
Patterns of Store-oriented Software Ecosystems: Detection,
Classification, and Analysis of Design Options
Bahar Jazayeri, Paderborn University, Paderborn, Germany
Olaf Zimmermann, University of Applied Sciences of Eastern Switzerland, Rapperswil, Switzerland
Jochen Küster, Bielefeld University of Applied Sciences, Bielefeld, Germany
Gregor Engels, Paderborn University, Paderborn, Germany
Daniel Szopinski, Paderborn University, Paderborn, Germany
Dennis Kundisch, Paderborn University, Paderborn, Germany

Software companies nowadays create ecosystems of users and third-party providers around their platforms. They often provide online stores
so that the third-party developments can be exposed to users directly. The resulting ecosystems differ significantly from each other in their
architectural designs because their providers differ in terms of business goals and contexts. Until now, this architectural diversity and rationale
behind it are not well-understood. Therefore, it is not clear which software features contribute to ecosystem’s success with respect to certain
business goals and context. This hinders systematic creation of ecosystems in the future. Thus, decision-making becomes too risky; for future
ecosystem providers, which may lead to creation of inefficient ecosystems that lack critical features, and for third-party providers to rely on
ad-hoc choices while deciding on suitability of an ecosystem for their future career. In this paper, we introduce three design patterns for store-
oriented software ecosystems by classifying the design decisions, business goals, and context of 111 store-oriented software ecosystems.
Each design pattern provides an architectural solution to achieve a different business goal while supporting a different context. We discuss
how the design patterns are applied together in order to achieve more business goals. Our work supports ecosystem and third-party providers
by sharing practice-proven architectural solutions, helping them to take informed architectural decisions and reduce technical risks.

Categories and Subject Descriptors: [Software and its engineering]

ACM Reference Format:

Bahar Jazayeri, Olaf Zimmermann, Jochen Küster and Gregor Engels. 2018. Patterns of Store-oriented Software Ecosystems: Detection,
Classification, and Analysis of Design Options HILLSIDE Proc. of Latin American Conf. on Pattern Lang. of Prog. 25 (November 2018), 14
pages.

1. INTRODUCTION

Software ecosystems have become an emerging architectural approach for many companies to grow. The term
ecosystem is inspired from ecological ecosystems that are the result of an interplay between organisms as well as
interactions with a physical environment. Comparably, a software ecosystem consists of third-party providers, who
are external to an enterprise, in service to a community of users, while they interact on the basis of a software
platform [Bosch 2009]. For instance, Apple Inc. is the provider of an ecosystem in which independent developers
provide mobile Apps to users of the iOS platform. Recently, marketing third-party solutions using online stores
like Apple App Store has become a significant competitive advantage whereas many ecosystems comprise such
stores [West and Mace 2010]. We call these ecosystems store-oriented software ecosystems. While prominent
examples are mobile App ecosystems with millions of users, further ecosystems have been created in many other

This work was partially supported by the German Research Foundation (DFG) within the Collaborative Research Center “On-The-Fly Computing”(CRC 901).
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission. A preliminary version of this paper was presented in a writers' workshop at the 12th Latin American
Conference on Pattern Languages of Programs (SLPLoP). SLPLoP'18, November 20-23, Valparaíso, Chile. Copyright 2018 is held by the author(s). HILLSIDE 978-1-941652-11-4

application domains like cloud computing (e.g., Citrix and Salesforce) and Internet of Things (IoT) (e.g., IFTTT1

and Stringify2) [Jazayeri and Schwichtenberg 2017].
To fulfill third-party providers’ requirements and generally to succeed, existing ecosystems include different sets

of software features. For instance, in massive ecosystems like Apple with millions of Apps, rating and ranking
features are vital to the ecosystem’s success [Martin et al. 2017]. However, in ecosystems of trusted partners
like Citrix, third-party solutions are promoted by ecosystem providers instead of being rated. Until now, this
architectural diversity and rationale behind it are not well-understood. Therefore, it is not clear which software
features contribute to ecosystems’ success. Thus, future ecosystem providers can not learn from the existing ones
in order to decide on suitability of an architectural design with respect to their goals. A source of the architectural
diversity is diversity in business decisions of ecosystem providers [Manikas and Hansen 2013]. Moreover, a
great part of business decisions is derived from the orginizational context of providers, which adds another key
source of diversity [Jansen et al. 2009]. Among others, company size, domain criticality, and commerciality are
often identified as the most influential contextual factors. So far, existing literature such as studies on variability
mechanisms (e.g., [Berger et al. 2014]) and empirical studies of existing ecosystems (e.g., [Van Angeren et al.
2011]) have treated business decisions, context, and software architecture separately. Therefore, their relation is
not understood well yet. Furthermore, best practices and patterns of enterprise applications (e.g., [Fowler 2002])
have already been studied extensively. However, research on well-developed designs of software ecosystems is
still in its infancy.

A holistic overview of existing ecosystems including business, context, and software aspects gives insight to the
architectural diversity and rationale behind them. In our previous work [Jazayeri et al. 2018a], we detect three main
design options of store-oriented software ecosystems by classifying 111 ecosystems from a business viewpoint
using a variability model in [Jazayeri et al. 2017]. The variability model comprises key design decisions such as
openness, fee, choice of third-party providers, and knowledge sharing. As a result, each design option represents
a group of ecosystems that have common design decisions while contributing to a main business goal. Accordingly,
these questions still remain unanswered: What are the relations between these design options and the contextual
factors? And, how to make this knowledge reusable for future use?

In this paper, we provide a comprehensive view by developing three design patterns, each representing a design
option of store-oriented software ecosystems. Design patterns are known to be practice-proven solution templates
for recurring problems [Meszaros and Doble 1997]. Using patterns facilitates communication of knowledge among
researchers and practitioners. We develop the patterns of this paper by a) systematically identifying the context of
the design options, b) presenting the design options using a pattern structure in [Wellhausen and Fießer 2012],
and c) providing further exemplary real-world ecosystems. In this context, our work makes two main contributions:

A) We introduce three architectural design patterns for store-oriented software ecosystems. The patterns provide
insights into ecosystem architecture and its relation to ecosystem provider’s business decisions and context, as
well as forces and consequences in terms of business goals and quality attributes.

B) We analyze the patterns with respect to how they are related and their known uses. Results show that existing
ecosystems mostly combine Resale Software Ecosystem and Open Source Software-based Ecosystem patterns
to achieve business scalability while enhancing innovation.

Our work supports prospective ecosystem providers by sharing practice-proven architectural solutions so that
they can right away decide on an ecosystem architecture, which fits to their business needs. Existing ecosystem
providers can use the patterns to knowledgeably transform the architecture of their ecosystems. Moreover, using
the patterns, third-party providers will be able to compare ecosystems and to decide on the most suitable one
before entering an ecosystem. This in turn helps the ecosystem and third-party providers to take more informed
architectural decisions and reduce technical risks in the future. Supplementary material including a complete list of
ecosystems can be found in our technical report [Jazayeri et al. 2018b].

