

Proceedings of the
First Nordic Conference on
Pattern Languages of Programs

Edited by Pavel Hruby and
Kristian Elof Sørensen

Published by Microsoft Business Solutions, ApS

VikingPLoP 2002, Proceedings of the First Nordic Conference on Pattern
Languages of Programs, edited by Pavel Hruby and Kristian Elof Sørensen.

Copyright © 2003 Pavel Hruby and Kristian Elof Sørensen. All rights reserved.
Cover design © 2003 Cori N. Johansen, based on a photograph of Kay Bojesen's
Ape.
Authors retain copyrights of their respective papers.

PLoP is a trademark of Hillside Group. The names of actual companies and
products mentioned herein may be the trademarks of their respective owners.

For more information about VikingPLoP please visit www.plop.dk/vikingplop.

Published by Microsoft Business Solutions, ApS.

Printed in Denmark by DataSats-DigiSource A/S.

ISBN 87-7849-769-8

3

3. Table of Contents

ContentsContentsContentsContents
Introduction . 5
Shepherding Award . 9

Software Architecture, Analysis and Design
A Software Metric Pattern Dialect

Martin Auer 13

Framework Patterns for the Evolution of Nonstoppable Software Systems
Walter Cazzola, James O. Coplien, Ahmed Ghoneim, Gunter Saake 35

The Executor Pattern, Decoupling Tasks from Execution
Eric Crahen . 55

Automated Determination of Patterns for Usability Evaluations
Michael Gellner . 65

Transformational Pattern for High-Level-Architectural Connectors
Lars Grunske . 81

Methods for States
Kevlin Henney . 91

Universal Enterprise Model: Business Pattern Language
Pavel Hruby . 105

A First Approach to Design Web Sites by Using Patterns
Francisco Montero, María Lozano, Pascual González, Isidro Ramos 137

Using Watchdog Timers to Improve the Reliability of Single-Processor Embedded
Systems: Seven new Patterns and a Case Study

Michael J. Pont, Royan H.L. Ong . 159

Object-Oriented Remoting - Basic Infrastructure Patterns
Markus Völter, Uwe Zdun, Michael Kircher . 201

Design Patterns for Evolutionary Robotics
Esben H. Østergaard . 227

Software Development Processes and Organization
Patterns for the Role of Use Cases

Gertrud Bjørnvig 241

Agile Environments - Some Patterns for Agile Software Development Facilitation
Klaus Marius Hansen . 259

Pattern Language for Conducting a Successful Niche Conference
Cecilia Haskins . 271

Patterns for the Practicing Software Architect
Klaus Marquardt 275

A Language Fragment of Social Antipatterns in Systems Development
Met-Mari Nielsen . 303

Patterns for Building a Beautiful Company
Linda Rising, Caroline King, Daniel May, Steve Sanchez 317

5

5. Introduction

IntroductionIntroductionIntroductionIntroduction

Patterns and pattern languages are ways to describe best practices, good designs, and
capture experience in a way that it is possible for others to reuse it.

In August 1993, Kent Beck, Grady Booch, Ward Cunningham, Ralph Johnson, Ken
Auer, Hal Hildebrand and Jim Coplien attempted to apply Christopher Alexander's
ideas of patterns for urban planning and building architecture, to object-oriented
software. They started to study object-oriented patterns and discovered an emerging
desire to catalog and communicate these themes and idioms. Now, in 2003, patterns
have arguably become part of the standard vocabulary of the software engineering
community, and an essential part of any significant software project.

The first conference on pattern languages of programs, PLoP, was held in August,
1994, at the University of Illinois. Since then, an increasing number of pattern
conferences, such as EuroPLoP, ChiliPLoP, KoalaPLoP, MensorePLoP, and
SugarloafPLoP, have helped improve pattern expertise in the growing patterns
community around the world.

In May, 2001, Linda Rising had the idea of holding a pattern conference in
Scandinavia every year – each year at a different venue – to enable people in
Scandinavia, who might not otherwise attend a PLoP conference, learn about patterns.

The first VikingPLoP was held in Højstrupgård, a small castle north of Copenhagen,
Denmark, in September, 2002. The conference was primarily structured around
writers’ workshops, supplemented by a focus group on Christopher Alexander and
two tutorials: one for first-time PLoP participants, and the other for upcoming
shepherds of pattern papers. In total, 25 papers were submitted to the conference, of
which 19 were accepted for the writers’ workshops. The accepted papers covered the
areas of the software architecture and business patterns; development processes and
methods; and software design and programming.

This conference would not have been possible without the unstinting help and advice
of Linda Rising and Neil Harrison during the planning stage, and Daniel May, author
of the VikingPLoP logo, VikingPLoP Web master and dedicated shepherd. We would
also like to express our deepest appreciation to Gertrud Bjørnvig, Frank Bushmann,
Kevlin Henney, Paul Taylor, Povl Kvols Jensen, Heðin Meitil and Jim Coplien, for
their advice during the conference organization; Richard P. Gabriel for leading the
focus group on Christopher Alexander; Neil Harrison for conducting the tutorials; all
program committee members, shepherds, authors of the submitted papers; Cori N.
Johansen for graphical design, Roger Holtum for editorial help; Roar Prip and
antenna.nl for hosting the website; Laila Nielsen for coordinating the great facilities at
Højstrupgård, and George Platts for helping maintain high spirits during the whole
conference.

6

We would also like to particularly thank to our sponsors, Michael Nielsen of
Microsoft Business Solutions for providing essential financial sponsorship of the
conference, Jens Coldewey, Jutta Eckstein, Andreas Rüping and Frank Buschmann
for the Hillside Europe support, and Victoria Smith of Pearson Publishing for
providing pattern literature to the conference participants.

March 2003,
Pavel Hruby and Kristian Elof Sørensen

7

Conference ChairmenConference ChairmenConference ChairmenConference Chairmen
Pavel Hruby and Kristian Elof Sørensen

Program CommitteeProgram CommitteeProgram CommitteeProgram Committee
Gertrud Bjørnvig, Frank Buschmann, Jim Coplien, Neil Harrison, Kevlin Henney,
Daniel May, George Platts, Linda Rising and Paul Taylor.

ShepherdsShepherdsShepherdsShepherds
Jason Baragry, Andy Carlson, Pascal Costanza, Serge Demeyer, Arno Haase,
Bob Hanmer, Neil Harrison, Kevlin Henney, Doug Lea, Klaus Marquardt,
Daniel May, Michael Pont, Dirk Riehle, Linda Rising, Gustavo Rossi,
Peter Sommerlad and Kristian Elof Sørensen.

SponsorsSponsorsSponsorsSponsors
Microsoft Business Solutions, ApS
Hillside Europe
Pearson Publishing

9

9. Shepherding Award

Shepherding AwardShepherding AwardShepherding AwardShepherding Award

Patterns are the essence of the PLoP conferences. The shepherding process improves
the quality of patterns papers. Being a shepherd requires a lot of time and effort.
While it usually is a rewarding process both for shepherd and author, it can also
include challenges and difficulties. To thank the many people who have laboured as
shepherds, an award was instituted. The award is called "The Neil Harrison
Shepherding Award". Neil Harrison has guided the VikingPLoP shepherding process,
and makes sure that this process succeeds at the PLoP conferences around the world.

The trophy has been Kay Bojesen's Ape – an item possessing characteristics of a good
shepherd. A passion for quality, not only at the surface but to the core, being in the
game for the long run not just to reap a quick return, as well as the ability to live up to
all this while having fun and spreading joy and happiness. Kay Bojesen has been one
of the pioneers of Danish industrial design, and the Ape has been on the market since
1951. It has spread joy and playful happiness among people of all ages ever since.

At VikingPLoP 2002, the program committee members and the authors of accepted
papers had the right to nominate a shepherd. Eight shepherds were nominated, and the
award went to the shepherd who received the most nominations.

The Neil Harrison Shepherding Award
VikingPLoP 2002

Awarded to Linda Rising

Software Architecture,
Analysis and Design

13

13. A Software Metric Pattern Dialect

A Software Metric Pattern Dialect

Martin Auer

Vienna University of Technology

Research Industrial Software Engineering, Institute of Software Technology

http://www.swt.tuwien.ac.at

Favoritenstr. 9-11, A-1040 Vienna

m.auer@swt.tuwien.ac.at

Abstract

Software patterns are gaining acceptance at many different levels of the software process (implementation,

design, architecture, as well as at the organizational level). Especially analysis patterns have proved to be

very useful in domain understanding and description.

