
QA to AQ Part Three

Shifting from Quality Assurance to Agile Quality
“Tearing Down the Walls”

Joseph W. Yoder 1, Rebecca Wirfs-Brock2, Hironori Washizaki3

1 The Refactory, Inc.,

2Wirfs-Brock Associates, Inc.

3Waseda University

joe@refactory.com, rebecca@wirfs-brock.com, washizaki@waseda.jp

Abstract. As organizations transition to agile processes, Quality Assurance (QA)

activities and roles need to evolve. Traditionally, QA activities occur late in the

process, after the software is fully functioning. As a consequence, QA departments

have been “quality gatekeepers” rather than actively engaged in the ongoing

development and delivery of quality software. Agile teams incrementally deliver

working software. Incremental delivery provides an opportunity to engage in QA

activities much earlier, ensuring that both functionality and important system

qualities are addressed just in time, rather than too late. Agile teams embrace a

“whole team” approach. Even though special skills may be required to perform

certain development and Quality Assurance tasks, everyone on the team is focused

on the delivery of quality software. The patterns in this paper are focused on

“breaking down the walls” or removing barriers between people and traditional

roles as this is key for any change within an organization that is transitioning to

being more Agile at Quality.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: NEED TO ADD HERE

General Terms
Quality Assurance (QA), Software Developer in Test (SDET), Test Driven Development (TDD), Extreme Programming

(XP), Pairing, Agile, Waterfall Methodology, Software Development Lifecycle (SDLC), Continuous Integration (CI),

Extract-Transform-Load (ETL) Agile, Patterns, Testing

Keywords
Agile Quality, Quality Assurance, Testing

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided

that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on

the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

Preliminary versions of these papers were presented in a writers' workshop at the 21st Conference on Pattern Languages of

Programs (PLoP). PLoP'2014, September 14-17, Allerton, Illinois USA. Copyright 2014 is held by the author(s). HILLSIDE 978-1-

XXXX-XXXX-X.

QA to AQ Part Two - 2

Introduction

As organizations move to being more agile, it is important that this transition also includes

Quality Assurance (QA). Nothing prevents QA from being involved throughout the

development process, but generally this has not been the case. Unfortunately for many

software projects, QA only becomes involved late in the development process, just before it

is necessary to test and release the final product. This is partly because of a different mindset

between in traditional software quality assurance processes over time. One important

responsibility of QA is to certify the functionality of the application based upon the contract

and requirements; usually with black-box tests. Typically, QA groups have worked

independently from the software team. However, in agile teams, QA should work more

closely with the whole team on an ongoing and daily basis.

Previously in [YWA & YW] we presented an overview of patterns on ways to become more

agile at quality. This paper extends that work by writing the patterns “Breaking Down

Barriers” and “Pairing with a Quality Advocate”.

We have written a group of patlets listed in the appendix. A patlet is a brief description of a

pattern, usually 1-2 sentences outlining the problem and solution. We are working on writing

these as full-fledged patterns that can ultimately help guide organizations as they become

more agile at quality. These patterns are intended for any agile team that wants to focus on

important qualities for their systems and better integrating QA into their agile process. These

patterns are for anyone who wants to instill a quality focus and introduce quality practices

earlier into their process, too. These patterns need not just be for agile teams.

QA to AQ Part Two - 3

Breaking Down Barriers

“You can focus on things that are barriers or you can focus on scaling the wall or redefining

the problem.” —Tim Cook

Most agile processes do a good job of focusing on functional requirements, how to prioritize

them, and on the process for doing the development (product owners, scrum masters, TDD,

etc.). As organizations evolve to being more agile, it is important to not lose focus on the

“ilities” of a system and on Quality Assurance. Most agile transitions provide training for

management, developers and product owners while QA is often left to their own. There are

often many barriers between Quality Assurance and other parts of the organization.

How can agile teams remove the barriers and become more agile at quality?

Often there are physical barriers where the QA team is located in different rooms or

buildings.

Even if QA is located in the same building, possibly in the same physical space, there can be

other barriers such as cultural differences, language differences, backgrounds and expertise.

Often because of barriers and differences, QA can been seen as the obstacle to getting the

product out (sometime the enemy) which can often lead to an “us and them” mentality

between QA and the development team.

