist.  As new objects are created to support new types
of input data, these objects are registered with the appropriate data sources and start
receiving input.

• Reduced risk when introducing new functionality.  The introduction of new code to support
new types of input data does not require any code changes to the data source.  This means
that the Matcher-Handler pattern can be used to develop an extendible framework that can
be distributed in binary form (not source code).  More importantly, not needing to make



changes to the data source to introduce new functionality means that the risk of breaking
existing code is greatly reduced as new handlers are introduced.

Matcher-Handler has this disadvantage.

• Matchers may know too much about other Matchers.  If the data that is being processed is
not an object in its own right, but is instead raw data, then concrete matchers will typically
have some knowledge about how other matchers for a particular data source are
implemented.  This happens because a matcher must know what is unique about its data
relative to any other data.  Therefore, it must know something about the other types of data.

For example, barcode data for a store product is typically a number that identifies the
product in a database.  Barcode data for a customer card may contain a customer’s name,
address, etc.  If it is known that product numbers are always encoded into eight bytes of data,
and customer information is always encoded into forty bytes of data, and these are the only
two types of data that are processed, then a matcher can be implemented based solely on
data size.

This assumption might break down as new data types are introduced.  As previous
assumptions break down, matchers will need to be rewritten using new matching criteria.
Notice that this problem does not affect the data processing since the processing is isolated
in another class, the handler.  This is the primary motivation for separating the matcher
implementation from the handler implementation.

Implementation
The following issues should be kept in mind when implementing the Matcher-Handler pattern.

• The example outlined in the Motivation section declares the matcher interface to return a
boolean value that indicates if the data should be passed to the handler.  For non-trivial
applications it is probably better to have the matcher return a high-level object that
encapsulates the raw data when the data is recognized or null  (or a Null Object [PloPD3])
when the data is not recognized.  The object returned by the matcher is then passed by the
data source to the Handler.  This way the hander doesn’t need to reinterpret (or even
understand) the raw data.  Also, if the handler manipulates high-level objects instead of raw
data, it can operate on polymorphic types whose concrete type is known only by the matcher.

Figure 3   Matcher variation

• Implementing the matcher and handler interfaces in a single class allows one object to
perform both the matching and handling operations.  This will reduce the number of classes
and objects in the application, and therefore the apparent complexity, but with significant risk.
If one object is performing both the matching and handling operations, there is a tendency to
implement the behaviors in such a way that the matcher behavior passes information to the
handler behavior through instance variables.  As new data types are introduced and the
matching criteria changes (see Consequences), the data handling code will likely break as a
side affect of some subtle dependency between the two methods.

addHandler(matcher,handler)
removeHandler(handler)
deliverData(data)

DataSource

// Null Object implementation

for each pair
  obj  = pair.getMatcher().isMatch(data)
  if obj .needsProcessing()
    pair.getHandler().process( obj )



• When the processing of data is expected to take a long time, it may be beneficial to
restructure the deliverData()  method to query all of the matchers at once and build a list
of handlers that should receive the data.  Then, pass the data and the list of handlers off to a
lower priority background thread for actual processing.  With this implementation, the call to
the deliverData()  method can return more quickly.  This will allow the data source to
immediately provide audio and/or visual feedback to the user indicating whether the data was
accepted or rejected.  (The behavior of the deliverData()  method is subjective to the
many factors.  Consider implementing the deliverData()  behavior using a Strategy
[Gamma+95] pattern.)

• Introducing an abstract super-class to ConcreteDataSource  is useful for an application
that has several different but similar data sources.  The new super-class will implement the
matcher/handler registration and data delivery behavior. The concrete sub-class will focus on
device control (which is probably what it should be doing anyway).  Adding the abstract
super-class makes it easy to implement data handlers to accept data from different data
sources.  For example, a single handler instance could accept and process data from a
barcode reader, a magnetic stripe reader, and a smart card reader, and not make any special
provisions for any of the devices.

Figure 4  Abstract data source

• The Pair  object that the data source uses to maintain the association between matchers and
handlers is just one of several ways to link the two objects together.  This variation provides
significant flexibility because it allows a single handler instance to be registered with several
different matchers, and also allows a single matcher instance to be registered with several
different handlers.  If this many-to-many relationship is not necessary, consider linking the
matchers and handlers together by giving one an explicit reference to the other.  The
following figure illustrates an implementation where each matcher has an explicit reference to
its associated handler.

Figure 5  Matchers reference handler

getMatcher()
getHandler()

Pair
    matcher/handlers

addHandler(matcher,handler)
removeHandler(handler)
deliverData(data)

DataSource

ConcreteDataSourceA ConcreteDataSourceB

process()

Handler

isMatch()
getHandler()

Matcher
matchers

isMatch()

ConcreteMatcher

process()

ConcreteHandler

deliverData()

ConcreteDataSource

for each matcher
  if matcher.isMatch(data)
    matcher.getHandler().process(data)

deliverData()

ConcreteDataSource



Sample Code
Here is a Java implementation of the barcode reader example discussed in the Motivation section
(refer to Figure 1).  The sample code starts with the BarcodeReader  class.  Because it is not
relevant here, all of the code that controls the device is left out.

public class BarcodeReader  extends Thread
{
  private Vector _handlers;

  // Matcher/Handler registration.
  public void addHandler ( BarcodeDataMatcher matcher,
                          BarcodeDataHandler handler )
  {
    _handlers.addElement( new Pair(matcher,handler) );
  }