1 https://ifttt.com/ 2 https://stringify.com/

Patterns of Store-oriented Software Ecosystems: Detection, Classification, and Analysis of Design Options — Page 2

https://ifttt.com/
https://stringify.com/

2. DESIGNS PATTERNS OF STORE-ORIENTED SOFTWARE ECOSYSTEMS

In our previous work [Jazayeri et al. 2018a], we detected three major design options of store-oriented software
ecosystems. In this section, we describe these design options as patterns. The three patterns, i.e., Resale Software
Ecosystem, Partner-based Ecosystem, and Open Source Software (OSS)-based Ecosystem, provide alternative
ways to create store-oriented software ecosystems; Each pattern helps to overcome different forces and to achieve
different business goals and quality attributes.

Accordingly, Resale Software Ecosystem supports ecosystem providers to get control over the third-party
developers by facilitating ecosystem membership, developer’s independence, and discoverability of high quality
extensions. While third-party developments are known under different terminologies like plug-ins, add-ons, and
Apps, in this paper, we refer to them as extensions. Ecosystem provider is a large company and involves a mass
number of independent developers in software development. The developers are in completely separate teams.
After the extensions are developed, they are sold several times to a mass number of users on a store. An example
of this pattern is the ecosystem that belongs to the Apple Inc. and is built around the iOS and MacOS platforms
and the Apple App Store.

Partner-based Ecosystem can be used to grow an industrial and complex software system to a new sector while
enhancing commerciality. Ecosystem provider involves third-party providers only by establishing partnerships.
Different customization of openness policies helps the ecosystem provider to protect the intellectual property.
Extensions on the store are often labeled as tested or validated. The ecosystem provided by Citrix Inc. around
Citrix platforms and the Citrix Ready Marketplace is an example of this pattern in real-world.

OSS-based Ecosystem aids to attract developers of open source software in order to cost-effectively create
an ecosystem around an open source platform. Ecosystem provider is a foundation comprising several software
companies or volunteers. The developers are non-commercially motivated, e.g., to gain reputation within a
community or to extend the platform for their own purposes [Hanssen 2012]. While revenue generation is not
generally high, granting the developers access rights to the code opens the ecosystem for innovative extensions.
The ecosystem around Mozilla Firefox and its store, i.e., Firefox Add-ons, is an example of this pattern.

Figure 1 sketches the relations between the three patterns. Both Partner-based Ecosystem and OSS-based
Ecosystem can be evolved to Resale Software Ecosystem. Additionally, these two patterns can be a building block
of each other, which leads to the creation of ecosystems of ecosystems. In this paper, we describe the patterns
by using the knowledge on methodical pattern development in [Wellhausen and Fießer 2012] [Buschmann et al.
2007, chap. 1]. Accordingly, patterns consist of these standard sections:

Context defines a situation in which one can apply a pattern. We identify context of the patterns by investigating
ecosystems of our list with respect to the following contextual factors: Company size, market size, domain
criticality, and commerciality. For company size, we refer to the number of employees in an enterprise. For

≪pattern≫
Resale Software

Ecosystem

≪pattern≫
OSS-based
Ecosystem

≪pattern≫
Partner-based

Ecosystem

can be evolved to

can be a building block of
ecosystems of ecosystems

can be evolved to

Fig. 1: Relationships between the architectural design patterns
Patterns of Store-oriented Software Ecosystems: Detection, Classification, and Analysis of Design Options — Page 3

Quality Attribute Description

Productivity The ecosystem shortens time-to-market from the development to the time that the
extensions are made available for sale.

Sustainability The ecosystem should be safe from external threats. Successfully confronting such
threats has a long-term impact on ecosystem's success during its evolution.

Robustness On the managerial level, it is the survival degree of ecosystem's participants either in
relation to other ecosystems or over time.

Interoperability From the perspective of enterprise architecture, the ecosystem should help an enterprise
to minimize preparatory efforts to make a new relationship with other companies.

Modifiability Degree to which the source code of software platform can be modified without
introducing defects or degrading quality.

Creativity The capability of an ecosystem to accommodate extensions with diverse characteristics
like use case, programming language, execution environment.

Table I. : Performance drivers in software ecosystems [Ben Hadj Salem Mhamdia 2013]

market size, we count the number of extensions on the stores. Domain criticality determines whether software
failure is dangerous to human lives. To decide on criticality of a domain, we refer to its application domain. For
instance, we consider enterprise software to be a non-critical domain whereas domains like safety and security
are the critical ones. Additionally, commerciality defines the degree of protecting intellectual property. We use
thought bubbles to concisely refer to the contexts in Figures 2(a), 3(a), and 4(a). Appendix A.2 provides detailed
information on the choice of contextual factors.

Problem is a difficulty to overcome by a pattern. In case of the patterns in this paper, the problem is a managerial
difficulty that an ecosystem provider would solve while creating an ecosystem.

Forces identify why the problem is difficult to solve. This includes risks when the pattern is not applied. Gener-
ally, market growth and cost are the two main top-level forces that make software ecosystem an architectural
choice for companies to open up their platforms to third-party providers [Bosch 2009]. Furthermore, high perfor-
mance of software ecosystems are associated with several quality attributes as described in Table I [Ben Hadj
Salem Mhamdia 2013].

Solution resolves the problem and its associated forces. In this paper, each solution section proposes an
arrangement of actors and choices of software features that help to solve an architectural problem at the managerial
and governance level. We call such a solution an architectural landscape. ROZANSKI and WOODS [Rozanski and
Woods 2012, p. 254] propose the term architectural landscape as an abstraction of the system, which denotes key
building blocks of the architecture and their relations while concealing the details. This abstraction is particularly
crucial for stakeholders with different viewpoints during problem-solving. We derive the architectural landscape of
the patterns from the common design decisions for each design options in [Jazayeri et al. 2018a] and outline them
using the UML notation in Figures 2(a), 3(a), and 4(a). Appendix A.1 provides definitions and classification of the
design decisions.

Consequences discuss how the solution resolves the forces. This will be the quality attributes (cf. table I) that
are achieved or degraded as a result of applying the patterns.

Examples are concrete instances that conform to a pattern. An ecosystem conforms to the patterns of this
paper if its architectural design decisions comply with the patterns, e.g., in terms of types of third-party providers
and software features, and their relations.

Known uses provide information on popularity of the patterns and their typical application domains.

Related patterns describe how a pattern is related to other patterns. Specifically, we elaborate on the pattern
map in Figure 1. In addition, we discuss the relation between the patterns in this paper and existing patterns.