QA is often slammed by the forces upstream from them and they are constantly in a response

mode. Although they’d like to help more there just isn’t enough time or people.

Many times QA is only seen as the final gatekeeper. When issues arise they are seen as the

problem makers blocking the release, because as testers they are not perceived as contributing

to the development process and not understanding how the application is supposed to work.

They may find problems that aren’t deemed important because they aren’t using the software

correctly.

Product owners and development teams like to focus on visible items that show progress, for

example the core functional requirements. This may cause them to slight important system

qualities.

Developers who are writing production code and unit tests may sometimes select an approach

that makes their work go fast. Consequently, they may only care about their velocity and may

QA to AQ Part Two - 4

be aware of how their design choices may adversely impact others including those

responsible for assuring quality.

QA and/or product owners can often keep the real requirements from view of the software

engineers, admins, and even the Business Analyst (BA). It may be the case that a specific

“contract” or piece of legislation and government regulations contains the real requirements,

but the product owner or lead QA person creates their own interpretation of how to achieve

those requirements. They can get something critical wrong, leading to late disclosure of the

critical pieces. Development scrambles, and quality control cannot make the deadlines.

Therefore, tear down the barriers or walls through various actions such as including

QA early on; make them part of the sprints, embed them in the teams. Also, include

time for training and reward the whole team for quality.

An important principle in most agile practices is the “Whole Team” concept, where people

work together to produce a high quality product. It isn’t just testers who need to care about

quality. Everyone on the team needs to care about quality, even though they bring different

strengths and experiences to their work. Having QA as part of team from the start can help

build quality into the system and make quality an integral part of a more streamlined process.

This helps others on the team to know what system qualities are important and how they fit

into the process (when to do what for different qualities). Another benefit of including QA is

that they can help others understand and validate requirements.

There are many ways to break down the walls. Have QA fully participate in the team’s

estimation sessions. If they are located in another area, have QA specialists move to the same

space and participate as part of the same team. Have the Product Owner (PO), development

team, and QA sit in the same room and be part of planning prior to the upcoming sprint. As

items are assessed, QA can use this opportunity and their experience to point out “ilities” that

may be overlooked and need to be addressed. They can point out risks and help create high

level tests and integration points across teams.

QA in agile groups can be more proactive, working to ensure quality across all levels of the

development process. They can work closely and coordinate between business, management

and developers. Additionally, during sprints developers can “Pair with a Quality Advocate”.

Trying to use summer interns and hiring someone remotely has shown to not work so well in

the long term. A much better approach is to grow the QA expertise and make it part of your

team from the start. It is a long-term commitment to quality throughout the whole process.

If you do not have enough QA people to put them on all your development teams, start out by

having them rotate between teams, pairing on some of the daily tasks. You can then grow

your quality expertise. Some QA testing so highly specialized that you can use this same

approach to get functional testers to become more skilled at load testing and other types of

testing by pairing them with performance QA experts.

Many of the Fearless Change Patterns [MR] can help you overcome the barriers and get buy

in from the teams and high-level management. You may need to Ask for Help, locate a

Corporate Angel, address Corridor Politics, Build Bridges and Keep Things Visible. It is

important to retrospect and take Time for Reflection [MR], as you evolve teams to ensure

quality and safety as you grow and adapt your ways of working.

QA to AQ Part Two - 5

Pair with a Quality Advocate

“Unity is strength... when there is teamwork and collaboration, wonderful things can be

achieved.”—Mattie Stepanek

Agile developers write unit tests to exercise and validate system functionality. While unit

tests are important, there is more to quality than simple unit testing. Good functional testing

can be difficult at times let along trying to understand and test the important system qualities.

How can agile developers get the most out of validating the system, especially when it

comes to being able to understand and test system qualities?

Not focusing on important qualities early enough can cause significant problems, delays and

rework. Remedying performance or scalability deficiencies can require significant changes

and modifications to the system’s architecture.

While agile developers are good at developing based upon the requirements from user stories,

QA has a lot of expertise understanding system qualities and how to validate these.