This paper describes how an existing and established analysis pattern language is reused to derive analysis

patterns that are valid for the domain of software metrics. Existing patterns are hereby translated from a

source domain to a target domain and modified whenever required by the target domain. Furthermore, new

analysis patterns specific to the domain of software measurement are given.

The goals are (i) to efficiently assess main aspects of the domain of software measurement by reusing experi-

ences from domains which have similar concepts of measurement or observation, and (ii) to use the resulting

pattern language as a starting point for developing tools and data formats which are able to express the

concepts described by the analysis patterns--which should possibly “cover” the domain.

1. Introduction

The concept of patterns is becoming ubiquitous in software engineering and development.

Originally introduced in [AIS77] in the context of architecture, it gained widespread accep-

tance with [GHJ95, Amb98, BMR96], which describe design, process and software archi-

tecture patterns.

14

A Software Metric Pattern Dialect

Especially one family of patterns, analysis patterns, have proved to be a very useful--in de-

scribing recurring aspects of specific domains and in communicating efficiently about do-

main properties and requirements [Fow97].

It is the goal of this paper to define a set of analysis patterns--a pattern language--for the

domain of software metrics. This language should support and ease domain understanding

and provide the ground for the development of generic tools and data formats to handle

metric data.

Instead of creating the patterns from scratch, an existing and established pattern language

is reused and translated to the domain of software metrics. This is possible, as other do-

mains are dealing with very similar concepts of measurement and observation, especially

the health care domain.

In an on-going research effort at the Institute of Software Technology at the Vienna Uni-

versity of Technology, the pattern language is currently being used to derive design re-

quirements for metric tools and data formats [Aue02].

Section 2 gives pointers to some related work. Section 3 gives an overview, of how an ex-

isting pattern language was translated to the domain of software metric collection. Sections

4-6 present new software measurement patterns. Section 7 sums up the results and gives an

outlook on further research directions.

2. Related Work

[AIS77] defined many patterns in the context of architecture. [GHJ95] used similar tem-

plates in describing software design patterns. Other patterns families include analysis pat-

terns [CNM97, Fow97], process patterns [Amb98] and architectural patterns [BMR96,

HBH99].

15

A Software Metric Pattern Dialect

Analysis patterns have been used successfully to devise domain-specific applications and to

share domain knowledge by acting as a common vocabulary [Fow97, Fer98]. Other exam-

ples are [Kel98], which presents several patterns from the domain of insurance systems,

and [WH98], which describe analysis patterns for e-commerce transactions.

For a general introduction to software metrics, please refer to [FP97]. The mathematical

foundations of measurement are described in [KLST71]. Tools for software measurement

and measurement automation are described in [KPR01, DFKW96]. The first draft of a

metric data exchange format is described in [Aue02]. The general process of translating

patterns between similar domains and subsequently relating them to patterns of different

families is described in [Aue02c].

3. Create an Initial Pattern Language

3.1 Pattern Reuse

[Fow97] presents several analysis pattern languages from the domains of health care and

corporate finance in order to describe recurring analysis models of these domains. One of

the presented languages deals with measurement and observation.

This language contains, for example, patterns that deal with compound measurement units

like LOC/hour (Compound Unit), with conversions between different measurement units

(Conversion Ratio), or with storing measurement meta information like accuracy (Proto-

col). Other, more complex patterns, describe indirect observations that can be derived

from direct ones (Associated Observation), or how rejected observations can be connected

to the rejecting observations (Rejected Observation).

The following list should give an overview of the measurement analysis patterns described

in [Fow97]:

16

A Software Metric Pattern Dialect

Pattern, Page Intent

Quantity, 36 To handle measurement units and allowed operations on

data types, define an abstraction level above basic numeri-

cal data types containing both measurement value and

unit.

Conversion Ratio, 38 To handle non-homogeneous measurement units (in use

for historical reasons or for the convenience of handling

systems with unit magnitudes appropriate to their scale),

provide means of converting them by using conversion

ratios between units.

Compound Units, 39 To guarantee consistent mathematical data handling, ex-

plicitly distinguish between units (s, m…) and compound

units (m/s, m2…) by combining units into compound

units.

Measurement, 41 To handle the large number of possible kinds of meas-

urement, separate the measurements from the measured

entities and avoiding treating measurements as mere entity

attributes.

Observation, Category Ob-

servation With Phenomenon,

42, 45

To handle quantitative and qualitative observations, dis-

tinguish between numerical measurements and category

observations and describe, how they relate to the types of

phenomena they are measuring.

Subtyping Observation, 46 To reflect hierarchically structured observations (for ex-

ample, a general observation “diabetes” along with the

more special “diabetes type I” and “diabetes type II” ob-

servations), map the potentially deep hierarchies in obser-

vation procedures to a corresponding hierarchical struc-

ture and allow to propagate negative observations down-

wards (“no diabetes” implies “no diabetes type I”) and

positive observations upwards in the hierarchy.

Protocol, 46 To make available the type and accuracy of a measure-

17

A Software Metric Pattern Dialect

ment for later evaluation, relate meta information about a

measurement to it.

Dual Time Record, 47 To handle changing measurement values over time and to

log a measurement history (legally required, for example,

in health care), let the model express the time period,

where some measurement data is considered valid, in ad-

dition to the time point when the measurement took

place.

Rejected Observation, 48 To trace back observation changes, connect an observa-

tion that rejects a previous one to the rejected observa-

tion.

Active Observation, Hy-

pothesis, Projection, 49

To reflect distinct measurement probabilities and the dif-

ference between projections and actual observations, dis-

tinguish the main measurement and projection types in-

stead of using mere probabilities.

Associated Observation, 50 To express causal relations between observations, derive

observations from evidence by mapping initial observa-

tions to derived ones using an associative function.

Process of Observation, 51 In order to express temporal and causal dependencies

between observations (like observations leading to further

ones, or the handling of contradictory observations),

model the dependencies in the measurement process.

Enterprise Segment, 59 To relate measurements to entities of an organization,

model the static organizational aspects of the environment

where the measurement takes place using multiple hierar-

chies.

Measurement Protocol, 66 To record measurement origins and calculation steps,

provide dedicated data structures to express the sources of

measurement.

Range, 76 To express common operations on measurement ranges

(intersection, isElementInRange…) and to support range

types like open or unbound ranges, explicitly treat ranges

18

A Software Metric Pattern Dialect

as types of their own.

Phenomenon With Range,

77

To categorize classes of possible measurement values,

define non-intersecting ranges of values whose union cov-

ers all possible measurement values.

[Fow97] develops his languages by translating patterns between the domains, for example,

by applying patterns from the health care domain to the corporate finance one and modify-

ing them according to the specific needs, and states: “By allowing patterns to migrate like

this, I hope that more and more useful patterns will emerge, […]”.

Indeed, many of the proposed patterns can be translated with little or no change to other

domains as well, specifically to the domain of software metric collection. This is much

more efficient than devising a pattern language from scratch, as working, existing models

can be reused. Another advantage of this reuse or translation becomes visible, when it

comes to building stable software systems, databases or protocols: In such cases the analysis

is required to be as extensive as possible, i.e., to encompass most analysis patterns that

might occur in a specific context. By translating an existing set of patterns it becomes less

likely to forget or underestimate important analysis issues, the patterns language will instead

be more complete or “domain-covering” (in fact, one reason for building this software

metrics pattern language is to derive a metric data exchange format and protocol from it).

So in order to devise an initial set of analysis patterns for the domain of software metric

collection, some patterns occurring in Fowler’s measurement and observation domain are

translated to it and, if necessary, changed according to specific domain requirements.

3.2 Pattern Translation

This section gives a very brief overview on the translation of patterns from the domain of

measurement and observation given in [Fow97] to the software metrics domain, yielding an

initial set of analysis pattern. Please refer to [Aue02d] for a detailed description of the trans-

lated patterns’ modifications.

19

A Software Metric Pattern Dialect

The following list describes which pattern were translated, modified and translated, or

omitted:

Pattern Translation Action

Quantity translated

Conversion Ratio translated with modifications

Compound Units translated with modifications

Measurement translated

Observation, Category Observation With Phenomenon translated with modifications

Subtyping Observation not translated

Protocol translated

Dual Time Record translated with modifications

Rejected Observation not translated

Active Observation, Hypothesis, Projection translated with modifications

Associated Observation translated

Process of Observation not translated

Enterprise Segment translated with modifications

Measurement Protocol translated with modifications

Range translated

Phenomenon With Range translated

Some of the analysis patterns proposed in [Fow97] (Quantity, Measurement, Protocol,

Range, Phenomenon With Range, Associated Observation) can be translated without

change to the domain of software metrics. In fact, these models can be applied to most

environments where measuring takes place (experimental environments, polls…). Some of

the model’s classes might have to be renamed, though--as the models are rooted in health

care, [Fow97] often uses the term “Person” instead of, for example, “Entity”.

