
Permission is granted to copy for the PloP 1999 conference. All other rights reserved.

Three Patterns in Object Modeling

Paul Asman, Federal Reserve Bank of New York, July 1999

James Rumbaugh has written, "Basically, attributes are for representing relationships
between objects and values without identity, whereas associations are for representing
relationships between objects and other objects" (Rumbaugh 1996). When you apply this
principle, though, you soon encounter difficult cases. It is clear that a character is a value
without identity. But this is less clear for a string, which seems to be both without identity
as well as one of the "other objects," an instance of class String. This is even less clear for
an address, although this is one of Rumbaugh's examples of an attribute. Perhaps an
address can be a value without identity, for example in domains where addresses are used
only for generating mailing labels. But an address can also be a first-class object of its
own, as it would be in an insurance application.

Distinguishing between attributes and associations is a problem for modeling, not
implementation. When you implement a model in an object-oriented language, each
component of that model is either omitted or made part of a class specification. There is
no place for anything else: the code is not sand, and you cannot draw a line representing
an association in it. Nor is there a need for anything else: code must be accurate and
efficient, not expressive.

Models must also be accurate, but they must be expressive as well. You could model all
associations as attributes from the beginning, just as you could model all attributes as
associations. (For the first option, see Velho and Carapuça 1994; for the second, see
Tanzer 1995, who rejects it.) The choice between using an attribute or an association
therefore cannot be decided by accuracy, that is, by reference to the reality underlying the
model. Instead, you choose one or the other for its expressive power.

Determining what to model as an association and what as an attribute therefore is an art,
not a science. However, you can subject aspects of this determination to science, or at
least to engineering. These patterns attempt to take the broad heuristics for identifying
attributes and associations found in object modeling literature, and create from them
more mechanical decision procedures. Successful application of the patterns will reserve
art for what is beyond science.

Since the models created in analysis and design serve different expressive needs, there
are different patterns to apply. The first pattern, Deferred Attributes, addresses forces that
apply both to analysis and design. The second, Associations for Analysis, addresses
forces specific to analysis, and the third, Attributes for Design, addresses forces specific
to design.

All three patterns apply only when there is some question whether to model with an
attribute or an association. The question does not arise with every candidate association.
It does not arise, for example, when modeling the relationship between two robust



domain objects. It also does not arise when creating association objects, which by
definition “associat[e] two other objects” (Boyd 1998).

References:

• Boyd, Lorraine L., “Business Patterns of Association Objects,” in Martin, Robert
C., Dirk Riehle, and Frank Buschmann, Pattern Languages of Program Design 3,
Addison-Wesley, 1998.

• Rumbaugh, James, "A Search for Values: Attributes and Associations," Journal
of Object-Oriented Programming, Volume 9, Number 3, June, 1996, pp. 6-8,49.

• Tanzer, Christian, "Remarks on Object-Oriented Modeling of Associations,"
Journal of Object-Oriented Programming, Volume 7, Number 9, February, 1995,
pp. 43-46.

• Velho, Amândio Vaz and Rogério Carapuça, "From Entity-Relationship Models
to Role-Attribute Models," in Proceedings of the 12th International Conference
on Entity-Relationship Approach, Arlington, Dallas, USA, December, 1993,
Springer-Verlag, 1994, and "Attribute: A Semantic and Seamless Construct," in
Magnusson, Boris, Bertrand Meyer, and Jean-Marc Nerson, Technology of
Object-Oriented Languages and Systems: Proceedings of the Thirteenth
International Conference Tools Europe '94 Versailles, France, Prentice-Hall,
1994.

Name

Deferred Attributes

Context

You are creating a model. You know that any associations you draw will eventually be
implemented as attributes (or not at all), but you also know that your model will lose its
expressive power if it does not show links between classes. You know as well that you
can go too far in drawing associations, cluttering your model with classes that are not an
interesting part of your domain.

This pattern covers cases where the forces are the same whether you are engaged in
analysis or design. Other patterns, Associations for Analysis and Attributes for Design,
respond to the forces specific to those contexts.

Problem

Which eventual attributes are best modeled as associations, whether in analysis or
design?