Time-boxing lengths that are suitable for some team members may be inappropriate for

another. Product Owners and developers may need a few days to address certain issues in the

current functional spec, while the impact on design and QA could take many weeks.

Focusing on non-functional requirements can sometimes distract from important functional

requirements outlined by the product owner.

Developers working on that validate the core functional requirements and some system

qualities often overlap their work with testing and validation done by QA.

QA can be seen as trying to tell developers how to build and design the product without

having sufficient background to articulate all the details. Software developers often discount

comments from QA, because they are perceived to be inarticulate because they come from

people who do not and cannot write production code and could not possibly understand all

the issues. Developers grow impatient and want more details. For lack of specificity,

developers start filling in details and implement what the product probably should do,

possibly compromising testability.

Therefore, pair developers with quality assurance to complete quality-related tasks that

involve programming.

QA to AQ Part Two - 6

This paring can be achieved in many ways such as including QA through all phases of the

sprint, including sprint planning, development, and closing out the sprint. A good experience

report on different variations can be found [Hil].

During program tasks, pair QA members directly with developers. This includes QA sitting

with the developers and helping them design the tests (both better unit tests as well as those

that focus on system qualities). Developers pairing with QA can also create integration tests

in addition to unit tests.

One organization noted that they were able to greatly reduce duplication on tests efforts

[Sav]: “We found that we had a 50% duplication rate. Fifty percent of the automated tests

that our SDET’s had written were also in the developer’s unit test suite. These tests,

consisting of unit, happy path and some negative tests had already passed and did not need to

be written and run again by a different team. This was waste. Waste of time and resources

that could be reclaimed in our new methodology.”

QA to AQ Part Two - 7

Summary

This paper is a continuation of patterns for shifting from Quality Assurance (QA) to Agile

Quality (AQ). The complete set includes ways of incorporating QA into the agile process as

well as agile techniques for describing, measuring, adjusting, and validating important system

qualities. This paper focuses on two core patterns for overcoming barriers to becoming more

agile at quality. Ultimately it is the authors’ plan to write all of the patlets as patterns and

weave them into a 3.0 pattern language for evolving from Quality Assurance to an Agile

Quality mindset.

Acknowledgements

We thank our shepherd Juan Reza for his valuable comments and feedback during the

SugarLoaf PLoP 2014 shepherding process. We also thank our 2014 SugarLLoafPLoP

Writers Workshop Group, xxx, yyy, and zzz, for their valuable comments.

QA to AQ Part Two - 8

References

[Hil] Hile E., “Head On Collision: Agile QA Driving In A Waterfall World,” Agile

2014 Conference, Orlando, Florida, USA.

[Iba] Iba, T. 2011. “Pattern Language 3.0 Methodological Advances in Sharing Design

Knowledge,” International Conference on Collaborative Innovation Networks

2011 (COINs2011).

[MR] Manns, Mary Lynn and Rising, Linda, Fearless Change: Patterns for Introducing

New Ideas, Addison-Wesley, 2005.

[Sav] Savoia S., “Tearing Down the Walls: Embedding QA in a TDD/Pairing

and Agile Environment,” Agile 2014 Conference, Orland, Florida, USA.

[YWA]

Yoder J., Wirfs-Brock R., and Aguilar A., “QA to AQ: Patterns about

transitioning from Quality Assurance to Agile Quality,” 3rd Asian

Conference on Patterns of Programming Languages (AsianPLoP 2014),

Tokyo, Japan, 2014.

[YW] Yoder J. and Wirfs-Brock R., “QA to AQ Part Two: Shifting from Quality

Assurance to Agile Quality,” 21st Patterns of Programming Language

Conference (PLoP 2014), Monticello, Illinois, USA, 2014.

QA to AQ Part Two - 9

Appendix

A previous paper on this topic outlines some core patterns when evolving from traditional

quality assurance to being agile at quality [ref]. We outlined all that patterns using patlets. A

patlet is a brief description of a pattern, usually one or two sentences. Following is an excerpt

from that paper outlining the patlets.

Central to successfully using these QA patterns is knowing where quality concerns can fit

into your agile process. The following patlet describes those considerations.

Patlet Name Description

Breaking Down Barriers Tear down the barriers between QA and the rest of the

development team. Work towards engaging everyone in the

quality process.