Patterns of Store-oriented Software Ecosystems: Detection, Classification, and Analysis of Design Options — Page 4

≪open_up≫ StoreSoftware PlatformEcosystem
Provider

≪extend≫

 User
≪mass number≫

≪interact_with≫

Trusted Partner

≪extend≫
≪register≫

≪publish_on≫

≪use≫

Context: I have a large and
mature company and a
large market of extensions.

Feedback
Loop Facilitator

Ranking

Rating &
Reviewing

Knowledge Sharing

Documentation
Framework

Q&A Forum

≪publish_on≫

Independent Developer
≪mass number≫

Extension
Development Kit
API
Management

TestingIDE

{closedSourceForDevelopers}
{partiallyOpenSourceForPartners} {reviewProcess}

Fee & Biling

Entrance
Fee
Platform
Fee

(a) Architectural Landscape adopted from [Jazayeri et al. 2018a]

Pattern Characteristics Adobe
Company Size Large (15,500+ employees)
Market Size Large (2,500+ extensions)
Domain Criticality Graphic & multimedia software

Extender
Trusted Partner Esri, Microsoft, Magento, etc.

Partner programs
Independent
Developer Mass number of producers

Feedback Loop
Facilitator

Rating &
Reviewing Star rating system, Reviewing
Ranking Lists of popular extensions

Knowledge
Sharing

Documentation
Framework Producer / partner portals
Q&A Forums Coding Corner, Adobe Forums

Extension
Development
Kit

API Management Photoshop and InDesign SDKs, etc.
IDE Eclipse Extension, IntelliJ IDE, etc.

Testing Extension Manager, A/B testing,
PlayerDebugMode, etc.

D
es

ig
n

D
ec

is
io

ns
C

on
te

xt

(b) Exemplary Ecosystem: Adobe

Fig. 2: Resale Software Ecosystem: An architectural solution to achieve business scalability

2.1 Resale Software Ecosystem

Context. Ecosystem provider owns a large enterprise and a large market of extensions. The platform and
extensions are not safety-critical.

Problem. The ecosystem provider wants to have control over quality of the extensions while opening the
platform to a high number of independent developers. Thus, these questions arise: Firstly, how to manage the
ecosystem membership for the mass number of developers while giving the developers a high degree
of independence? Secondly, how to ensure discoverability of high quality extensions among the high
number of offers?

Forces. In a lack of any solution, the users may receive low quality or malfunctioning extensions. This adversely
affects user experience and consequently the ecosystem provider’s reputation. Another risk is that the developers
are not supported with suitable software features that ensure their independence. Thus, they may fail to extend the
platform and abandon the ecosystem. So, they might walk away and start coding extensions for a competitor’s
ecosystem (or contribute to open source projects). With this respect, the forces can be related to the most important
quality attributes of software ecosystems mentioned earlier:

• Sustainability

• Robustness

• Productivity

Solution. To manage ecosystem membership, the independent developers need to register in the ecosys-
tem and pay entrance fee. Platform fees vary depending on an ecosystem provider’s strategies. Figure 2 shows
the architectural landscape. The platform is closed to the developers and partially open to the partners. By
registering in the ecosystem, the developers are obliged to follow a wide range of policies that are regulated by the
ecosystem provider. Examples are legal policies like licensing and technical policies like choice of programming
language and execution environment.

To support developers’ independence, the developers are provided with a toolchain for the whole soft-
ware life cycle. This includes an API management to access platform’s functionality, Integrated Development
Environment (IDE), and testing features including emulators and simulators to imitate an execution environment.
An example of existing toolchains is Xcode in the Apple ecosystem. Furthermore, using Q&A forums, the users
and developers trigger discussions on different topics and spread the knowledge throughout the ecosystem.

To ensure discoverability of high quality extensions among the available offers, rating & reviewing and
ranking features are used. A ranking feature generates different lists of high quality extensions such as lists of
popular / featured / newly published extensions. In addition, the ecosystem provider might proactively avoid low

Patterns of Store-oriented Software Ecosystems: Detection, Classification, and Analysis of Design Options — Page 5

quality extensions entering the ecosystem by conducting a review process before the extensions are published on
the store. Static code analysis is an example of such a review process to ensure maleware-free extensions.

Consequences. By successfully accommodating the high number of developers and ensuring discoverability
of high quality extensions, the ecosystem achieves productivity, sustainability, and robustness. In this case,
business scalability is the high-level business goal addressed by this pattern [Jazayeri et al. 2018a]. However,
establishing a working store and maintaining it in terms of extension visibility impose extra costs on the ecosystem
provider. Therefore, we suggest to apply the pattern only if the ecosystem provider owns a large market of high
quality extensions or there are strategic partners, who can promote the ecosystem by their contributions.

Examples. Adobe Systems (shortly Adobe) provides a product line of graphic software platforms such as
Dreamweaver, Photoshop, and InDesign. Figure 2(b) presents the context and design decisions of the Adobe
ecosystem. Adobe is a large company with a large market of more than 2,500 extensions. The extensions are
not safety-critical. In addition to the trusted partners like Esri, a mass number of independent developers, namely
producers, extends the platforms. Entering the ecosystem is subject to an entrance fee. Platform SDKs, e.g.,
Adobe Photoshop CC and InDesign SDKs, and different IDEs for different programming languages enable the
partners and producer to develop independent of Adobe. Furthermore, Extension Manager, A/B testing, and
PlayerDebugMode are the examples of testing frameworks in the ecosystem. Adobe Exchange3 is the online
store, where the extensions are published. Star rating and textual reviewing features are used to expose quality
of extensions. Subsequently, a ranking feature generates a list of popular extensions on the store. Furthermore,
Adobe Partner Portal4 as well as Producer Portal5 provide the extenders with necessary documentation. In addition,
Coding Corner6 and Adobe Forums7 are the Q&A forums of the ecosystem.

Known uses. 37% of ecosystems in our list conform to Resale Software Ecosystem. Operating system, mobile
application, and web browser are typical examples of application domains. Further ecosystems applying Resale
Software Ecosystem are Apple, Salesforce, and Esri. More examples can be found in our technical report [Jazayeri
et al. 2018b].

Related patterns. Quality of extensions can systematically be managed by establishing a governance model or
providing sandboxes as a controlled medium as described by Manage Complements. In addition, defining coding
conventions assists developers to adhere to quality standards [Weiss and Noori 2013].

2.2 Partner-based Ecosystem

Context. High commerciality and criticality are the major characteristics of software platform. The platform is
complex (and often safety-critical) software for industrial sectors such as supply chains, aerospace, and healthcare.

Problem. Ecosystem provider wants to grow the platform to a new industrial sector. Thus, reasonable software
and hardware resources as well as human expertise are needed to develop solutions for that sector. Given
the platform criticality, the question is: How to ensure high quality of future extensions in the new sector?
Furthermore, considering the platform commerciality, How to control platform openness while protecting the
intellectual property?