Many analysis patterns can be translated after some slight modifications to them. These

changes take into account the specific requirements of the software metrics domain. For

20

A Software Metric Pattern Dialect

example, metric data is often to be analyzed with sophisticated analysis tools like online

analytical processing (OLAP) tools, which can provide interactive data analysis through

drill-down and roll-up operations. Such tools’ operation heavily depends on structural as-

pects of the measurement data--so if the tools should be exploited, this must be taken into

account at the early analysis stage.

Example: Translating the Conversion Ratio Pattern

The Conversion Ratio pattern describes a simple model for the conversion of dif-

ferent measurement units. Basically, for a pair of units a conversion factor is stored.

Examples for a conversion ratio between software metrics are industry-average

LOC per function point values.

While the proposed pattern is sufficient to express simple “scaling” conversions, it

can’t express more complex conversions, for example, on interval scale type meas-

urement values like dates (for an introduction to measurement scale types please re-

fer to [FP97]).

By adding just one additional class Offset to the pattern, instead of being limited to

ratio scale type conversions, interval scale type conversions can be expressed as

well.

Finally, while many patterns could be translated with no or little modifications, some pat-

terns proposed in the context of health care or corporate finance may be omitted in the

area of software metrics collection (Subtyping Observation, Rejected Observation, Process

of Observation), largely because of different legal requirements, or because of much more

elaborated chains of hypotheses and measurements in health care which need not be mod-

elled in software metrics.

To sum up, reusing an existing pattern language from a similar domain comprises finding

out, which patterns can be translated, which can be translated with some modifications and

which can’t be translated and should rather be omitted. One metaphor of such a translation

or reuse of an existing patterns language might be to describe the resulting language as be-

ing a “dialect” of the original one.

21

A Software Metric Pattern Dialect

3.3 Adding New Patterns

After defining an initial set of analysis patterns, new, domain-specific patterns should be

added to the derived pattern dialect in order to increase its expressiveness. However, only

such patterns must be added, that cannot be expressed elegantly using the translated and

potentially modified ones.

The following sections present the new patterns Multiple Choice, Distance and Scale. Some

of them closely relate to or extend one of the central patterns proposed in [Fow97]: Cate-

gory Observation With Phenomenon. This pattern describes the main measurement types

(numerical measurement and category observation) as well as their possible relations. In

order to better understand the new patterns, it might be helpful to take a brief look at this

pattern.

The Category Observation With Phenomenon pattern

A concrete occurrence of this pattern in the domain of software metrics would be the

measurement of complexity. Complexity can be measured using McCabe’s metrics (which

would be an object of the class Measurement in the diagram below); alternatively it can be

assessed “manually” by visually interpreting the graphical complexity of a program’s flow

22

A Software Metric Pattern Dialect

graph and mapping this impression on an ordinal scale, i.e., to different perceived complex-

ity levels like “simple”, “complex”, “very complex”. The latter mapping can be expressed

with objects of the class Phenomenon.

Now, this pattern obviously can model some aspects of the software metrics domain. Nev-

ertheless, modifications and extensions to it yield new patterns, which can make the pattern

language even more expressive. Furthermore, some entirely new patterns are necessary to

let the language cover other, highly domain-specific issues. The following sections describe

these new patterns.

4. New Analysis Pattern: Multiple Choice

Many times measurements are made using questionnaires, which can contain multiple-

choice questions, for example “What operating systems are you using?” Instead of asking a

single question for each operating system, the questions are grouped to ease access and

understandability, by structuring the questionnaire’s information.

Another issue is, that it is usually desirable to create the data collection forms automatically,

for example using the XSL language to create HTML forms out of the questions’ data

structure. The layout and the creation process should support multiple-choice questions.

Along with data collection, other issues like storage, verification and analysis of the data

should be able to handle multiple-choice questions’ properties.

Yet these tasks quickly become awkward, if unsuitable models and data structures are used

to express this form of data. For example, if a single string is used to store a comma-

separated list of identifiers (the “answers”) in one database field, it is difficult to analyze the

data using standard SQL statements.

23

A Software Metric Pattern Dialect

There is a second problem: Some multiple-choice questions might even need an additional

level of detail. Consider the questions “What operating systems are you using? And for

how many years?” Again, the additional question’s data handling becomes difficult if the

analysis models don’t express such questions natively - inelegant workarounds are the inevi-

table consequence.

One suboptimal solution is to use the translated pattern Category Observation With Phe-

nomenon (see section 3). It supports single choice questions, with an object of class Cate-

gory Observation (for example, an observation of Carla’s blood group) referring to one

object of the class Phenomenon (for example, “blood group a”). The concept of multiple-

choice questions or multiple measurements could then be expressed by several single ob-

servations, i.e., the tuple (“A uses OS 1”, “A uses OS 3”) could be expressed using the two

single observations (“A uses OS 1”) and (“A uses OS 3”). However, this structure leads to

very inefficient implementation and makes any data verification and handling unnecessarily

complicated. Furthermore, additional levels of detail are not part of this model, either.

Therefore, a considerable enhancement, a new pattern, is needed. It natively supports mul-

tiple-choice data with a dedicated n-to-n-relation to the set of possible choices, as well as

additional information or levels of detail with appropriate data structures.

24

A Software Metric Pattern Dialect

First, the multiplicity of the relation between observation and category is changed, thus

natively allowing for multiple phenomena per observation. Second, an associated class is

used to express the potential additional level of detail. Several additional details can be ex-

pressed by referencing multiple Observation objects.

Note that attributes consist of several observations, which typically are of type Measure-

ment, but could be of type Category Observation as well. Example: The question “What

operating systems are you using? How many months? How satisfied are you with them?”

has a Measurement object (number of months) and a Category Observation object (“satis-

fied”, “thrilled”…) associated with each reference to a Phenomenon object (“Windows”,

“Linux”…) in the Category Observation object (the question’s answer).

Some consequences of explicitly modelling multiple-choice measurements are:

- The automatic creation of online questionnaires including multiple choice questions

and lists of possible values is facilitated as this type of data is considered right from

the start (for example, when designing XSL programs, which are typically used for

such tasks).

- Databases storing such data are designed with this measurement data type in mind

and are therefore likely to be more stable.

- Later analysis steps to be performed on the data, for example using OLAP tools,

are considerably simplified.

Several questionnaire design tools available support multiple choice type questions, like

Raosoft’s EZSurvey (www.raosoft.com) or SyncForce’s SurveyWorld.NET

(www.surveyworld.net). Few tools however support multiple-choice questions with addi-

tional attributes; one of them is Infopoll Inc.’s Infopoll Designer (www.infopoll.com),

whose so-called matrix type questions can express them.

Some tools provide additional features like the automatic creation of a database to store the

collected data. Perseus Development’s SurveySolution XP (www.perseus.com), for exam-

ple, maps multiple-choice questions to a single table with multiple columns.

25

A Software Metric Pattern Dialect

5. New Analysis Pattern: Distance

There have been many discussions on the appropriateness of the term „software metrics“,

as metrics are an already well-defined mathematical concept of distance. Some argued that

instead of “metrics” the term “software measure” should be used to be consistent with

existing mathematical terms (with little success).

From a measurement point of view, a metric or distance function is a mapping between a

pair of entities to one measurement value, preserving some relations (non-

negativity/equivalence, symmetry, and the triangle inequality).

Most real-world distance metrics are simply differences between one-dimensional values or

geometrical distances, which usually do not deserve special attention as they can be calcu-

lated directly from the original measurement values.

Yet there are some non-trivial distances in software that cannot be calculated from meas-

urement values of isolated entities, but must be derived by measuring attributes of entity

pairs. Prominent examples are coupling metrics between classes. Note that most coupling

metrics or, more specifically, some derived metrics expressing distance, are not metrics by

the strict mathematical definition as the mapping usually violates some of the required rela-

tions (usually the triangle inequality). But still, the important distance function concept of

measuring pair attributes is preserved.

Trying to express such data with existing analysis patterns leads to inelegant and difficult-

to-understand structures. For example, by applying the Multiple Choice with Attributes

pattern, one could relate entities with coupling values larger than zero (by using entities as

objects of type Phenomenon on the to-n-side of the relation), with one additional attribute

containing the actual coupling value. Obviously overstretching the original pattern’s ex-

pressive capabilities, especially one important attribute of distances, namely symmetry, is

not expressed adequately:

26

A Software Metric Pattern Dialect

- If the distance between entities A and B is stored by making B a multiple choice en-

tity of A, but A is never stored as multiple choice entity of B, than the structure

does not reflect the symmetry properties of the distance function. Data analysis

hence becomes tedious.