Forces

• Putting associations into a model clearly shows "the web that ties an entire model
together" (Rumbaugh 1996); without associations, you don’t see this web.

• An "enormous number of associations of very different importance" (Tanzer
1995) produces clutter and confusion, and obscures the relevant portion of the
web.

• Elements have different roles in different domains. For example, a billing domain
is likely to use postal code only for generating mailing labels; there will be little
to say about postal code other than what it is. An insurance domain, however, is
likely to use postal code for setting rates, and may associate it with risk level.

• Elements have connections with different directionality in different domains. (See
Papurt 1994.) A real estate tax domain, for example, requires access to property
owners through addresses as well as access to addresses through property owners,
while most other domains require only the latter.

• Objects hold some elements throughout their existence or nearly so. A person, for
example, generally receives a name shortly after birth and has some name from
that time on. Objects hold other elements temporarily, or only at certain times. A
person owns cars, for example, but generally not when a toddler. (See D'Souza
1994.)

• Different assumptions are made about the visibility of elements when they are
modeled as attributes or associations. Rational Rose, for example, makes
attributes private and associations public by default. Unless a modeler changes
visibility, then, Rose generates Java code implementing attributes as private
attributes and associations as public attributes.

Solution

1. If there is nothing to say about a simple element other than what it is, and nothing
you will ask it to do, model it as an attribute. An example is character, of which
an example is the letter 'c'.

2. If everything that you will ask an element to do comes as part of any object-
oriented language you might use, model it as an attribute. Examples include
strings and numbers. You may ask an element that is an instance of String to
return its first character, but the code for this will come with the implementation
language; you won’t need to write it.

3. You should normally treat the fundamental types you create (such as currency;
see Fowler 1997) as if they came with the language. However, since you must
code these fundamental types, you should represent them as objects with
operations on at least one diagram in a model. A diagram dedicated to such
fundamental types would be appropriate. Associations will not be important on
this diagram.

4. If only one class has access to an element, you should normally model it as an
attribute of that class. Most identifiers (e.g. name, social security number, and
bank routing number) fall under this guideline. Since these elements often have
methods defined for such operations as formatting and validation, though, they
should be represented as objects on at least one diagram in a model. (Bank routing



numbers, for example, are validated by the computation of the last digit, which is
a check digit.) A diagram dedicated to such elements would be appropriate.
Associations will not be important on this diagram.

5. If more than one class has access to an element that is not subject to the previous
guidelines, and if different classes in a model use this element differently, you
should normally model it with associations. An example is bank account, which
person and banking institution use differently. Note the qualification "in a model,"
which allows you to model an element differently in different domains. (An
element accessible from multiple classes in one domain may be accessible only
from one class in another.)

6. If you have identified a bi-directional relationship between two classes, model it
as an association. (You need not model it as a bi-directional association, though:
see Attributes for Design solution item 1.) Do not model it by specifying an
attribute in each class of the type of the other class.

7. When objects do not hold elements throughout their lifetimes (or nearly so), you
should normally model those elements with associations rather than attributes.
This is especially important if you think you may subclass these objects, for it is
generally better to redraw associations to a subclass than to carry along or
reassign inappropriate attributes. Note that this guideline offers no guidance when
elements are held throughout the lifetime of an object (as are, for example, one's
parents).

Example

The following sketch shows a simplified part of a banking domain modeled according to
the solution. Three classes are used as attribute types rather than represented as classes
linked by associations: String and Integer, which are Java classes, and Address, which is
not.

(created in UML with Rational Rose 98i)

Resulting Context

While this pattern solves many of the issues in choosing between attributes and
associations, it does not recognize the different expressive goals of analysis and design

Person

name : String
socialSecurityNumber : Integer
address : Address

BankAccount

accountNumber : Integer
0..*

1..*

+bankAccount

0..*

+person1..*

BankingInstitution

name : String
abaNumber : Integer
address : Address

0..*

1

+bankAccount

0..*

+bankingInstitution 1



models. If you are creating an analysis model, you should apply Associations for Analysis
simultaneously to or after applying this pattern. If you are creating a design model, you
should apply Attributes for Design in the same way.