Forces. It is too costly for the ecosystem provider to supply all resources or too risky in terms of failing to deliver
a certain degree of quality. In addition to the high-level forces, i.e., market growth and cost, the important forces
are:

• Productivity
• Robustness

3 https://www.adobeexchange.com 4 https://www.adobe.com/partners.html 5 https://technologypartners.adobe.com/home.html
6 https://forums.adobe.com/community/coding-corner 7 https://forums.adobe.com

Patterns of Store-oriented Software Ecosystems: Detection, Classification, and Analysis of Design Options — Page 6

https://www.adobeexchange.com
https://www.adobe.com/partners.html
https://technologypartners.adobe.com/home.html
https://forums.adobe.com/community/coding-corner
https://forums.adobe.com

≪extend≫

Ecosystem
Provider

User

Collaboration
Tiers of Partnership

Trusted Partner

≪interact
_with≫

Store
≪listing≫

Software Platform
≪industrial software≫

≪open_up≫

≪use≫

Feedback
Loop

Facilitator
Market

Analytics

Knowledge Sharing
Documentation

Framework

Q&A Forum

Extension Development Kit

API
Management

Testing

Fee & Biling

Entrance
Fee
Platform
Fee

Context: I have a
commercial and domain-

critical platform.
≪publish_on≫

{platformControl}
{platformContribution}

{restrictedAccess}

{restrictedAccess}

{openExtension}
{extensionIP}

(a) Architectural Landscape adopted from [Jazayeri et al. 2018a]

Pattern Characteristics Symantec
Domain Criticality Cyber security

Commerciality Commercial platforms &
extensions, Costly licensing

Extender Trusted Partner Fujitsu, Deloitte, Amazon, etc.
Symantec partner programs

Openness Closed
Different policies for acquisitions,
strategic partners, and partner
programs

Fee Entrance Fee Partner Licensing
Platform Fee On-premise payment

Feedback Loop
Facilitator

Market
Analytics

Planning, consulting, training
Partner Marketing Planner tool

Knowledge
Sharing

Documentation
Framework

PartnerNet including several
partner portals

Q&A Forums Symantec Connect

Extension
Development
Kit

API
Management

Platform SDKs, e.g., Symantec
PGP SDK

Testing System testing, Acceptance
testing on user behalf

De
si

gn
 D

ec
is

io
ns

Co
nt

ex
t

�1

(b) Exemplary Ecosystem: Symantec

Fig. 3: Partner-based Ecosystem: An architectural solution to enhance profitability

• Interoperability
• Modifiability

Solution. To ensure high quality of extensions in the new sector, the ecosystem provider establishes
partnerships only with the providers, i.e., domain experts, who already possess the required resources
and expertise in that sector. The architectural landscape is presented in Figure 3(a). The ecosystem provider
and partners collaborate in developing and marketing joint solutions as well as conducting road map sessions.
They pursue the same user segment and together compete for market success. In case of highly commercial
extensions, acceptance tests are performed on user behalf. Such extensions are distinguished on the store by the
labels like tested or validated. In contrary to Resale Software Ecosystem, in Partner-based Ecosystem, rating
& reviewing features do not play a critical role. The extensions are rather marketed using market analytics. This
mainly transforms the store to a listing. The market analytics features, e.g., customer relationship management
(CRM) and repository mining, enable the partners to track user satisfaction in the ecosystem.

To control the platform openness while protecting the intellectual property, the ecosystem provider
specifies a range of openness policies and realizes them by defining partner programs and monetiz-
ing resources. Deciding on different customization of openness policies specifies the degree of openness.
BOUDREAU [Boudreau 2010] introduces two major types of openness policies, i.e., platform openness and comple-
ment openness (in this paper, we use the term extension for complement). Both types of openness are defined in a
more fine-granular way: Platform openness comprises platform control and platform contribution. Platform control
specifies the situation, when third-party providers have equity ownership of the platform, and platform contribution
is when the third-party providers only contribute to the development. Furthermore, extension openness is defined
as open extension and extension intellectual property (IP). Open extension is the policy to grant licenses to the
third-party providers, whereas extension IP is a policy to share the intellectual property with them.

Different openness policies can be realized by forming various partner programs. The programs with tighter
partnership contain less entrance barriers and more openness. For instance, while platinum partners may have
platform contribution but not platform control, they need to regularly prove a minimum amount of revenue generation
in the sector. However, gold partners that have platform control are not subject to such a requirement.

Furthermore, the openness policies are realized by monetizing resources and demanding fees. An API man-
agement specifies a partner’s access permission and corresponding fees. Furthermore, the partners need to
pay entrance and platform usage fees on a periodic basis. Another facet of the monetization is documentation
frameworks. Such frameworks are a part of the partner programs and only accessible to the partners. However,
Q&A forums are publicly accessible.

Consequences. By successfully growing to the new sector, the ecosystem provider enhances productivity while
saving costs of supplying new resources. Establishing collaborations with the partners enhances robustness and
interoperability. However, it demands high strategic movements and the efforts to make the ecosystem profitable

Patterns of Store-oriented Software Ecosystems: Detection, Classification, and Analysis of Design Options — Page 7

for the partners. The high-level business goal addresed by Partner-based Ecosystem is profitability [Jazayeri et al.
2018a]. The ecosystem provider succeeds in consolidating commerciality by monetizing the platform. However,
the entrance barriers degrade modifiability and creativity. Therefore, the pattern is not recommended for the
situation, where ecosystem’s growth depends on developers’ creativity, similar to what is known from open source
projects.

Examples. Symantec Corporation is a provider of cyber security services like email, endpoint, and cloud security.
Extensions are listed online8. Figure 3(b) presents the design decisions and context of the Symantec ecosystem.
Due to domain criticality, the ecosystem needs to provide highly reliable services. An example of acquisitions by
Symantec is Norton that shares its intellectual property with Symantec (Platform control). Additionally, Symantec
shares extensions IP with highly strategic partners like Fujitsu and Deloitte. Moreover, it provides partner programs
to include other providers by granting them licenses (open extension). The platforms are closed source. Platform
fees are associated with purchasing Symantec solutions. In addition to portfolio requirements, entering the partner
programs requires an entrance fee. Global Systems Integrator9 and Technology Integration10 are examples of
the partner programs. Knowledge sharing is enabled by PartnerNet11, which is accessible to the partners. As a
part of market analytics, a tool namely Partner Marketing Planner12 gives partners a personalized marketing plan
to enhance revenue generation. Furthermore, Symantec Connect13 is a portal for users’ and partners’ forums.
Functionality of the platforms is extendable using their SDKs. For instance, Symantec PGP SDK gives access to
cryptographic functionality of the PGP platform.

Known uses. Partner-based Ecosystem is applied by 35% of ecosystems in our list. Examples of application
domains are cloud computing, industrial design and simulation software, and security. Exemplary ecosystems are
Citrix, SAP, and IFTTT [Jazayeri et al. 2018b].

