
1

Acquisition-Computing-Execution-Expression (ACEE)
A Software Architecture Pattern for Computer-supported

Automation and Control Systems

Yongmei Wu

Darmstadt University of Technology
Department of Computer Science
Programming Languages and Compiler
wu@pu.informatik.tu-darmstadt.de

Context
In the domain of Computer-supported Automation and Control Systems (CsACS), an application is used to help
human to finish some control tasks. Peripheral devices like sensors gather data from the controlled objects, this
data is processed according to the specific control rules. The control decisions (output) have to be produced in
form of control signals for the execution mechanisms of the controlled objects fulfilling the tasks. Generally, the
control process is real time and automatic. In some situations letting the operators take part in the control process
is still required.

To build an application in CsACS, the whole contents described above must be taken into account. We also need
strategies for flexible support of development and maintenance of an application. The ACEE architecture pattern
aims to aid in constructing the application to meet the requirements.

Example
Suppose we develop an application for controlling a robot. The robot has three motors for driving its arm and the
attached gripper, as shown in figure 1. The robot is used to lift an object to a target position.

In order to control the robot fulfilling the task, the application should include the code for driving the motors to
move the robot arm and to open and close the gripper. It should integrate the control rules for deciding where to
and how the object will be moved. The control decisions should be regulated timely according to the position of
the robot arm and the width of the robot gripper. To allow the operator to interact with the application to change
the system dynamic behaviors (e.g., to change the target position when the application is running), the
application should express the robot’s current status (the arm position, the width of the gripper), the
manipulation possibilities (e.g., the representation of the gripper) and the system control decisions in some
expression devices (e.g., monitor with a graphical user interface). An input command from the operator is rather
abstract and has to be translated into concrete actions (e.g. the command which is used to move the robot arm to
a concrete position has to be translated to a sequence of switching motors on and off). But first the application
also has to decide if the command is valid.

Figure 1. A Computer-supported Robot Control System

Copyright (C) 1999, Yongmei Wu, MSc. Permission is granted to copy for the Plop 1999 conference. All other rights reserved.



2

Problem
What should a CsACS application look like to be highly maintainable, reusable and efficient to develop?

Forces
The development of an application for CsACS crosscuts several technologies. It does not only deal with
computer science but also other engineering techniques. It requires that the application designers are familiar
with software development and the necessary hardware technology such as knowing the characteristics of
peripheral devices. Even more, in order to develop a user-friendly software, they should also have knowledge
about psychology and ergonomics. This means that building an application for CsACS requires several
application designers with different skills to work together. For instance, in order to acquire the signals from the
robot and to drive the robot fulfilling the control tasks, knowledge about robot technology is required, which is
generally mastered better by electronic engineers. For arranging the low level interactions, e.g., the interactions
between the robot and the computer, software engineers need to be proficient in system programming. Support
for user-friendly Human Computer Interactions requires specific user interface designers who master psychology
and ergonomics in the field of CsACS. For making the control decisions, the domain specific control algorithms
are required to be summarized and integrated into the application, which is the special skill of mathematicians,
and so on. If the software architecture is not well constructed, it is hard to assign the development tasks to the
application designers adequately. It could require that the co-operating application designers must know the code
details written by the others during the development. It obviously adds to their burdens and could result in low
work efficiency.

In addition, the peripheral devices are manifold. Moreover, the development of hardware is so fast that newer
and more powerful hardware is continuously appearing in the market which results in a strong demand for the
system to flexibly support new devices. On the other hand different operators may need different ways for
presenting the system’s status in order to interact with the system (sometimes text expression is more sufficient,
some users only can deal with graphical user interface, and sometimes voice information is required). E.g., a
small monitor in a factory hall may only offer text output or there may be some standard visualization tool that
has to be connected to the system. This means that the parts deal with peripheral devices and human interaction
in the application are prone to change, while the control rules of a specific application domain are relatively
stable. If the software architecture is monolithic, it is hard to change parts of the system. It might even be
necessary to rewrite the whole application.

Solution
According to the functions needed by CsACS, ACEE divides the application into four components:

Acquisition, acquires the signals from the external objects, i.e., the status of the controlled objects (e.g.,
robot arm position) and the control events from manipulation devices (e.g., mouse movements which are
used to initiate the control decisions for driving the robot arm or a hand held teachIn device).

Computing, makes the control decisions.

Execution, drives the execution mechanism to fulfil the control decisions.

Expression, is the interface to the operator, whatever this could be. By use of visualization, audio and other
possible technology, it expresses the status of the external objects, the control decisions and provides the
manipulation possibilities to the operator as required.