- If both the distances d(A,B) and d(B,A) are expressed using the Multiple Choice

pattern, symmetry is preserved, but at the cost of redundant data.

Another problem that occurs with such metric data is that working with large-scale systems

and distance metrics on its entities may result in a very large data volume. In order to effi-

ciently handle this kind of information (for example, for interactive visualization using mul-

tidimensional scaling methods), special attention has to be given to the data--for example,

by using special intermediate data structures for high-performance data handling which

can’t be achieved using standard relational database structures.

Special attention should therefore be given to such distance metrics. One way of expressing

this is to relate an observation with a pair of entities using an associated class:

The object of measurement was renamed Entity, thus referring to all possible measurement

entities like artefacts, processes, people etc.

27

A Software Metric Pattern Dialect

Another consideration can be made on the type of the Distance object. It will typically be

of type Measurement, but as type Category Observation could be used as well, the more

general Observation class is used in this pattern.

Some consequences of separating the binary distance from simple unary metrics are:

- The distance-intrinsic property of symmetry is expressed in this pattern, thus pro-

viding an understandable model. If the implementation of this model preserves this

property, data analysis is facilitated considerably.

- There is no redundant data in this model, and there is support for spare data struc-

tures (by allowing zero-to-n relations to other entities). This expresses two basic re-

quirements for high-performance data handling, and should point a way to efficient

implementation.

Several publications propose coupling metrics, the software measurement concept of dis-

tance, as it is regarded to have crucial impact on software quality [AK99, HCN98].

Most general statistic tools, for example, the SPSS suite of statistical applications

(www.spss.com), are able to handle distance data structures occurring in various field like

the social sciences, especially for entity classification and cluster visualization using multi-

dimensional scaling methods.

In the domain of software measurement, distance metrics were used to semi-automatically

classify modules into subsystems [SL00].

6. New Analysis Pattern: Scale

Scale types are a mathematical concept of classifying the expressiveness of measurements.

Formally defined by using so-called measurement scales (relation-preserving homomorphisms

between sets of real-world entities and numerical symbols) and admissible transformations

(functions which preserve the homomorphism property of functions when concatenated to

28

A Software Metric Pattern Dialect

them), scale types describe, how strong the relations are which are preserved by the meas-

urement function.

The following are the most common scale types along with some examples:

Scale Type Average

Nominal scale Naming, numbering of alternatives, mapping to male/female

Ordinal scale Wind force, marks, Moh's hardness scale, Richter scale, preference

Interval scale Temperature in Celsius, time in calendar

Ratio scale Mass, Temperature in Kelvin, loudness

Absolute scale Counting, probabilities

Nominal scale type measurements preserve simple unary relations like isMale(..) or a nam-

ing of entities; ordinal scale type measurements preserve the binary “greater-than” relation

(..,..)<; interval scale type measurements preserve the meaning of differences between

measurement values (like, for example, in date information). For an introduction to meas-

urement theory or its application to software metrics, please refer to [KLST71, FP97].

The scale type of a particular measurement affects the kind of statistical methods that can

be applied to the data. This might not be useful in domains with low requirements on sta-

tistical analysis; however, in the domain of software metrics powerful statistical methods

are often applied to the data. If the measurement’s scale type is not considered this may

lead to the (wrong) application of analysis methods making too strict assumptions on the

underlying data’s structure.

A few examples of allowed statistical methods are given in the following table:

Scale Type Average Variability Correlation

Nominal scale Mode Information content Coefficient of contingency,

phi-coefficient

Ordinal scale Median Percentiles Spearman's rho, Kendall's

tau

29

A Software Metric Pattern Dialect

Interval scale Arithmetic mean Standard deviation,

variance

Product moment correla-

tion, correlation ratio

Ratio scale Geometric mean,

harmonic mean

Variation coefficient -

In this table, a scale type indicates the weakest scale where a specific method is applicable.

More statistical methods, for example, significance tests, are classified in [Ort74].

The main problem that can arise in this context is to use too strong a statistical method for

a data set, i.e., to make wrong assumptions about the data’s properties. A typical example is

to use mean and variance methods on data that is on an ordinal scale, for example grades.

To avoid that, the scale type of measurements and observations should be a part of the

model describing the relations between observations and the respective phenomenon type

being observed. The concept of scale types can be expressed by introducing a dedicated

Scale Type class related to the Phenomenon Type class.

30

A Software Metric Pattern Dialect

There should be two distinct scale types for Measurement and Category Observation enti-

ties. As an example, Phenomenon Type “length” is measured on a ratio scale (in meters),

while the corresponding Phenomenon objects “large”, “medium” etc. are values on an or-

dinal scale.

Typical scale types for Measurement objects are ratio or interval, while Category Observa-

tion objects are usually on the nominal or ordinal scale. If category observations are made

on an ordinal scale, the Phenomenon class should provide means to compare instances of

each other in order to express the order relation.

Some consequences are:

- The potential expressiveness of the collected data is considered before the actual

data collection takes place.

- To enforce scale type declaration makes the use of wrong statistical methods

unlikely. Analysis tools, for example, could provide only allowed statistical meth-

ods.

The concept of measurement scales, first presented in [Ste46], was applied to empirical

sciences, for example, in classifying behavioural measures in psychology, which often are of

interval instead of ratio scale type [Rea92].

Some statistic tools support the measurement scale concept to some extent. The tool ViSta

(forrest.psych.unc.edu/research), for example, distinguishes between nominal, ordinal and

interval/ratio data types, referring to them as category, ordinal and numeric variables, re-

spectively.

7. Conclusion and Context

Many software design problems like the design of hopefully stable database structures or

the definition of data formats and protocols to be used in a variety of environments, share

31

A Software Metric Pattern Dialect

one common problem: the need to extensively assess present and possibly even future do-

main properties and structures, as well as entities and their relations.

Elegant designs are able to express a concept in a simple and consistent way (as, for exam-

ple, the general-purpose data format XML expresses tree structures), while inferior designs

quickly have to turn to workarounds (take for example some custom-made and error-prone

CSV expression of tree structures with arbitrary delimiter…).

Current research activities at the Institute of Software Technology (Vienna University of

Technology) aim to design a data format to exchange software metric data seamlessly be-

tween tools and repositories.

In order to maximize the format’s expressiveness, first the analysis pattern language pre-

sented in this paper was defined. This patterns language should reflect the structure of the

software measurement domain, and help to understand and communicate related concepts.

The data protocol should be able to cover and express all previously identified analysis

patterns consistently, i.e., the data structures should be designed to encode the information

types natively, elegantly and without workarounds.

Instead of designing this pattern language from scratch, most patterns were translated and

modified from a similar domain. This helped to define a starting set of patterns and made it

more likely to achieve an extensive set of patterns. Then, new patterns were added to ex-

press domain-specific properties.

Further work will refine this pattern language and relate the analysis patterns to design and

implementation patterns/idioms. Another issue will be to define a metric data exchange

format and to implement an infrastructure to support data exchange between common

development tools.

32

A Software Metric Pattern Dialect

8. References

[AIS77] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, S. Angel,

A Pattern Language, Oxford University Press, 1977

[AK99] E. B.Alan, T. M. Khoshgoftaar, Measuring Coupling and Cohesion: An Informa-

tion-Theory Approach, Proc. of METRICS'99, Boca Raton, Florida, November 1999

[Amb98] Scott W. Ambler, Process Patterns: Building Large-Scale Systems Using Object

Technology, Cambridge University Press, 1998

[Aue02] M. Auer, Measuring the Whole Software Process: A Simple Metric Data Exchange

Format and Protocol, Proc. of 6th ECOOP Workshop on Quantitative Approaches in

Object-Oriented Software Engineering (QAOOSE 2002), Málaga, June 2002

[Aue02b] M. Auer, XML-Based Metric Data Handling, Tech. Report 02-04, Institute of

Software Technology, Technical University of Vienna, March 2002

[Aue02c] M. Auer, Software Decisions with Pattern Relations, accepted for publication in

Proc. of Sugarloaf PloP 2002, Pousada Capim Limão, August 2002

[Aue02d] M. Auer, Translating Measurement Patterns to Software Metrics, Tech. Report

02-08, Institute of Software Technology, Technical University of Vienna, September 2002