Integrating Quality

into your Agile Process

Incorporate QA into your process including a lightweight

means for describing and understanding system qualities.

Identifying Qualities

An important but difficult task for software development teams is to identify the important

qualities (non-functional requirements) for a system. Quite often system qualities are

overlooked or simplified until late in the development process, thus causing time delays due

to extensive refactoring and rework of the software design required to correct quality flaws. It

is important in agile teams to identify essential qualities and make those qualities visible to

the team. The following patlets support identifying the qualities:

Patlet Name Description

Finding the Qualities Brainstorm the important qualities that need to be

considered.

Agile Quality

Scenarios

Create high-level quality scenarios to examine and

understand the important qualities of the system.

Quality Stories Create stories that specifically focus on some measurable

quality of the system that must be achieved.

Specify Measureable

Values or System Qualities

Specify scale, meter, and values for specific system

qualities.

Fold-out Qualities Define specific quality criteria and attach it to a user story

when specific, measurable qualities are required for that

specific functionality.

Agile Landing Zone Define a “landing zone” that defines acceptance criteria

values for important system qualities. Unlike traditional

“landing zones”, an agile landing zone is expected to

evolve during product development.

Recalibrate the

Landing Zone

Readjust landing zone values based on ongoing

measurements and benchmarks.

Agree on Quality

Targets

Define landing zone criteria for quality attributes that

specify a range of acceptable values: minimally acceptable,

target and outstanding. This range allows developers to

make tradeoffs to meet overall system quality goals.

QA to AQ Part Two - 10

Making Qualities Visible

It is important for team members to know important qualities and have them presented so that

the team is aware of them. The following patlets outline ways to make qualities visible:

Patlet Name Description

System Quality

Dashboard

Define a dashboard that visually integrates and organizes

information about the current state of the system’s qualities

that are being monitored.

System Quality Radiator Post a display that people can see as they work or walk by

that shows information about system qualities and their

current status without having to ask anyone a question. This

display might show current landing zone values, quality

stories on the current sprint or quality measures that the team

is focused on.

Qualify the Roadmap Examine a product feature roadmap to plan for when system

qualities should be delivered.

Qualify the Backlog Create quality scenarios that can be prioritized on a backlog

for possible inclusion during sprints.

Quality Chart Create a chart or listing of the important qualities of the

system and make them visible to the team; possibly on the

agile board.

QA to AQ Part Two - 11

Being Agile at Quality

In any complex system, there are many different types of testing and monitoring, specifically

when testing for system quality attributes. QA can play an important role in this effort. The

role of QA in an Agile Quality team includes: 1) championing the product and the

customer/user, 2) specializing in performance, load and other non-functional requirements, 3)

focusing quality efforts (make them visible), and 4) assisting with testing and validation of

quality attributes. The following patlets support “Becoming Agile at Quality”:

Patlet Name Description

Whole Team Involve QA early on and make QA part of the whole team.

Quality Focused Sprints Focus on your software’s non-functional qualities by

devoting a sprint to measuring and improving one or more of

your system’s qualities.

QA Product Champion QA works from the start understanding the customer

requirements. A QA person will collaborate closely with the

Product owner pointing out important Qualities that can be

included in the product backlog and also work to make these

qualities visible and explicit to team members.

Agile Quality Specialist QA provides experience to agile teams by outlining and

creating specific test strategies for validating and monitoring

important system qualities.

Monitoring Qualities QA specifies ways to monitor and validate system qualities.

Agile QA Tester QA works closely with developers to define acceptance

criteria and tests that validate these, including defining

quality scenarios and tests for validating these scenarios.

Spread the Quality

Workload

Rebalance quality efforts by involving more than just those

who are in QA work on quality-related tasks. Another way to

spread the work on quality is to include quality-related tasks

throughout the project and not just at the end of the project.

Shadow the Quality

Expert

Spread expertise about how to think about system qualities

or implement quality-related tests and quality-conscious

code by having another person spend time working with

someone who is highly skilled and knowledgeable about

quality assurance on key tasks.

Pair with a Quality

Advocate

Have developers work directly with quality assurance to

complete a quality related task that involves programming.