Related patterns. Increasing growth of the partner community and store alongside each other is considered
as a natural evolution of successful ecosystems [Plakidas et al. 2016]. Thereby, Partner-based Ecosystem can
be evolved to Resale Software Ecosystem when the number of partners increases and the ecosystem provider
includes rating, reviewing, and raking features to improve extension discoverability. In addition, by demanding
registration, instead of a direct partnership, the ecosystem provider manages membership of the growing number
of extensions. 5% of the ecosystems, e.g., Intuit QuickBooks14, relate these two patterns.

2.3 Open Source Software-based Ecosystem

Context. A midsize to large market of extensions resides on a code repository. In addition, the platform is open
source and commerciality is low. The platform and extensions are not critical to human lives.

Problem. Ecosystem provider is interested in winning contributions from skilled developers of open source
software (FOSS) community. In addition to cost-saving reasons, an ecosystem provider might be willing to inform
him- / herself about market directions and innovative trends through such developers. However, due to low
commerciality, revenue is not generally returned to the ecosystem. Thereby, the question are: How to save costs
of developers by attracting developers of open source software? And, how to save cost of software?

Forces. Since revenue generation is barely a motivation for the developers to contribute, hence, if the ecosystem
provider fails to include the developers from the open source community, the platform will not grow. Essentially, the
most important quality attributes are:

• Cost of developers and software
• Modifiability

8 https://www.symantec.com/integration 9 https://www.symantec.com/partners/programs/global-systems-integrator
10 https://www.symantec.com/partners/programs/technology-integration-partners 11 https://www.symantec.com/partners
12 https://resource.elq.symantec.com/partner_resource_centre 13 https://www.symantec.com/connect/ 14 quickbooks.intuit.com/

Patterns of Store-oriented Software Ecosystems: Detection, Classification, and Analysis of Design Options — Page 8

https://www.symantec.com/integration
https://www.symantec.com/partners/programs/global-systems-integrator
https://www.symantec.com/partners/programs/technology-integration-partners
https://www.symantec.com/partners
https://resource.elq.symantec.com/partner_resource_centre
https://www.symantec.com/connect/
quickbooks.intuit.com/

Ecosystem
Provider

≪foundation≫

≪open_up≫

Independent Developer

≪extend≫
/ ≪use≫

≪publish_on≫ /
≪use≫

StoreCode
Repository

Platform
≪open source≫

≪publish_on≫ /
≪interact_with≫

Context: I have an open
source, non-critical, and
low commercial platform.

Feedback Loop
Facilitator

Ticket System

Version Control
Management

Knowledge
Sharing

Documentation
Framework

Q&A Forum

Extension
Development Kit
API
Management

TestingIDE

Licensing

License(s)

License
Manager

(a) Architectural Landscape adopted from [Jazayeri et al. 2018a]

Pattern Characteristics Cloud Foundry
Market Size Large (4,000+ forks)
Domain Criticality Cloud computing
Commerciality Free entrance, Open platform

Extender Trusted Partner CloudFoundry Foundation
Independent Developer Freelancer, Companies

Openness
Open CloudFoundry platforms,

Extensions on GitHub

License Apache License. Cloud
Foundry contributors' licenses

Feedback
Loop
Facilitator

Ticket System Issues as a GitHub feature
Version Control
Management GitHub

Knowledge
Sharing

Documentation
Framework CloudFoundry Docs

Q&A Forums Public Q&A Forums

Extension
Development
Kit

API Management SDK on GitHub
IDE Language-specific IDEs

Testing Unit / integration / scalability /
performance testing

De
si

gn
 D

ec
is

io
ns

Co
nt

ex
t

�1

(b) Exemplary Ecosystem: Cloud Foundry

Fig. 4: OSS-Based Ecosystem: An architectural solution to enhance innovation while saving costs

• Creativity

Solution. Attractiveness of open source platforms is highly associated with modifiability of software
components in two levels, i.e., governance and technical.

At the governance level, this needs to be facilitated by giving third-party providers suitable ownership
and decision rights to access the code. License management is one of the mostly used governance mecha-
nisms in software ecosystems [Alves et al. 2017]. In general, a software license specifies use permissions and
conditions for such permissions. Thus, license management becomes a way to control the protection of intellectual
property. A well-balanced license, i.e., not too closed and not too open, is crucial for an ecosystem that is created
around an open source software, because, the license specifies the interplay between the capability of open
source development and the business model [Mizushima and Ikawa 2011]. Therefore, an additional complexity is
to find a suitable licensing that gives the developers rights to use the code while supporting business model of
another group of developers with commercial milestones.

While deciding on a suitable licensing, the ecosystem provider should consider conflict management and future
access rights during ecosystem evolution. The choice of licensing needs to clearly answer the following questions
without introducing any license conflict [Scacchi and Alspaugh 2012]: What are third-party providers’ rights and
obligations? Are the extensions already pertained to other licenses? Which part of the system can be evolved or
replaced? What are dependencies between those parts and the rest of the system?

Management of license conflicts can be done manually by staff, similar to Eclipse Legal Process, which is an
examination procedure performed by Eclipse foundation to prevent publication of code with any license other than
Eclipse Public License (EPL). Moreover, the ecosystem provider might provide an automated environment to
create and manage licenses including checking conflicts [Mizushima and Ikawa 2011].

At the technical level, the ecosystem should provide third-party developers with software features that
are necessary to access, reuse, and develop software components collaboratively. Figure 4(a) illustrates
the architectural landscape. Version control management and ticket system facilitate a feedback loop between the
developers. A version control management like Apache Subversion supports forking, branching, and merging the
code. Additionally, a ticket system like Jira15 helps to track issues and bugs.

15 www.atlassian.com/software/jira

Patterns of Store-oriented Software Ecosystems: Detection, Classification, and Analysis of Design Options — Page 9

www.atlassian.com/software/jira

To save costs of software, the ecosystem provider uses a wide range of free and open source resources
and tools on the web. An example of such tools is the testing frameworks like Selenium16.

Consequences. By attracting developers of open source software and by relying on resources of the FOSS
communities, the ecosystem provider succeeds to save cost. High degree of openness and eliminating the
entrance barriers like fees give the developers freedom in developing extensions. This ultimately enhances
innovation and creativity. However, warranties and liability indemnity are not supported on user’s behalf. This
makes the ecosystem vulnerable to low quality extensions and threatens ecosystem’s sustainability. In addition,
achvieing robustness is a challenge, because the survival of open source platforms is generally subject to
retaining contributors whereas the contributors are free to leave the ecosystem at any time [Yamashita et al. 2014].