The principle of ACEE is: once Acquisition obtains new data, Computing will make the control decisions and
Expression will express the data to the operator as required. After the control decisions are made, Execution will
drive the execution mechanism to fulfil the control decisions and Expression will express the control decisions to
the operator in the demanded ways.

Additionally, we can see that the communication between the four components is unidirectional. That is, it is
necessary for Computing and Execution to be informed about the change (acquired data) in Acquisition, and for
Execution and Expression to know the change (control decisions) in Computing, but not vice versa. ACEE uses
the Broadcaster/Listeners mechanism (also known as Observer design pattern [2]) to realize the change
notifications.



3

For one Acquisition component, application designers can build several Computing and Expression components
for attaching to it. And several Execution and Expression components can also be built for a Computing
component. In this respect ACEE is similar to the MVC pattern [1], a well known Architecture Pattern for User
Interface Design. MVC can support flexibly adding or changing the View and Controller components to a
Model. With ACEE, application designers can also flexibly integrate or change different acquisition interfaces,
control models, expression forms and execution mechanisms in one application.

Structure
The structure of ACEE is shown in figure 2.

Figure 2. The Structure of ACEE

Participants:

Acquisition component

• Monitors the interface connected to the external objects for occurring events.

• Acquires data from the external objects.

• Translates the acquired signals to a computer processable format if necessary.

• Informs all registered Computing and Expression components about its change after new signals
are acquired and translated.

Computing component

• Keeps its state consistent with that of its Acquisition component.

• Makes the control decisions after a change in its Acquisition component.

• Informs its Expression and Execution components about the control decisions.

Execution component

• Keeps its state consistent with that of its Computing component.

• Translates the control decisions from its Computing component to the data format recognizable by
the execution mechanism.

• Drives the execution mechanism to carry out the control decisions.

Expression component

• Keeps its state consistent with that of its Acquisition or its Computing component.

• Translates the expression contents to the data format needed by the expression devices (e.g., large
display, voice cards, etc.) if necessary.

• Expresses the status of external objects, the control decisions from its Computing and provides the
manipulation possibilities to the operator in the demanded ways.

• Drives the expression devices finishing the expressions.



4

Dynamic

Let’s explore the dynamic behaviors of ACEE.

Acquisition acquires the signals form the external objects.

Acquisition includes the mechanism for monitoring the events that occur in the external objects. When
an event is captured, Acquisition processes it and acquires data form the relevant object if applicable.
Acquisition then transforms the acquired data to the required format if it is not processable by the
computer. After interpreting, Acquisition notifies its Computings and Expressions about its change.

Computing makes the control decisions.

When a Computing is notified that new data has been acquired by its Acquisition, it will make the
control decisions based on the integrated control rules and the new acquired data. After Computing has
made the control decisions, it will notify its Expression and Execution components.

Expression expresses the information to the operator.

When an Expression is informed about new data from its Acquisition or new control decisions in its
Computing, it will translate the data to the format required by its expression devices if needed.
Expression then drives its expression devices, if those are not the standard devices supported by the
computer system (e.g., large display, voice cards, etc.), refreshing the expression contents.

Execution drives the execution mechanisms to fulfil the control decisions.

When an Execution is notified of new control decisions from its Computing, it will transform the
control decisions to the signals recognizable by its execution mechanism (e.g., motor, switches,
actuator, etc.). It then drives the execution mechanism fulfilling the control decisions.

Scenario: In our example, the operator uses the mouse to manipulate the representation of the gripper on a
screen to move the robot arm.

The location of the robot gripper is acquired by Acquisition. Acquisition translates it to the format
processable by the system and then informs its Computing and Expression. In Computing, the data is
processed for future decision. In Expression, the representation of the current location of the gripper is
refreshed on the monitor.

The operator uses the mouse to manipulate the representation of the gripper on the monitor.

After the mouse driver acquires the data from the mouse, Acquisition translates the data to a position
recognizable by the system. Acquisition then informs its Computing and Expression.

Computing makes the control decisions and its Expression and Execution react to them afterwards.

According to the integrated control rules, the current gripper location and the data that comes from the
mouse, Computing decides if the manipulation by the operator is valid. If it is confirmed by Computing,
the representation of the target position of the gripper on the monitor is refreshed and Execution will
drive the motors to perform the control decisions. Otherwise, only a textual warning message will be
displayed.

Figure 3. The Interaction Diagram of the Scenario



5

The interaction diagram is shown in figure 3.

Implementation
The implementation of a CsACS application consists of six steps. Steps 2~5 maybe repeated several times to
define several Acquisition, Computing, Execution, Expression components in order to meet the demands of an
application.