References

• D'Souza, Desmond, "Working with OMT, part 2," Journal of Object-Oriented
Programming, Volume 6, Number 9, February 1994, pp. 68-70,72.

• Fowler, Martin, Analysis Patterns: Reusable Object Models, Addison-Wesley,
1997.

• Papurt, David M., "The Object Model: Attribute and Association," Report on
Object Analysis & Design, Volume 1, Number 4, November - December 1994,
pp. 14-17.

• Rumbaugh, James, "A Search for Values: Attributes and Associations," Journal
of Object-Oriented Programming, Volume 9, Number 3, June, 1996, pp. 6-8,49.

• Tanzer, Christian, "Remarks on Object-Oriented Modeling of Associations,"
Journal of Object-Oriented Programming, Volume 7, Number 9, February, 1995,
pp. 43-46.

Name

Associations for Analysis

Context

You are creating an analysis model. You have already applied Deferred Attributes, or are
applying it simultaneously to this pattern. As in Deferred Attributes, you are trying to
retain the expressive power of links without diminishing that power through clutter.

Because you are doing analysis, you cannot be certain of the scope of your target
applications. Even if you could be certain, you may think it unwise to limit your analysis
to the target applications, for this lessens the possibilities of reuse. You may even be a
member of one of several teams working in the same domain, teams that hope to share
results and thereby reduce individual efforts.

Problem

Which eventual attributes are best modeled as associations during analysis?

Forces

• Analysis models meet different needs from design models, just as analysis meets
different needs from design.



• A properly constructed analysis model contains elements conceptually important to
its domain, even if these elements may be suspected of being unnecessary to an
application under development. You suppress conceptually important but unnecessary
elements during design, not analysis.

• According to Fowler 1997, “A number of object-oriented practitioners are
uncomfortable with using associations in OO analysis. They see associations as
violating the OO programming principle of encapsulation.”

• A properly constructed analysis model represents its domain, not implementation of
an application in that domain. You do not address programming principles in
analysis.

• Navigability is generally unimportant in analysis. Some writers prefer associations in
analysis models to be bidirectional (e.g. Fowler and Scott 1997: “each association has
two roles”; see also Papurt 1994). Others prefer them to be non-directional (e.g.
Henderson-Sellers 1998). UML equivalently represents both unstated and
bidirectional navigability: “If navigability has not been decided, then it is
bidirectional in the general case” [Rumbaugh et al. 1999].

Solution

1. If navigation from one element of a domain to another conceptually goes in both
directions, model the relationship as an association. This will enable the analysis to be
reused by applications to which either direction matters, even if one direction is not
relevant to your application. For example, in a domain in which addresses may
potentially be used for more than mailing, model an association between address and
person during analysis, even if you will make address an attribute of person in design.
In a demographics domain, model an association between ZIP code (i.e., post office)
and address.

2. If “the reverse direction [of a candidate association] is determined to be unimportant
during analysis” [Papurt 1994; his emphasis] – that is, if the navigation is
conceptually unidirectional – normally model the element as an attribute. For
example, in a domain in which addresses are used only to create mailing labels, post
office should be modeled as a class with an association to address on only one
diagram, following the solution in Deferred Attributes (item 4).

3. Do not let programming principles and implementation issues drive analysis. During
analysis, strive to represent the domain.

Examples

In certain demographic domains, a post office is more than a part of a mailing address. In
some insurance applications, post office (or Zip code) is used to set rates. In some
marketing applications, it is used to identify potential customers. In such applications,
this would be an appropriate diagram:



(created in UML with Rational Rose 98)

In other domains, post office is simply a part of an address. In some such domains, this
would be an appropriate diagram:

(created in UML with Rational Rose 98)

Finally, there are domains in which addresses are used for nothing but mailing labels. In
such domains, address would normally be diagrammed as an attribute of type Address:

(created in UML with Rational Rose 98i)

Resulting Context

This pattern helps create models that cannot normally be used for design without
modification. For such modifications, see Attributes for Design.

References

• Fowler, Martin, Analysis Patterns: Reusable Object Models, Addison-Wesley,
1997.

• Fowler, Martin, with Kendall Scott, UML Distilled: Applying the Standard
Object Modeling Language, Addison-Wesley, 1997.