Examples. Cloud Foundry Foundation is the provider of an OSS-based ecosystem. Figure 4(b) presents the
design decisions and context of the Cloud Foundry ecosystem. Cloud Foundry17 is the free and open source
platform. Its services are non-critical, i.e., enterprise application. A large market of extensions with more than
4,000 forks exists on GitHub. IBM, SAP, and Google are the exemplary members of the foundation. In addition,
other companies as well as freelancers extend the platform by directly accessing the source code. The platform is
under an an Apache License. So, third-party providers have the right to use the software under the terms of this
license. Whereas extensions are licensed based on the Cloud Foundry contributors’ licenses. With this respect,
the foundation has the right to use and re-license the extensions, but does not own copyright of those extensions.
Furthermore, Cloud Foundry Docs18 contains the technical documentation whereas Pivotal Knowledge Base19 is
the Q&A forum. Moreover, Slack20 and StakOverflow are the examples of public knowledge sharing portals. The
SDK resides on GitHub21. Moreover, a wide range of testing features for Cloud Foundry exists on GitHub, e.g.,unit
/ integration / service quality testing.

Known uses. 28% of ecosystems in our list are OSS-based ecosystems. Operating systems and software
development are examples of the application domains. Further exemplary ecosystems are Apache Cordova,
Ubuntu, and Zotero [Jazayeri et al. 2018b].

Related patterns. A pattern language by WEISS [Weiss 2018] provides an overview of engagement levels in
open source businesses and identifies strategic decisions related to each level. The engagement levels start with
using and contributing, and advance to championing and collaborating. Furthermore, two cross-cutting concerns,
i.e., architecture and licensing, affect all levels. The pattern language captures fine-granular decisions that can be
used to grow an open source business in a stepwise manner. For example, with regard to licensing, it suggests
that a software owner, who possesses the full ownership of the code, can provide the same product under two
different licenses, i.e., both open source and commercial (Dual License) or offer an enhanced version of the open
source software as commercial (Dual Product).

Furthermore, OSS-based Ecosystem is related to the other patterns in this paper: Similar to Partner-based
Ecosystem, OSS-based Ecosystem can also be evolved to Resale Software Ecosystem, e.g., by making high
quality extension discoverable using rating, reviewing, and ranking features. This happens when an ecosystem
provider offers a store for the extensions, in addition to providing a code repository. In some cases, the extensions
on the store are free and open source such as Mozilla.org and LibreOffice.org. However, the ecosystem might
generate profit by offering commercial extensions, despite the platform itself being open source. An example of
this case is Eclipse Marketplace22 that offers both free and commercial plug-ins.

Moreover, OSS-based Ecosystem and Partner-based Ecosystem can be a building block of each other once an
ecosystem provider creates an ecosystem of ecosystems. It means different platforms from the same family of
software are the basis for a different ecosystem. For instance, Pivotal is the provider of a Partner-based Ecosystem

16 https://www.seleniumhq.org/ 17 www.cloudfoundry.org 18 https://docs.cloudfoundry.org/
19 https://community.pivotal.io/s/communities 20 https://slack.cloudfoundry.org/ 21 https://github.com/cloudfoundry
22 https://marketplace.eclipse.org

Patterns of Store-oriented Software Ecosystems: Detection, Classification, and Analysis of Design Options — Page 10

https://www.seleniumhq.org/
www.cloudfoundry.org
https://docs.cloudfoundry.org/
https://community.pivotal.io/s/communities
https://slack.cloudfoundry.org/
https://github.com/cloudfoundry
https://marketplace.eclipse.org

(created around Pivotal Web Services (PWS)) and an OSS-based Ecosystem (built around Cloud Foundry). PWS
and Cloud Foundry are both products of the same software family, i.e., Pivotal software.

3. CONCLUSION

Many modern software companies create store-oriented ecosystems of third-party providers and users on top
of their platforms; online stores serve as distribution channels for third-party developments. This architectural
approach has been applied widely; however, the diversity of the existing ecosystem designs hinders prospective
ecosystem providers to gain a sound overview of the existing designs and to understand what the best architectural
design with respect to their business goals and organizational context is. In this paper, we present three architectural
design patterns for store-oriented software ecosystems as: 1) Resale Software Ecosystem, 2) Partner-based
Ecosystem, and 3) Open Source Software-based Ecosystem. Each pattern suggests an arrangement of human
actors and choice of software features in order to solve an architectural problem related to ecosystem governance
while fulfilling certain business goals and quality attributes.

This knowledge introduces ecosystem providers the practice-proven reusable designs and helps them to
decide on when to apply any of these designs, or to transform their existing ecosystems. In addition, this should
help third-party providers to decide on suitability of an ecosystem before entering it, by benchmarking existing
ecosystems against the patterns, identifying key features of ecosystems, understanding enhanced and degraded
quality attributes, and deciding on suitability of the ecosystems with respect to their goals. Therefore, they will
be able to save efforts of participating in inefficient ecosystems that miss critical features. In the future, practical
effectiveness of the patterns can be further evaluated by architects on real projects. Furthermore, several aspects
inside the patterns of this paper can be elaborated separately as further patterns in the future, for example licensing
or quality management. Developing a pattern language that fill the gaps and includes pattern sequences is a part
of future research.

A. PROCESS OF PATTERN MINING

This appendix describes the process of mining the patterns from data that exists in real-world and transferring them
to the patterns. To do so, we follow the guidelines provided by KJ Method [Scupin 1997], which is well-known in the
pattern community to identify patterns by organizing qualitative data collected from various sources. The KJ method
includes three main steps as follows: Element mining is a divergent approach to collect as much data as possible.
Clustering is a convergent approach to discover relationship between the data. Labeling includes specifying
potential patterns based on the clusters that are identified in the previous step. To identify our patterns, we use
existing models as a basis to collect and later to cluster the data during the element mining and clustering steps.
In the following, Sections A.1 and A.2 elaborate on these models and the results of clustering. Supplementary
material can be found in our technical report [Jazayeri et al. 2018b].

A.1 Common Design Decisions

In our previous work [Jazayeri et al. 2018a], we collect a list of 111 ecosystems and classify them based on
similarities in their design decisions by using a variability model that comprises both business and application
viewpoints. The variability model [Jazayeri et al. 2017] is developed by using a research method based on the
design science paradigm and from the material of existing ecosystems, e.g., websites and annual reports, and by
conducting a rigorous literature review. The variabilities are expressed in form of variation points and variants. A
variation point is the subject of a variability whereas a variant is the object of the variability, i.e., a concrete design
decision. Accordingly, variation points are as follows: Extender defines who the third-party provider is. Openness
specifies whether a platform is open source. Fee & Billing are the main costs of participating in an ecosystem.
Feedback Loop Facilitator determines the software features that enable a positive feedback loop between users
and extenders. In the context of markets, this happens when more users adopt a platform. Thus, the number
of extenders increases [Holzer and Ondrus 2011]. Knowledge Sharing is to communicate ecosystem-specific

Patterns of Store-oriented Software Ecosystems: Detection, Classification, and Analysis of Design Options — Page 11

Variation Point Variant Group 1: Resale Software
Ecosystems

Group 2: Partner-Based Software
Ecosystems

Group 3: OSS-Based Software
Ecosystems

Extender
Who is the
third-party
provider?