1. Construct the Broadcaster/Listeners mechanisms.

The communications in ACEE depend on two Broadcaster/Listeners mechanisms. One is between
Acquisition, Computing and Expression components, where Acquisition is the Broadcaster and Computing
and Expression are the Listeners. The other is between Computing, Execution and Expression components,
where Computing is the Broadcaster and Execution and Expression are the Listeners. According to the work
principles of the Broadcaster/Listeners mechanism, if there is any change in the Broadcaster, by sending a
changed message to itself, the Broadcaster will trigger the Broadcaster/Listeners mechanism to activate
update messages in the corresponding Listeners automatically.

For the sake of meeting the demands of CsACS, the Broadcaster/Listener mechanism in ACEE should be
able to allow the Broadcaster to notify its changes to its Listeners, triggering their updating. It should supply
the interface for flexible attachment and detachment of the Listeners to the Broadcaster. It should also be
independent of the application domain. Therefore, changed, update, attach and detach messages
should be implemented. The changed message is used in the Broadcaster for informing its change, while
the update message is used in the Listener for updating itself. The attach and detach messages are
used in the Broadcaster for attaching and detaching the Listeners. For the implementation details, please
refer to Observer pattern in [2].

2. Implement the Acquisition component.

• Implement Acquisition as the Broadcaster component in the Broadcaster/Listeners mechanism.

• Implement eventDispatch, eventHandlers and necessary acquisition interfaces. In CsACS the
external objects are not only the traditional interaction devices like keyboard and mouse but also other
facilities like sensors and wireless signals. In order to save the system consumption, Acquisition gathers
data from the external objects only when an event happens. To deal with specific event, Acquisition
must use specific scheme. If all the schemes are heaped up in one message, say eventHandler, it
will be difficult to implement and maintain, because the interwoven code brings lots of pitfalls. E.g., if
there is any execution error in one scheme, the message cannot work even through the other schemes
are correct. And if we need to change or add any external object, the whole message may be needed to
be rewritten. To reduce the possibility of error and improve the reusability and maintainability, diverse
strategies for processing diverse events should be encapsulated in different eventHandlers. For
recognizing an event and assigning a concrete eventHandler to it, we need also a mechanism,
eventDispatch. And if there is any external object which is not supported by the system low level
platform (e.g., operating system and system I/O), an acquisition interface must be built for it.

Implement the acquisition interfaces if necessary. The acquisition interfaces are responsible for
monitoring the events occurring in the external objects. Usually an operating system provides the
mechanisms to support standard interactive devices, e.g., mouse driver, which are transparent to the
application designers. Interfaces for the external objects which are not supported by the low level
platform should be built in Acquisition. An acquisition interface depends on the characteristics of the
external object and the low level platform. In general, Operating Systems like Windows NT provide
corresponding functions such as reading and writing files and sockets for communication [7]. For the
external object which can not produce events autonomously, a polling mechanism must be built in the
interface in order to acquire data correspondingly.

If we use Windows NT as the operating system in our example and because the interface of the
robot does not belong to standard devices supported by Windows NT, we can use a parallel
port to connect the interface of the robot to a PC. All the data read from or written to the robot
must go through the parallel port. Standard functions of Windows NT like File I/O cannot be
used to achieve reading from and sending data to the parallel port. Thus the interface for



6

reading and writing the data from the parallel port must be wrapped in Acquisition. Besides,
the robot interface does not have the ability to produce events, the acquisition interface must
include polling mechanism, too.

Implement an eventDispatch message. The eventDispatch message deals with how to
dispatch eventHandlers for processing the events. Reactor pattern [8] and Proactor pattern [6]
describe two corresponding solutions and detailed implementation steps for building
eventDispatch.

Implement the eventHandler messages. According to the characteristics of the external object,
specific schemes for processing events should be encapsulated in a specific eventHandler.

In our example, data comes from the robot interface, keyboard and mouse. According to the
captured event, eventDispatch assigns the specific eventHandler to process it. For
instance, if an event, which is used by the polling mechanism of the robot acquisition interface,
is triggered by the system clock, eventDispatch will assign the robot eventHandler to
it. The robot eventHandler message is used for checking if the data read from the robot
interface is complete, for example.

• Implement the translate messages if required. When the acquired signals are not processable by the
computer, translate messages are needed. A translate message includes the code for
translating one kind of the acquired signals to the data processable by the system.

In our example, the robot arm’s horizontal movement is driven by a motor. A pulse switch is
used to monitor the motor’s movements. In the application, the robot arm’s horizontal position
acquired by its eventHandler is a number recording the times that the pulse switch has
been switched on and off. The translate message includes the algorithm to interpret the
pulse count to a value, telling how many degrees the arm was moved.