Person

PostOffice

zipCode

Address

0..*0..*

+residesAt

0..*

+isResidenceOf

0..*

0..1

1..*

+isServedBy0..1

+serves1..*

Address

zipCode
Person

0..*0..*

+residesAt

0..*

+isResidenceOf

0..*

Person

address : Address



• Henderson-Sellers, Brian, "Open Relationships - Associations, Mappings,
Dependencies, and Uses," Journal of Object-Oriented Programming, Volume
10, Number 9, February 1998, pp. 49-57.

• Papurt, David M., "The Object Model: Attribute and Association," Report on
Object Analysis & Design, Volume 1, Number 4, November - December
1994, pp. 14-17.

• Rumbaugh, James, Ivar Jacobson, and Grady Booch, The Unified Modeling
Language Reference Manual, Addison-Wesley, 1999.

Name

Attributes for Design

Context

You are creating a design model. You have already applied Deferred Attributes, or are
applying it simultaneously to this pattern. As in Deferred Attributes, you are trying to
retain the expressive power of links without diminishing that power through clutter.

Because you are doing design, you should have received the products of analysis. If so,
you plan to select those elements necessary to design the application under development,
and add information required in moving towards implementation. Because analysis has a
broader scope than design, you expect to winnow out elements or their aspects. In this
process, you may leave some elements previously modeled as associations as such, while
reducing others to attributes. You will undergo a related process even if your design
commences without benefit of analysis. Instead of winnowing, you will be creating, but
your decisions should look towards the same results.

Problem

Which eventual attributes are best modeled as associations during design?

Forces

• Design models meet different needs from analysis models, just as design meets
different needs from analysis.

• A design model often eliminates elements that do not take part in an application
under development, even if they are conceptually important to the domain.

• The concerns of object-oriented practitioners that associations violate the
programming principle of encapsulation (Fowler 1997), which were dismissed in
Associations for Analysis, are germane to design.

• Navigability is important in design. In design, “associations represent
responsibilities” [Fowler and Scott 1997], and responsibilities are directed, either
unidirectionally or bidirectionally.



Solution

1. If navigation from one element of a domain to another conceptually goes in both
directions (as shown in an analysis model), but one direction is irrelevant to the
application being designed, normally model the relationship as a unidirectional
association in design. (See Papurt 1994.) The association between a person and his or
her car may be bidirectional or have unstated directionality in an analysis model, for
example, but be navigable only from owner to car in a design model. The association
would nonetheless remain an association.

2. If all that you retain of an association is a value, generally model it as an attribute in
design. This applies both to associations that were unidirectional in analysis and to
associations that were reduced to unidirectionality in design (for which see item 1
above). For example, if an application uses address only for mailing purposes, you
should normally model it as an attribute, even if address was an associated class in
analysis. Following the solution of Deferred Attributes (item 4), there would then be
only one diagram on which address appears as a class.

Examples

In most domains, this is an appropriate design model for the relationship between person
and car:

(created in UML with Rational Rose 98)

In a direct mail marketing domain, this design model appropriately represents the
relationship between person and address:

(created in UML with Rational Rose 98)

In other domains, this would be appropriate for representing the relationship between
person and addresss:

(created in UML with Rational Rose 98i)

Person DirectMailMarketerAddress

0..*

+address

0..* 1..*

+target

1..*

Person Automobile

0..*

+car

0..*

Person

address : Address



References

• Fowler, Martin, Analysis Patterns: Reusable Object Models, Addison-Wesley,
1997.

• Fowler, Martin, with Kendall Scott, UML Distilled: Applying the Standard
Object Modeling Language, Addison-Wesley, 1997.

• Papurt, David M., "The Object Model: Attribute and Association," Report on
Object Analysis & Design, Volume 1, Number 4, November - December
1994, pp. 14-17.

Acknowledgements

The author thanks Kyle Brown, whose shepherding of this paper helped greatly in the
uncovering of its contents.

Disclaimer

The views expressed in this paper are those of the author and do not necessarily reflect
the position of the Federal Reserve Bank of New York or the Federal Reserve System.