[BMR96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael

Stal, Pattern Oriented Software Architecture - A System of Patterns, Wiley, 1996

[CNM97] Peter Coad, David North, Mark Maryfield, Object Models: Strategies, Patterns,

and Applications, 2nd ed., Yourdon Press, New Jersey, 1997

[DFKW96] R. Dumke, E. Foltin, R. Koeppe, A. Winkler, Softwarequalität durch Mess-

tools, Vieweg Professional Computing, Wiesbaden, Germany, 1996

33

A Software Metric Pattern Dialect

[GHJ95] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Re-

usable Object-Oriented Software, Addison-Wesley, 1995

[HBH99] J. Hall, L. Barroca, P. Hall, editors, Software Architectures - Advances and Ap-

plications, Springer-Verlag, 1999

[Fer98] Eduardo B. Fernandez, Building Systems Using Analysis Patterns, Proc. of the

Third International Workshop on Software Architecture, ACM, Orlando, Florida, 1998

[Fow97] Martin Fowler, Analysis Patterns: Reusable Object Models, Addison-Wesley, 1997

[FP97], Norman E. Fenton, S. Pfleeger, Software Metrics: A Rigorous & Practical Ap-

proach, PWS Publishing Company, 1997

[HCN98] R. Harrison, S. Counsell, R. Nithi, Coupling Metrics for Object-Oriented Design,

Proc. of the Fifth International Software Metrics Symposium, Bethesda, Maryland, No-

vember 1998

[Kel98] Wolfgang Keller, Some Patterns for Insurance Systems, PLoP’98,

http://www.objectarchitects.de/ObjectArchitects/papers/index.htm

[Ker95] Normal L. Kerth, Caterpillar’s Fate: A Patterns Language for the Transformation

from Analysis to Design, in James O. Coplien, Douglas C. Schmidt, ed., Patterns Lan-

guages of Program Design, Addison-Wesley, 1995

[KLST71] D. H. Krantz, R. D. Luce, P. Suppes, A. Tversky, Foundations of Measurement.

Vol. I. Additive and Polynomial Representations, Academic Press, New York, 1971

[KPR01] Seija Komi-Sirviö, Päivi Parviainen, Jussi Ronkainen, Measurement Automation:

Methodological Background and Practical Solutions – A Multiple Case Study, Proc. of the

7th Int. Software Metrics Symposium, London, 2001

34

A Software Metric Pattern Dialect

[Ort74] Bernhard Orth, Einführung in die Theorie des Messens, Verlag W. Kohlhammer

GmbH, Stuttgart, 1974

[SL00] Frank Simon, Silvio Löffler, Semiautomatische, kohäsionsbasierte Sub-

systembildung, in Reiner Dumke, Franz Lehner, ed., Software-Metriken: Entwicklungen,

Werkzeuge und Anwendungsverfahren, Gabler Verlag, Wiesbaden, 2000

[Rea92] C. C. Reaves, The Theory of Measurement, in Quantitative Research for the Beha-

vioural Sciences, John Wiley & Sons, New York, 1992

[Ste46] S. S. Stevens, On the Theory of Scales of Measurement, Science 161, 1946

[WH98] Hans Weigand, Willem-Jan van den Heuvel, Meta-Patterns for Electronic Com-

merce Transactions based on FLBC, Proc. of Hawaii Int. Conf. on System Sciences

(HICSS'98), IEEE Press, 1998

[Zim95] Walter Zimmer, Relationships Between Design Patterns, in James O. Coplien,

Douglas C. Schmidt, ed., Patterns Languages of Program Design, Addison-Wesley, 1995

35

35. Framework Patterns for the Evolution of Nonstoppable Software Systems

Framework Patterns for
the Evolution of Nonstoppable Software Systems

Walter Cazzola1, James O. Coplien2, Ahmed Ghoneim3, and Gunter Saake3

1 Department of Informatics and Computer Science,
Universit̀a degli Studi di Genova

Via Dodecaneso 35, 16146, Genova, Italy
cazzola@disi.unige.it

2 University of Manchester Institute of Science and Technology, United Kingdom, and
Computer Science, North Central College, Naperville, Illinois

jocoplien@cs.com
3 Institute f̈ur Technische und Betriebliche Informationssysteme,

Otto-von-Guericke-Universität Magdeburg
Postfach 4120, D-39016 Magdeburg, Germany

{ghoneim|saake}@iti.cs.uni-magdeburg.de

Patlet. The fragment of pattern language proposed in this paper, shows how to adapt a nonstoppable soft-
ware system to reflect changes in its running environment. These framework patterns depend on well-known
techniques for programs to dynamically analyze and modify their own structure, commonly called computa-
tional reflection. Our patterns go together with common reflective software architectures.

Keywords: Pattern, Framework Pattern, Pattern Language, Reflection, Software Evolution, Dynamic Recon-
figuration, Reconfiguration of Nonstoppable System.

1 Context Overview and Case Study

A nonstoppable software system with long life span — that is, a software system whose exe-
cution can not be halted for allowing system reconfiguration —, has to be able to dynamically
adapt itself to changes to its environment, i.e., to evolve itself. To render a nonstoppable software
systemself-adapting to changes to its environment is a topical issue in the software engineering
research area.Computational reflection [15, 4] is one of the most used mechanisms for getting
software adaptability [8, 19, 18]. Two aspects control the evolution of such kind of systems:
behavior, anddependencies. Both of them can be involved in system evolution to comply with
changes to system requirements.

When designingurban traffic control systems (UTCS), the software engineers must face
many issues such as distribution, complexity of configuration, and reactivity to the environment
evolution. Moreover, modern urban agglomerates provide a lot of unexpected hard to plan prob-
lems such as traffic lights disruptions, car crashes, traffic jam and so on. In [17] all these issues
and many others are illustrated.

The evolution of complex modern cities has posed significant challenges to city planners
in terms of optimizing traffic flows in a normally congested traffic network. Simulation and
analysis of such systems require modeling the behavioral, structural and physical characteristics
of the road system. This model includes mobile entities (e.g., cars, pedestrians, vehicular flow,
and so on) and fixed entities (e.g., roads, railways, level crossing, traffic lights and so on).

Figure 1, shows a possible object model for the UTCS described by using theUML formal-
ism [2]. Moreover, Fig. 1 shows how the UTCS can be integrated with our reflective approach
to evolution [5], i.e., the approach we are expressing as pattern language. This model includes
two types of objects:

36

Framework Patterns for the Evolution of Nonstoppable Software Systems

+ control_crashes()

+ plan()

+ movement() + rewithdraw()

+ monitor_zone() + lights_disruption()

+ traffic_jam()

+ crashes()

+ check_disruption()

+ traffic_flow()

+ traffic_capacity()

+ emergency_services()

− road_id

− segment_section

− road_capacity

+ density()

− neighborhood

− city_zone

− census_zone

− traffic_zone
+ cross() + flow()

− Vehicle Id

− Traffic Zone

− controlled signal

− priority

− overpass

− traffic lane

+ segment()

+ extract()

+ classify()

+ Monitor()

MUrban Control

MTraffic MTraffic NetworkMArea TypeMRoad

Urban Control

Road

Area Type

Traffic

Traffic Network

VehiclePerson

1

1

1

1

1

11

1

1

0..11 1..*

0..*

0..*

0..*

0..*

0..*

0..*

1..*

1..*

1..* 1..*

1..*1..*1..*

0..*

causal
connection

causal
connection

causal
connection

causal
connection

causal
connection 1

Fig. 1.Urban reflective object model.

– base-objects, e.g., urban control, roads, and so on, whose interactions describe UTCS’ struc-
ture and its behavior in expected situations;

– meta-objects, associate to the base-objects, whose work consists of evolving the base-objects
to deal with unexpected situations.

As mined from the ESCORT project [17], UTCS to deal with all the unexpected problems
has to monitor vehicular flowing density4, and the status of every involved entity (both fixed
and mobile). The meta-level detects every anomaly of the UTCS and adapts the current traffic
schedule (i.e., the UTCS behavior) to face the problem.

It is fairly evident that modeling and developing a urban traffic control system is an hard job
for software engineers. The most important issues they have to deal with are: slowly evolving
road situation, that the model must reflect accurately at all times, changes to the road situation
that happens with no warning (accidents, broken traffic lights etc.) and that the system must
take into account immediately, and of course the ever changing flow of people and vehicles and
the dire consequences of restarting the system during rush hour or at all.

4 UTCS is supported by CCD-Cameras and movement sensors installed in every important nexus [17]. CCD-cameras take a
photo every second and by comparing these photos, we can estimate the traffic flowing density. Sensors will notify anomaly
events that cannot be detected by CCD-cameras like traffic light disruptions or damages to the road structure.