Trusted
Partner

Hardware / software suppliers,
strategic partners

Hardware /software suppliers, strategic
partners, system integrator, etc.

Foundation members, Strategic
partners

Independent
Developer

Mass number of independent
developers — High number of independent

developers

Openness
Is the source code

open?

Open Fully or partially open libraries — Source code on a public repository,
e.g., GitHub or SourceForge

Closed Fully or partially closed libraries
Closed source code. Entrance barriers:
Static code analysis, Review process,

Financial requirements
—

Fee & Billing
What are costs of
participating in the

ecosystem?

Entrance Fee One time / periodic payment Membership in partner programs /
different payments for different partners —

Platform Fee — Different payments for platform
editions. Monetized APIs —

Feedback
Loop

Facilitator
Which software

features enable a
positive feedback
loop between the

users and
extenders?

Rating &
Reviewing

Binary rating, Scale rating
(Stars, Sliders), Reviewing — —

Ranking Featured / popular / new
extensions — —

Market
Analytics — User statistics, CRM, Marketing planer —

Version
Control

Management
— — Tools from FOSS community, e.g.,

SVN, Git, Mercurial, Perforce, etc.

Ticket System — — Test planing, bug tracking,
notification interfaces, e.g., Jira

Knowledge
Sharing

Using which
software features

enable knowledge?

Documentation
Framework Developer manuals. Wikis Partner portal: Documentation of

software frameworks
Manuals, wiki, public resources from

open source software community

Q&A Forums Developer / user / idea forums Partner portal Public developer forum, e.g.,
StackOverflow

Extension
Development

Kit
Which software
features enable

extenders to
extend the
platform?

API
Management

SDK, API Reference, Source
code SDK, API Reference SDK, API Reference, Source code

Integrated
Development
Environment

(IDE)

Ecosystem-specific IDEs, e.g.,
Xcode, Android Studio, AWS

tool kit
— IDEs of free and open-source

software (FOSS), e.g., Eclipse

Testing Crowd / Unit testing, Code
review

Acceptance / System / Smoke
Integration Testing

Unit / Integration / System Testing /
Quality Check

Bu
si

ne
ss

 V
ie

w
po

in
t [

Ja
za

ye
ri

et
 a

l.
20

18
]

Ap
pl

ic
at

io
n

Vi
ew

po
in

t

�1Table II. : Common architectural design decisions and instances of three groups of ecosystems (“–" means that a variant is not realized in the
architecture) [Jazayeri et al. 2018a]

knowledge among users or extenders [Grover and Kohli 2012]. Finally, Extension Development Kit is a set of
software features that enable extenders to develop software on top of a platform. Examples of such features are
software development kit (SDK) and integrated development environment (IDE). The result of the investigation and
classification is three groups of ecosystems that have common design decisions as shown in Table II. Some cells
are marked as “–", i.e., a decision is not realized by a group of ecosystems.

A.2 Common Contextual Factors

After identifying three groups of ecosystems, we extract the context of patterns by investigating the context of
ecosystem providers for each group of ecosystems. To do so, we use a model by KRUCHTEN [Kruchten 2013]
that comprises eight key contextual factors as size, stable architecture, business model (commerciality), team
distribution, rate of change, age of system, criticality, and governance. The author uses the term context and argues
that software projects become unique in terms of architectural practices mainly due to their different contexts. The
model is not specific to software ecosystems and is generally defined for software projects, which are going to
be agile and at the same time scale up. However, in a lack of a contextual model for software ecosystems, this
model provides us with a solid basis to investigate the context of ecosystem providers. Among others, significance
of three factors, i.e., company size, domain criticality, and commerciality, are supported by the literature on
software ecosystems [Berger et al. 2014; Jansen and Cusumano 2013; Axelsson et al. 2014]. Although, here, the

Patterns of Store-oriented Software Ecosystems: Detection, Classification, and Analysis of Design Options — Page 12

use of the term context is slightly different than how the term is used in the pattern community (where context
is a precondition for the application of pattern), investigating contextual factors of existing providers helps us to
understand the linkage between these factors and different ecosystem architectures.

Contextual Factor Resale Software
Ecosystem

Partner-based
Ecosystem

OSS-based
Ecosystem

Company size
Small (1-99 employees)

Midsize (100-999 employees)
Large (1000+ employees)

Large
companies — —

Market size
Small (1-99 extensions)

Midsize (100-999 extensions)
Large (1000+ extensions)

Midsize to large
markets of
extensions

—
Large

markets of
extensions

Domain criticality
Failure in extensions

dangerous to human lives
No criticality

Industrial &
safety-critical
applications

No criticality

Commerciality
The degree of protecting

intellectual property
—

Commercial
extensions,

Monetized APIs,
Entrance Fee

Free and
open access

to the
platforms

�1

Table III. : Common contextual factors and instances of three groups of
ecosystems (“–" means that a factor can have any value)

Furthermore, since software ecosystems include
third-party providers, company size as an intra-
organizational factor does not suffice to decide on
the size of an ecosystem [Bosch 2009]. Therefore,
we add market size as another contextual factor and
measure it by counting the extensions on the stores.
As suggested by DUC ET AL. [Duc et al. 2014], in
case of ecosystems that are built around open source
software, the number of forks is an indicator to decide
on its size. For the interpretation of size, we use the
scales provided by Gartner [SMB 2018], which is a
well-reputed market observer firm. We identify the
context of the patterns by identifying similar contex-
tual factors inside each group of ecosystems. Table III
shows the resulting common contextual factors.

ACKNOWLEDGMENTS
We thank our shepherd, Michael Weiss, for his valuable comments that have significantly helped to improve our
work.

REFERENCES

Last access: January 2018. What Is SMB? - Gartner Defines Small and Midsize Businesses. http://www.statista.com/statistics/276623/number-
of-apps-available-in-leading-app-stores/. (Last access: January 2018).

Carina Alves, Joyce Oliveira, and Slinger Jansen. 2017. Software Ecosystems Governance-A Systematic Literature Review and Research
Agenda. In 19th Int. Conf. on Enterprise Info. Sys., Vol. 3. 26–29.

Jakob Axelsson, Efi Papatheocharous, and Jesper Andersson. 2014. Characteristics of Software Ecosystems for Federated Embedded
Systems: A Case Study. Information and Software Technology 56, 11 (2014), 1457–1475.

Amel Ben Hadj Salem Mhamdia. 2013. Performance Measurement Practices in Software Ecosystem. International Journal of Productivity and
Performance Management 62, 5 (2013), 514–533.