  // Deliver data to the appropriate handler.
  protected boolean deliverData ( byte[] data )
  {
    Enumeration enum  = _handlers.elements();
    boolean delivered = false;

    while( enum.hasMoreElements() )
    {
      Pair pair = (Pair) enum.nextElement();
      if( pair.getMatcher().isMatch(data) )
      {
        pair.getHandler().process( data );
        delivered = true;
      }
    }

    return delivered;
  }

  // Device Thread.  Accept data and deliver it, forever.
  public void run ()
  {
    while( true )
    {
      byte[] data = _waitForInput();

      boolean delivered = deliverData( data );

      if( delivered )
        _flashGreen();
      else
        _flashRed();
    }
  }

  ...
}

The next two classes are the matcher interface and a concrete matcher implementation that
matches reader data for a product number based on data size.

public interface BarcodeDataMatcher
{
  public boolean isMatch ( byte[] data );
}



public class ProductNumberMatcher  implements BarcodeDataMatcher
{
  public boolean isMatch ( byte[] data )
  {
    return data.length == 8;
  }
}

The next two classes are the handler interface and an example concrete handler. The product
number handler creates a new product instance based on the product number using a factory
method [Gamma+95], then posts this new product instance to a sales list singleton [Gamma+95].

public interface BarcodeDataHandler
{
  public void process ( byte[] data );
}

public class ProductNumberHandler  implements BarcodeDataHandler
{
  public void process ( byte[] data )
  {
    // 'data' is an ASCII encoded integer
    String ascii = new String( data );
    Integer pid  = Integer.decode( ascii );
    Product prod = Product.newInstance( pid );

    Sales.getInstance().add( prod );
  }
}

The main application code might look something like this.

public class Application
{
  public static void main ( String[] args )
  {
    BarcodeReader reader = new BarcodeReader();

    BarcodeDataMatcher matcher;
    BarcodeDataHandler handler;

    matcher = new ProductNumberMatcher();
    handler = new ProductNumberHandler();
    reader.addHandler( matcher, handler );

    matcher = new CustomerCardMatcher();
    handler = new CustomerCardHandler();
    reader.addHandler( matcher, handler );

    // add more handlers...

    reader.start();
  }
}



Known Uses
• Altura 2 Image Reader.  An image reader scans in documents such as receipts, play slips,

player registration cards, etc.  The data obtained from the scan is passed along to the
application by traversing a list of matcher-handler pairs.  The data is delivered only to the
handlers that want it.  The handlers are called from a separate background thread so that the
image reader can quickly provide accept/reject feedback to the user.

• Altura Communications Framework.   While a lottery terminal is running, it receives many
unsolicited messages from the central computer system.  These messages range from news
messages, to game closing notifications, to winning numbers announcements.  The several
types of messages have handlers that are very different from one another.  For example, a
game closing notification is delivered to a game prototype [Gamma+95] running in the
terminal and tells the game that it can no longer be played.  A winning numbers
announcement is delivered to a display object so that the numbers can be displayed to the
customers.  A winning numbers announcement may also be delivered to a game prototype,
signaling to the game that it may once again be played for the next drawing.  In this
implementation, there is only one matcher class for unsolicited message matching.  The
matcher reads the message header and compares fields within the header to values passed
to its constructor.

• Windows Registry.  When a Windows 95/NT application installs, it typically identifies itself to
the registry.  The application informs the registry that for particular file types, it can handle
requests like Open, Print, etc.  When the user issues a request to Open a specific file,
Windows determines the file type (from the file extension) and matches that file type against
the file types recorded in the registry.  If a match is found, the corresponding application that
is registered to support the Open request is invoked to process the Open.

• Smalltalk Method Selection.   When a message is sent to an object, Smalltalk uses a
method-lookup mechanism to determine which method to invoke to process the message.
The signature of the message is compared to the method signatures that the object’s class
defines.  If a match is found, the corresponding method is invoked to handle the message.

• RPC Service Dispatch.   When a server receives a Remote Procedure Call, a dispatcher
identifies the local procedure that should service the request and invokes that procedure to
handle the request.

Related Patterns
Like the Observer [Gamma+95] pattern, Matcher-Handler addresses the problem of distributing
information as it happens to the objects throughout the application that are interested.

Observer focuses on notifying application objects when a subject changes state.  Observers
of a subject are notified for any change in state, not necessarily the state change that they are
interested in.  In contrast, Matcher-Handler notifies handlers (observers) only when the
information that they are specifically waiting for has arrived at the data source (subject).

The matcher object in the Matcher-Handler pattern is an example of the Strategy
[Gamma+95] pattern, though the motivation for it is somewhat different.  The purpose of the
Strategy pattern is to provide selectable behavior, particularly at runtime. The matcher object
however was motivated by the observation that matching criteria changes over the lifetime of the
application and it makes sense to isolate that behavior to reduce the impact of the changes to the
rest of the system.

The Matcher-Handler pattern is similar to the Chain of Responsibility [Gamma+95] pattern in
that it avoids coupling the data source (client) to its handlers, it allows more than one object to
handle a request, and it allows the handlers to be dynamically specified.  The structure of
Matcher-Handler differs from that of Chain of Responsibility in that handler sequencing is
delegated to the data source in Matcher-Handler while data sequencing is established and
maintained by linking handlers together in Chain of Responsibility.

                                                     
2 Altura™ is a lottery terminal developed by GTECH Corporation.  The application that runs the
terminal is a framework-based object-oriented implementation written in Java.



REFERENCES
[Gamma+95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.  Design Patterns: Elements of

Reusable Object-Oriented Software.  Reading, MA: Addison-Wesley, 1995.
[PloPD3] R. Martin, D. Riehle, F. Buschmann. Pattern Languages of Program Design. Reading,

MA: Addison-Wesley, 1998.