• Implement the necessary messages for other components, i.e. Computing and Expression, to access its
core data.

3. Implement the Computing component.

• Implement Computing as the Listener of an Acquisition and the Broadcaster of Expressions and
Executions according to the Broadcaster/Listeners mechanism.

• Implement a compute message. The message compute should integrate the control rules related to
the domain specific application for making the control decisions. The control decisions are determined
by the integrated control rules, the current status of the controlled objects, and the control events from
the manipulation devices (e.g., mouse movements activated by the operator) if they exist.

• Implement the necessary messages for other components, i.e., the Execution and Expression
components, to access its core data.

4. Implement the Execution component.

• Implement Execution as the Listener of a Computing according to the Broadcaster/Listeners
mechanism.

• Implement a translate message. The Execution component is responsible for driving the execution
mechanism to fulfil the control decisions. The translate message includes the strategies for
transforming the control decisions to the data format recognizable by the execution mechanism.

In our example, the translate message in Execution transforms the target horizontal
position of the robot arm calculated by Computing, which is a number denoting how many
degrees the arm has to be moved, to a number that tells how many times the pulse switch has to
be switched on and off.

• Implement a drive message. The drive message must include the code for driving the execution
mechanism to carry out the control decisions.

In our example, the drive message encapsulates the code for monitoring the pulse switch
count.



7

5. Implement the Expression component.

• Implement Expression as the Listener of an Acquisition or a Computing according to the
Broadcaster/Listeners mechanism.

• Implement a translate message. Expression is responsible for expressing the content, which
involves the status of the external objects, the manipulation possibilities and the control decisions in a
graphical user interface or other multimedia ways. Depending on the requirements, the translate
message integrates the code for interpreting the contents to the interface of the expression device.

In our example, the gripper width in the Computing is a number while its representation to the
operator is a circle. translate thus transforms the number to a representation of a circle.

• Implement a message express. The express message integrates the code for expressing the
contents in expression devices. For the standard expression devices like the computer screen, the low
level system platform provides standard functions which are transparent to the application designer. But
for other specific expression devices such as some arbitrary audio devices, express must include the
code to drive them.

In our example, express includes the code for displaying the control decisions on a large
screen.

According to the demands and characteristics of the expression devices, by implementing the translate
and express messages, the expression component makes it easy to plug other new expression devices or
expression forms to the system without influencing other components.

6. Initialize the communication relationships between Acquisition, Computing, Execution and Expression.

When the implementations of Acquisitions, Computings, Executions and Expressions are finished,
implement their changed and update messages accordingly to establish the adequate communication
relationships within the system.

By use of the variant of OMT notation [2], the class diagram of ACEE can be depicted as in figure 4.

Figure 4. The Class Diagram of ACEE

Variant
The MVC Architecture Pattern [1] is a paradigm for interactive systems design. It divides an interactive software
into three parts: Model, View and Controller. Model is the core structure and data for describing the domain
specific application. View deals with displaying application states to the user. Controller is used to handle user
input. The Broadcaster/Listeners mechanism is also used to accommodate the communications between them. In



8

MVC, for one Model there can be several View and Controller pairs. Once the Model has changed (often
triggered by the Controller monitoring the user action, e.g., mouse movement), it will inform its Listeners in
Views. The relevant Views will refresh the displays.

In application domains where no Execution is needed, Expression is limited to the graphical user interface, and
there is only one Broadcaster/Listeners mechanism in Acquisition, Computing and Expression, ACEE can be
simplified to MVC, where Computing, Expression, Acquisition correspond to Model, View, Controller
respectively.

Known Uses
An application for process automation in Hot Rolling Mills developed by Siemens AG covers the whole range
between data acquisition via sensors, computing data in complicated mathematical models, visualizing this data
and controlling the mill with actuators. For data acquisition (Acquisition), visualization (Expression) and low
level control tasks (Execution) standard products are used that have to communicate with a complex computing
component (Computing).

SCUT Voice [10], a public telephone voice service system, is built according to the principle of ACEE. It allows
the users to leave, inquire and delete voice messages through the public telephone. It provides one “Voice
Mailbox” for one user and each “Voice Mailbox” can hold limited messages. In SCUT Voice, the software is
divided into four parts: Acquisition, Computing, Execution and Expression. Acquisition is responsible for
monitoring and acquiring the data from the telephone interface. Computing is used to check if the user’s
operations are illegible and to fulfil the user’s requirements. Execution is driving the telephone interface for
transferring the results, e.g., the messages, to the user. Expression expresses the system’s working status, such as
which interface channel is occupied, to the system administrator.