37

Framework Patterns for the Evolution of Nonstoppable Software Systems

There are many other nonstoppable systems that have problems similar to the urban traffic
control system. Air traffic control, assembly line and nuclear station power are some examples
of this kind of systems. Their problems are related to the fact they are nonstoppable and need
a higher reactivity to sudden environmental changes. We do not further face these systems but
the pattern language we propose can also be used for modeling them as well as the urban traffic
control system.

2 Reflection, Reflective Architectures and Evolution of Nonstoppable
Systems

Reflection is the ability of a system to watch its own computation and possibly change the way
it is performed. Observation and modification imply an “underlay” that will be observed and
modified. Since the system reasons about itself, the “underlay” is itself, i.e. the system has a
self-representation [15].

A reflective architecture logically models a system in two layers, calledbase-level andmeta-
level. In the sequel, for simplicity, we refer to the “part of the system working in the base-
level or in the meta-level” respectively as base-level and meta-level. The base-level realizes
the functional aspect of the system, whereas the meta-level realizes thenonfunctional aspect
of the system. Functional and nonfunctional aspects discriminate among features, respectively,
essential or not for committing with the given system requirements. Security, fault tolerance,
and evolution are examples of nonfunctional requirements5. The meta-level iscausally con-
nected to the base-level, i.e., the meta-level has some data structures, generally calledreification,
representing every characteristic (structure, behavior, interaction, and so on) of the base-level.
The base-level is continuously kept consistent with its reification, i.e., each action performed in
the base-level isreified by the reification and vice versa each change performed by the meta-level
on the base-level reification isreflected on the base-level. More about the reflective terminology
can be learned from [15,4].

A reflective architecture represents the perfect structure that allows a nonstoppable system to
easily evolve. In [5] we have described a reflective architecture for the evolution of nonstoppable
systems. In this framework the system running in the base-level is the nonstoppable system
prone to be adapted, whereas the nonfunctional feature realized by the meta-level is the system
evolution. Evolution takes place exploiting design information concerning the nonstoppable
system.

To correctly adapt the base-level system, the meta-level has to face many problems. The
most important are: (1) to keep consistent the base-level with its representative in the meta-level,
when the base-level evolves, (2) to adapt the reification of the base-level to sudden changes
through the design information of the base-level, (3) to verify whether the proposed adaptation
would leave the base-level coherent and then to schedule its realization, finally (4) to reflect the
modified reification on the base-level. Both reflection and adaptation involve several aspects of
a system, the most important are: structure (objects, methods and so on), behavior (state and
semantics of the objects) and collaboration (roles, exchanged messages, interfaces and so on).

In this work we describe a fragment of the framework pattern language for dynamically
evolving a software system. We talk about framework pattern language because our patterns
describe a framework and each of them entrusts part of its execution to other patterns in the

5 The borderline between what is a functional feature and what is a nonfunctional feature is quite confused because it is
tightly coupled to the problem requirements. For example, in a traffic control system the security aspect can be considered
nonfunctional whereas security is a functional aspect of an auditing system.

38

Framework Patterns for the Evolution of Nonstoppable Software Systems

evolve

evolve

failure

reifyreflect

Objects

reflection pattern language

re
ifi

ca
tio

n
ca

te
go

ri
es

ev
ol

ut
io

n
pa

tt
er

n
la

ng
ua

ge

Base
System

Evolutionary
Pattern

Structure
Evolution

Behavior
Evolution

Collaboration
Evolution

abstract concrete

meta−level

base−level

Structure

Behavior

Collaboration

Reflection
Pattern

Reification
Pattern

Consistency
Checker Pattern

Fig. 2.Framework patterns for the evolution of nonstoppable software systems.

language, i.e., these patterns are tightly coupled. Points (1) and (4) in the above list are entrusted
to the pattern language for computational reflection composed ofReification and Reflection
Patterns, the evolution (point (2) in the list above) is entrusted to theEvolutionary Pattern,
while theConsistency Checker Pattern takes care of checking the feasibility of the adaptation
and of scheduling its realization (point (3)). Figure 2 sketches our framework, only patterns in
the darker box on the left will be explored in this work.

The pattern language we are going to introduce can be used to adapt a nonstoppable sys-
tem to sudden changes to its requirements or to its environment. This approach to evolution
must be integrated with both the adaptation scheme and the consistency constraints used by
the Evolutionary andConsistency Checker patterns; an possible adaptation scheme based on
design information is described in [18]. Note that, reflection patterns does not force to choose a
programming language with reflective features but its implementation can take advantage from
it.

3 Pattern Language for System Evolution

In this section, we define the fragment of pattern language for the evolution of nonstoppable
software systems. We have four main patterns:Evolutionary, Reification, Reflection andCon-

39

Framework Patterns for the Evolution of Nonstoppable Software Systems

sistency Checker Pattern. Evolutionary patterns are responsible of adapting the system to in-
coming requirements. They work on the system reification supplied them by the reification
patterns. The consistency checker pattern verifies the feasibility of the adaptation provided by
the evolutionary patterns. Finally, the reification and reflection patterns, these patterns are part
of the pattern language for computational reflection, are responsible for reifying the base-level
system and, for reflecting the adaptation on the base-level, when the consistency checker pat-
tern approves such an adaptation. Both evolutionary and reflection patterns describe a general
behavior that can be applied to many domains, as shown in Fig. 2, whereas the consistency
checker pattern collaborates with every application of the reflection pattern.

EVOLUTIONARY PATTERN

Intent. To enable a nonstoppable software systems to adapt itself to dynamic changes to its
requirements.

Problem
Several times a (nonstoppable) software system must evolve to adapt itself to the evolution of
the environment it is modeling. For example, in a software system as the UTCS (Sect. 1), this
involves changes in the overall structure and behavior of the system, i.e., new components to
interact with and a reorganization of the components interactions. If changes are planned a lot
of time in advance, it is not a problem to take advantage of a moment when the traffic is low,
for stopping the UTCS for a while, just the time for the reconfiguration. This is not a feasi-
ble solution when the change suddenly happens such as in case of a road interruption due to a
road accident or something similar. In a similar case, we cannot stop the normal execution of
the UTCS, creating many problems in other parts of the system, to face the unexpected situation.

Forces
Several forces are involved in the dynamic evolution of a nonstoppable system, obviously the
most important is represented by the fact that:

– keeping still for a while (during the reconfiguration) a nonstoppable system could have dire
consequences up to and including death.

Other not so important forces are:

– the system has to change whenever the environment it is modeling changes;
– changes to the environment can happen at all times, they are outside the control of the system

and can not be foresee during system designing;
– reconfiguring the system in accordance with the changes in the environment is not easy and

always feasible; moreover the cost of errors can be very high;
– to limit the problems, system stoppings must be planned in advance (e.g., roads imprac-

ticability is notified to drivers weeks in advance) and have to be scheduled in noncritical
moments (e.g. signals maintenance is performed during night).

Solution
It is fairly evident that to render a nonstoppable system in compliance with the above forces
a specific mechanism for adapting the system to environmental changes is needed. Adaptation
takes place on a representative of the system, i.e., a group ofreification categories [5]. In this

40

Framework Patterns for the Evolution of Nonstoppable Software Systems

way, the adaptation mechanism does not interfere with the current execution of the system it
is adapting, preserving the nonstoppable property of the system. Moreover, working on a rep-
resentative rather than directly evolving the system provides an implicitly fault tolerance of
the adaptation mechanism. Once the adaptation has been completed, the synchronization of the
representative with the original system is delegated to the reflection pattern, before really modi-
fying the original system, the soundness of the adaptation is verified by the consistency checker
pattern. Examples of this approach can be found in [18].

Implementation
Here we show an algorithm illustrating the basic steps carried out by the evolutionary pattern.
This algorithm is realized by using theC++ language.

template<typename aspect> class evolutionary {

public:

evolutionary(reification_category<aspect> a) : _representative(a) {}

void do_adaptation(event e) {

// it retrieves from the plan the rule to face with the event.
void (*adaptation)(reification_category<aspect>, event);

adaptation = _plan.get_action(e);

adaptation(_representative, e); // it carries out the adaptation.
_representative.changed(); // it notifies the attempt of evolution

}

void inconsistency_detected() {

//
//

when called an inconsistency has been detected, it tries to solve such an inconsis-
tency exploiting its plan.

}

private:

reification_category<aspect> _representative; // representative of the base-level aspect
plans<aspect> _plan; // the rules it follows for adaptations

};

The evolutionary class is parametric on the representative it has the intention of adapting. This
means that a class describing the aspect to adapt has also to be provided and to be used to
instantiate the evolutionary class (see the second row of the code below).