Thorsten Berger, Rolf-Helge Pfeiffer, Reinhard Tartler, Steffen Dienst, Krzysztof Czarnecki, Andrzej Wasowski, and Steven She. 2014. Variability
Mechanisms in Software Ecosystems. Info. and Soft. Tech. 56, 11 (2014), 1520–1535.

Jan Bosch. 2009. From Software Product Lines to Software Ecosystems. In Int. Conf. on Soft. Product Line. CMU, 111–119.

Kevin Boudreau. 2010. Open Platform Strategies and Innovation: Granting Access vs. Devolving Control. Management science 56, 10 (2010),
1849–1872.

Frank Buschmann, Kelvin Henney, and Douglas Schimdt. 2007. Pattern-Oriented Software Architecture: On Patterns and Pattern Language.
Vol. 5. John wiley & sons.

Anh Nguyen Duc, Audris Mockus, Randy Hackbarth, and John Palframan. 2014. Forking and Coordination in Multi-Platform Development: A
Case Study. In ACM/IEEE Int. Symp. on Empirical Soft. Eng. and Measurement. ACM, 59.

Martin Fowler. 2002. Patterns of Enterprise Application Architecture. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Varun Grover and Rajiv Kohli. 2012. Cocreating IT Value: New Capabilities and Metrics for Multifirm Environments. Mis Quarterly (2012),
225–232.

Geir K. Hanssen. 2012. A Longitudinal Case Study of an Emerging Software Ecosystem: Implications for Practice and Theory. Journal of
Systems and Software 85, 7 (2012), 1455–1466.

Adrian Holzer and Jan Ondrus. 2011. Mobile Application Market: A Developer’s Perspective. Telematics and informatics 28, 1 (2011), 22–31.

Slinger Jansen and Michael A. Cusumano. 2013. Defining Software Ecosystems: A Survey of Software Platforms and Business Network
Governance. Software ecosystems: analyzing and managing business networks in the software industry 13 (2013).

Patterns of Store-oriented Software Ecosystems: Detection, Classification, and Analysis of Design Options — Page 13

Slinger Jansen, Anthony Finkelstein, and Sjaak Brinkkemper. 2009. A Sense of Community: A Research Agenda for Software Ecosystems. In
International Conference on Software Engineering (ICSE)-Companion Volume. IEEE, 187–190.

Bahar Jazayeri and Simon Schwichtenberg. 2017. On-The-Fly Computing Meets IoT Markets – Towards a Reference Architecture. In Int. Conf.
on Soft. Arch. Companion Volume. IEEE, 120–127.

Bahar Jazayeri, Olaf Zimmermann, Gregor Engels, and Dennis Kundisch. 2017. A Variability Model for Store-Oriented Software Ecosystems:
An Enterprise Perspective. In Int. Conf. on Service-Oriented Computing. Springer, 573–588.

Bahar Jazayeri, Olaf Zimmermann, Gregor Engels, Jochen Küster, Dennis Kundisch, and Daniel Szopinski. 2018a. Design Options of
Store-Oriented Software Ecosystems: An Investigation of Business Decisions. In Int. Symp. on Business Modeling and Soft. Design.
Springer, 573–588.

Bahar Jazayeri, Olaf Zimmermann, Jochen Küster, and Gregor Engels. 2018b. Patterns of Store-Oriented Software Ecosystems: Detection,
Classification, and Analysis of Design Options. Dataset . https://www.overleaf.com/read/njqzqhsmvctk. Technical Report.

Philippe Kruchten. 2013. Contextualizing Agile Software Development. Journal of Software: Evolution and Process 25, 4 (2013), 351–361.
Konstantinos Manikas and Klaus Marius Hansen. 2013. Software Ecosystems–a Systematic Literature Review. Journal of Systems and

Software 86, 5 (2013), 1294–1306.
William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and Mark Harman. 2017. A Survey of App Store Analysis for Software Engineering.

IEEE transactions on software engineering 43, 9 (2017), 817–847.
Gerard Meszaros and Jim Doble. 1997. A Pattern Language for Pattern Writing. In Int. Conf. on Pattern Lang. of Program Design, Vol. 131.

164.
Kazunori Mizushima and Yasuo Ikawa. 2011. A Structure of Co-Creation in an Open Source Software Ecosystem: A Case Study of the Eclipse

Community. In Technology Management in the Energy Smart World (PICMET). IEEE, 1–8.
Konstantinos Plakidas, Srdjan Stevanetic, Daniel Schall, Tudor B. Ionescu, and Uwe Zdun. 2016. How Do Software Ecosystems Evolve? A

Quantitative Assessment of the r Ecosystem.. In International Systems and Software Product Line Conference. ACM, 89–98.
Nick Rozanski and Eóin Woods. 2012. Software Systems Architecture: Working with Stakeholders Using Viewpoints and Perspectives.

Addison-Wesley.
Walt Scacchi and Thomas A. Alspaugh. 2012. Understanding the Role of Licenses and Evolution in Open Architecture Software Ecosystems.

Journal of Systems and Software 85, 7 (2012), 1479–1494.
Raymond Scupin. 1997. The KJ Method: A Technique for Analyzing Data Derived from Japanese Ethnology. Human organization (1997),

233–237.
Joey Van Angeren, Jaap Kabbedijk, Slinger Jansen, and Karl Michael Popp. 2011. A Survey of Associate Models Used within Large Software

Ecosystems.. In Int. Work. on Soft. Ecosystems. CEUR-WS, 27–39.
Michael Weiss. 2018. The Business of Open Source. In EuroPLoP2018.
Michael Weiss and Nadia Noori. 2013. Architecture as Enabler of Open Source Project Contributions. In EuroPLoP2013.
Tim Wellhausen and Andreas Fießer. 2012. How to Write a Pattern?: A Rough Guide for First-Time Pattern Authors. In EuroPLoP2012. ACM,

5.
Joel West and Michael Mace. 2010. Browsing as the Killer App: Explaining the Rapid Success of Apple’s iPhone. Telecomm. Policy 34, 5

(2010), 270–286.
Kazuhiro Yamashita, Shane McIntosh, Yasutaka Kamei, and Naoyasu Ubayashi. 2014. Magnet or Sticky? An Oss Project-by-Project Typology.

In Proceedings of the 11th Working Conference on Mining Software Repositories. ACM, 344–347.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A preliminary version of this paper was
presented in a writers’ workshop at the 29th Conference on Pattern Languages of Programs (PLoP). PLoP’22, October 17-24, Virtual Online.
Copyright 2022 is held by the author(s). HILLSIDE 978-1-941652-18-3

Patterns of Store-oriented Software Ecosystems: Detection, Classification, and Analysis of Design Options — Page 14

	Introduction
	Designs Patterns of Store-Oriented Software Ecosystems
	Resale Software Ecosystem
	Partner-based Ecosystem
	Open Source Software-based Ecosystem

	Conclusion
	Process of Pattern Mining
	Common Design Decisions
	Common Contextual Factors