LLDemo [9] applies the principle of ACEE to construct the software architecture. This results in the ability to
flexibly change any component of the software without influencing the others. Different components can be
developed by different designers concurrently.

Resulting Context
The advantages of the ACEE Architecture Pattern are:

• Clear separation of an application of CsACS into four components: Acquisition, Computing, Execution
and Expression.

The ACEE Architecture Pattern clearly divides an application of CsACS into four components
according to the functionality. It makes the four components relatively independent of each other. This
implies that each component can be developed individually without being much interwoven with others.
Consequently, it enables an application designer to concentrate only on the component at hand.

• Easily attach/detach the Listeners to Acquisition or Computing.

Because the Broadcaster/Listeners mechanism is used to accommodate the communications, the
relationships between Acquisition, Computing, Execution and Expression are easily accomplished. To
attach/detach Computings and Expressions to an Acquisition or to attach/detach Executions and
Expressions to a Computing is very simple.

• Improve software reusability and maintainability.

Since the four components are relatively isolated from each other with respect to functionality, they are
easier to understand and maintain. The easily attached/detached Listeners improve the capability of
reusing them.

• It can also support the design of those interactive systems that already go beyond the WIMP (Windows,
Icons, Menus, Pointing devices) metaphor [3][5].

The drawback of the ACEE architecture is:

• Potentially unnecessary updates in the Listeners.



9

The Broadcaster/Listener mechanism implies a certain communications overhead which, if not properly
taken care of, may slow the system down to an intolerable state. E.g. if a Broadcaster has too many
Listeners or issues changed messages too often the consequent updates may take a while to compute.
Therefore strategies, such as permitting a Listener to update itself only when any interesting change
happens in its Broadcaster, should be applied to limit the potentially unprofitable updates.

Related Patterns
The Broadcaster/Listeners mechanism is used to construct the communication backbone of ACEE. For detailed
information on it, please refer to the description of Observer pattern in [2].

Strategy design pattern [2] can be used to implement the update messages in Computing, Execution and
Expression for flexible assignment of concrete schemes related to the application domains.

Proactor design pattern [6] and Reactor design pattern [8] can be selected to build eventDispatch of the
Acquisition component in ACEE.

Acknowledgements
Many thanks to Christa Schwanninger who was the shepherd of this pattern and gave me lots of concrete advice
for improvement. I would like to thank my supervisor Prof. Dr. Hans-Jürgen Hoffmann for the research proposal
[4] which resulted in discovering the ACEE Architecture Pattern. Thanks to Jan Weerts, Patrick Closhen, Elke
Siemon, Daniela Handl and Martin Friedmann who gave me some interesting suggestions when I documented
this pattern.

References
[1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal: “Pattern-Oriented Software Architecture: A

System Of Patterns”, John Wiley & Sons, 1997.

[2] E. Gamma, R. Helm, R. Johnson, J. Vlissides: “Design Patterns: Elements of Reusable Object-Oriented
Software”, Addison-Wesley, 1995.

[3] M. Green, R Jacob: “Software Architecture and Metaphors for Non-WIMP User Interfaces”,
SIGGRAPH’90 Workshop Report.

[4] H.-J. Hoffmann: “Research proposal: Design models and object-oriented framework for users interfaces in
computer-supported automation and control technology”, Darmstadt University of Technology, 1998.

[5] J. Nielsen: “Non-Command User Interfaces”, Communications of ACM, April 1993, Vol.36., No.4.

[6] I. Pyaral, T. Harrison, D. Schmidt: “Proactor: An Object Behavioral Pattern for Demultiplexing and
Dispatching Handlers for Asynchronous Events”, The 4th Annual Pattern Languages of Programming
Conference, Allerton Park, Illinonis, September 2-5, 1997.

[7] R. Rajagopal, S. P. Monica: “Windows NT 4 Advanced Programming”, Osborne/Mc Graw-Hill, 1998.

[8] D. Schmidt: “Reactor: An Object Behavioral Pattern for Concurrent Event Demultiplexing and Event
Handler Dispatching”, Pattern Languages of Program Design, Addison-Wesley Publishing Company, 1995.

[9] Y. Wu: “LLDemo -- A direct-manipulation user interface for the robot control”, Technical Report,
Darmstadt University of Technology, April 1999.

[10] Y. Wu, Y. Ni: “The Software Implementation Technique of Telephone Voice Mailbox”, the Journal of
South China University of Technology, Vol.25, No. 4, April 1997.