The evolutionary pattern works on a reification category, i.e., on a representative of the
software system (more on the representative is explained in section 3.1 when we describereifi-
cation/reflection patterns). The representative, of course, depends on the aspect of the system
this class will deal with.

Another important element are the rules adopted by the algorithm for adapting the repre-
sentative. These rules are represented by an instanceplan of theplans class. Thedo adap-

tation() of the evolutionary object asksplan for the adaptation rule to apply when an event
happens (see row 7 in the code above). Then the evolutionary applies the adaptation rule to the
representative.

reification_category<structure> str; evolutionary<structure> structure_evolution(str);

reification_category<behavior> beh; evolutionary<behavior> behavior_evolution(beh);

bool on_external_event(event &e) {

//
//

when an external event has occurred returns true then its argument refers to the
occurred event.

}

41

Framework Patterns for the Evolution of Nonstoppable Software Systems

int main() {

event e;

while (true)

if (on_external_event(e)) {

structure_evolution.do_adaptation(e);

behavior_evolution.do_adaptation(e);

}

}

The evolution takes place when an external event, i.e., an event that has not been generated
by the nonstoppable system, happens. Theinconsistency detected() method is invoked by
the implementation of the consistency checker pattern.

In a complex system, as shown in the code above and in Fig. 2, there will be as many in-
stances of the evolutionary pattern as many aspects of the system have to be adapted.

Applicability
The evolutionary pattern can be used to dynamically reconfigure a system (not necessarily a
nonstoppable system) as a reaction to external events, such as anomalies detected by electronic
devices. Moreover, the evolutionary pattern can be used to dynamically extend a running system
with new features, components, and relations between them. The evolutionary pattern can be
used to adapt the behavior as well the structure of the system as well the components interaction.

Known Uses
The evolutionary pattern is applied in the traffic control system realized in ESCORT [17] for
controlling the traffic lights in accordance with the density of the vehicular flow as shown in
Figure 3. This pattern interacts with elements of the object category like roads, traffic lights,
urban control, traffic network, and elaborates the photography survey at real-time. In this case,
the adopted evolutionary plan consists of comparing images of the traffic flow taken at different
(adjacent) times (tk). This comparison is done by pruning noises from images by using filters,
by segmenting and classifying the images, and estimating the motion for images. Then, evolu-
tionary pattern estimates the density of vehicular flow in a certain road in accordance with these
values the traffic lights stay red or green for more or less time.

Collaborations
The evolutionary pattern, as shown in the applicability section, can be used stand alone, but in
our work is only a part of a larger overall, so it implicitly interacts with: reflection, reification,
and consistency checker patterns.

As explained, the evolutionary pattern observes the environment changes and adapts the
base-level representative. The consistency of the representative is validated by the consistency
checker pattern when the evolutionary pattern finishes the adaptation. If the validation fails
the control returns to the evolutionary pattern for fixing the problem otherwise the base-level
is conformed to the representative by the reflection pattern. The representative adapted by the
evolutionary pattern is kept up to date by the reification pattern.

Consequences
The evolutionary pattern provides the following advantages:

– provides an implicit mechanism for dynamically evolving a system;

42

Framework Patterns for the Evolution of Nonstoppable Software Systems

meta−level
base−level

Reification
Pattern

Evolutionary
Pattern on flow density()

Structure Evolution
get() & adapt()

flow density()

Structures

(Road, Urban Control,
Traffic Network, Traffic Lights)

Base−Objects

reify

Network, MTraffic Lights)
(MRoad, MUrban Control, MTraffic

Reification Categories

Fig. 3.The application of the evolutionary pattern in the UTCS

– provides a uniform way to evolve every aspect of a system, they could also be evolved
separately;

and drawbacks:

– the nonstoppable system has an overhead when external events occurs and adaptation is
needed;

– the system need extra code and data structures representing the system, its behavior and the
evolutionary rules.

A critical role is played by the adaptation rules, they are the core of the evolutionary pattern and
their realization is very hard because badly designed or applied at the wrong time adaptations
could have very dire consequences, e.g., consider the chaos generated by stopping the traffic
lights in a very busy area during the rush hour.

Related Patterns
The dynamic object model [16], allows the types of a system objects to change at run-time.
This has been done by adding new types, changing existing ones, and changing the relationships
between them. The work by Foote and Yoder [9], present three evolution patterns,software tec-
tonics shows how continuous evaluation can be achieved without failure.Flexible foundations
presents the need for continual and incremental evolution for systems.Metamorphosis presents
mechanisms that allow the system to evolve dynamically.

The reflective state pattern [14], that is a refinement of state design pattern [10] based on the
reflection architectural pattern [3]. The work by Yacoub and Ammer [20] represents the state-
charts patterns and their relation to finite state machine patterns. This is done through defining
these patterns:basic statechart, hierarchical statechart, orthogonal behavior, broadcasting, and
history-state.

43

Framework Patterns for the Evolution of Nonstoppable Software Systems

CONSISTENCY CHECKER PATTERN

Intent. To verify the feasibility and the soundness of the changes “proposed” by evolutionary
patterns. That is, to check if it is possible to apply such changes without rendering inconsistent
the base-level system.

Problem
The delicacy of dynamically changing (part of) a component of a system is fairly evident. Usu-
ally changes directly affect only (part of) a component rendering simple to verify the effects of
the changes. In complex systems each component cooperates with, integrates/is integrated in,
uses/is used by other components, therefore, the effect of changes performed on a component
are propagated to many other components not directly involved by the modification. Hazardous
changes to a component will conflict with the overall behavior of the system and such conflicts
are quite difficult to be detected. This problem is further amplified by the fact that the system
can not be stopped hindering an easy reconfiguration and validation of the complete system. For
example, in the UTCS, at a crossroads we can not turn green a traffic light without considering
the state of the correspondent traffic light for pedestrians.

Forces
The forces involved by the consistency checker are:

– changes to the system are proposed as a reaction to changes in the environment;
– changes to the system are made on a component basis whereas their impact usually affects

more than a single component;
– changes to the environment can frequently occur and can impact on many system compo-

nents;
– inconsistencies due to hazardous changes are difficult to be detected.

Therefore, it is important to verify that environmental changes impacting on many components
do not generate conflicts in the overall system and the effect of these environmental changes has
only to be propagated to the system components when it is safe, i.e., when the propagation do
not leave the system in an inconsistent state. Moreover, it is important to schedule the adaptation
before its effects become obsolete or unnecessary.

Solution
It is fairly evident from the problem description that every “proposed” change to a component of
the system has to be well planned and validated against inconsistency. Hence we need a mech-
anism that applies the changes to the system only when the “proposed” changes are proved
to leave consistent the system. Moreover, such a mechanism has not only to guarantee against
inconsistencies due to erroneous updates but also to choose the right moment for applying the
“proposed” changes before their effects become obsolete.

The basic idea consists of gathering many “proposed” changes on representatives (the cor-
responding reification categories) of the system, checking step by step that replacing such a
pool of representatives with the corresponding aspects of the system will leave the system in a
consistent situation. Then, the replacement will take effectively place when the system is in a
state that can safely be carried out and as long as such a replacement is necessary.

The effective updating of the system is delegated by the consistency checker pattern to the
reflection pattern, as shown in the corresponding section this pattern will also choose the right

44

Framework Patterns for the Evolution of Nonstoppable Software Systems

moment for render effective the update. Whereas, changes, that the consistency checker pattern
considers that could render the system inconsistent, are returned to the evolutionary pattern for
fixing.

Implementation
The code example below illustrates the basic steps carried out by the consistency checker pattern
for verifying and maintaining consistent the base-level system after evolution. This algorithm is
realized by using theC++ language.

class consistency_checker {

//
//

consistency checker working only on two reification categories: behavior and struc-
ture.

public:

consistency_checker(reification_category<structure> s,

reification_category<behavior> b) : beh(b), str(s) {}

bool check_consistency() {

str.reset(); beh.reset(); // reset the notification of a change received by the evolutionary
return plan.check_consistency(str, beh);

}

private:

reification_category<structure> str;

reification_category<behavior> beh;

plans<consistency> _plan; // consistency plan
};

The consistency checker works on the whole system. It does not work only on a specific aspect
but rather it has to maintain the consistency among every reification category of the system.
Therefore, theC++ class describing the consistency checker must access to all the system rep-
resentatives.

Consistency rules are an important element managed by the consistency checker. These
rules are represented by an instanceplan of theplans<consistency> class and are used to
determine if the representatives (in our code are represented by a behavior:beh and a structure:
str) are a consistent snapshot of the system. The methodcheck consistency() of the con-
sistency checker delegatesplan for such a check on the representatives (see row 8 of the code
above).

reification_category<structure> str; evolutionary<structure> structure_evolution(str);

reification_category<behavior> beh; evolutionary<behavior> behavior_evolution(beh);

consistency_checker cc(str, beh);

reflection<structure> obj(str); reflection<behavior> state(beh);

int main() {

while (true)

if (str.is_changed() || obj.is_changed())

if (!cc.check_consistency()) {

structure_evolution.inconsistency_detected();

behavior_evolution.inconsistency_detected();

} else {

obj.reflect();

state.reflect();

}

}

45

Framework Patterns for the Evolution of Nonstoppable Software Systems

Evolutionary
Pattern

Structure Behavior

Consistency Checker
Pattern Pattern

Reflection

Pattern
Reification

meta−level

Changed

Is
Changed

Changed
Set

Network, MTraffic Signals)
(MRoad, MUrban Control, MTraffic (Traffic Signal: Red, Green, Yellow)

(Road: Jam, Ideal, Quite)
(...)

Reification CategoryReification Category

reflect() reflect()

reflect()

reflect()

check_consistency()

reify()
do_adaptation()

get_reification()
in

co
ns

is
te

nc
y_

de
te

ct
ed

()

Fig. 4.An example of consistency checking against evolution of the system structure in UTCS.

Both the evolutionary and the consistency checker patterns work on system representatives.
Evolutionary objects carry out their work when external events occur whereas the consistency
checker performs its work when one of the representatives that it is monitoring is modified, that
is, when an evolutionary object proposes a change. If evolutionary objects notify that they have
carried out a change to the consistency checker, it is able to simply detect such a change in the
representatives.

In Figure 4 we show the integration of the consistency checker pattern with the evolutionary
and the reification/reflection patterns. The figure sketches consistency checker role in the UTCS
by considering only two reification categories.

Applicability
The consistency checker pattern has to be used when we have to check the consistency of dy-
namic changes carried out by a system on a representative of another system before effectively
performing such changes. The consistency checker pattern has to be used in critical environ-
ments to avoid the dire consequences of erroneous and inconsistent updates.

Known Uses
A feasible use of the consistency checker consists of checking the consistency of the base-level
of a reflective system against changes performed by the meta-level system before reflection
takes place. However this pattern is not mined from existing systems.

Collaborations
The consistency checker pattern can be used stand alone for checking the consistency of a sys-

46

Framework Patterns for the Evolution of Nonstoppable Software Systems

tem or in collaboration with reification/reflection and evolutionary patterns for safely evolving
a system:

– it compares the consistency of the reification categories embodied by the reification pattern.
It uses a set of predefined rules;

– it interacts with evolutionary patterns to fix potential inconsistencies between the “proposed”
adaptation and the referents;

– it delegates/authorizes the reflection patterns to update the corresponding aspects after the
validation of the “proposed” adaptation.

Consequences
The consistency checker pattern provides the following advantages:

– It checks the consistency of the reification categories after evolution and before updating
the base-level system in accordance with the adaptation. That is, it checks that carrying
out the adaptation proposed by evolutionary patterns will not render the base-level system
inconsistent.

– The control flow returns to the evolutionary pattern for fixing the proposed evolution if the
consistency check fails. Otherwise, the control flow passes to the reflection pattern which
carries out the proposed evolution.

– It looks, in collaboration with the reflection pattern, for the right moment to allow system
evolution, i.e., the moment which guarantees that evolution leaves the evolved system work-
ing and consistent. It also associates an expiry date to the “proposed” adaptations that must
still be applied and applies them only if such a date is not expired yet.

The consistency checker pattern has a few drawbacks:

– It augments the run-time overhead due to its checking and to its cooperation with evolution-
ary patterns for fixing the inconsistencies.

– Its work is based on a rigorous set of rules establishing when the system can be considered
inconsistent. To write this set of rules is a delicate and difficult job.

– Adaptation does not immediately occur, could be postponed for long time and could never
occur.

An important point is represented by the quality of the rules composing the validation system.
This requirements is a very delicate point which requires a highly skilled software architect be-
cause all the efficacy of the consistency checker pattern is based on the quality of the validation
system and a bad designed validation system can have dire consequences.

Related Patterns
CHECKS [6] is a pattern language for information integrity, presents two family of patterns.
The first family of patterns considers quantities used by the domain model. They check your
business logic capturing minimal variations in behavior (Whole Value pattern), non-applicable
or exceptional quantities (Exceptional value pattern), and inappropriate combinations of values
(Meaningless Behavior pattern). Whereas, the second family enables the direct and transparent
manipulation of the domain model. This has been done by using these patterns:Echo Back, Vis-
ible Implication, Deferred Validation, Instant Projection, andHypothetical Publication.

47

Framework Patterns for the Evolution of Nonstoppable Software Systems

3.1 Pattern Language for Computational Reflection

This little pattern language has an intrinsic dualistic nature and it is composed of two patterns:
Reification andReflection. Their combined work allows the system toexport (to reify by using
a reflective parlance) a reification of a specific aspect of the system to another system for ma-
nipulation and toimport (to reflect by using a reflective parlance) such a reification after the
manipulation in the system again. After the terminology we have adopted in [5] reifications are
calledreification categories. These two patterns are not stand-alone but their work has to be in-
tegrated with the work of the other system. By the way, the sequence of application is reification
then reflection (we have to export before manipulating and importing again).

The pattern language for computational reflection manages the interface between base- and
meta-level composing the reflective system architecture. In the framework language for evolu-
tion we are describing, this pattern language can be considered as the glue sticking together the
evolving system (the base-level using reflection parlance) and the system dealing with evolution
(the meta-level) whereas the reification is the representative of one of the aspects of the base-
level system. Working on a reification of the nonstoppable system allows the other patterns to
“simulate” the adaptation without really affecting the real system.

REIFICATION PATTERN

Intent. To export a representation of a system aspect both abstract and concrete to another
system. Behavior, state, and code are some of the system aspects that can be exported.

Problem
To monitor and manipulate an inner aspect of another software system means to be able to mon-
itor and manipulate both low-level details (as in the case of system code) and abstract concepts
(as in the case of the system behavior) and to access to the inner representation of another soft-
ware system. This is not a simple job to carry out by using a nonreflective approach because
they do not provide a mechanism which allows a system to access the inner representation of
another software system forcing the programmer to tightly coupling the code of these two sys-
tems (supervisor and supervised). Moreover, it is also missing a high-level representation for
some abstract aspects such as the behavior.

Forces
Manipulation of many aspects of a software system from another system is often forbidden due
both to a different representation and to protection mechanisms. Moreover, it is a difficult job
for a system to manipulate abstract concepts as behavior and collaboration via the API of a
traditional programming language. We need to work on representatives without affecting the
original system.

Solution
Rather than giving the supervisor access to the inner representation of the supervised, the su-
pervised itself has to provides its own representation to the supervisor. This approach moves
the responsibility of representing and therefore interpreting the inner aspects of a system from
the supervisor to the supervised system, that is, from a system uncorrelated to such a data to
the system owning them, with an obvious simplification. Hence for the system aspect we would
reify, the system itself provides a data structure representing such an aspect and some operations

48

Framework Patterns for the Evolution of Nonstoppable Software Systems

to interpret and manipulate it. Moreover, the representative (that is, the copy of the aspect that is
local to the supervisor system) has to be kept constantly consistent with the aspect it represents,
that is, the data structure has to be updated when a change in the aspect occurs. For example, in
the UTCS, potential reification categories are roads and traffic lights status and their reifications
have to be updated every time a road or a traffic light change its state.

Implementation
The implementation of the reification pattern is simple as well as the reflective API of the cho-
sen programming language is articulated, this means that adoptingJava instead ofC++ the
implementation could be simpler.

The code example below illustrates the basic steps carried out by the reification pattern for
exporting an aspect of a system to another system. This algorithm is realized by using theC++

language.

namespace computational_reflection {

//
//

reification category represents the base-level. It is a generic class that can be in-
stanced on behavior, structure, collaboration and so on.

template<typename aspect> class reification_category {

public:

reification_category() : _changed(false) {}

bool is_changed() {return _changed;}

void changed() {_changed = true; ...}

void reset() {_changed = false;}

void local_update() { /∗ updates the content of the local copy ∗/ }

void merge_local() { /∗ merges the local copy to the reified aspect ∗/ }

private:

aspect _reified;

bool _changed;

};

template<typename aspect> class reification {

public:

reification(reification_category<aspect> a) : rc(a) {}

void reify() { // it reifies the corresponding base level aspect.
rc.local_update();

}

private:

reification_category<aspect> rc;

};

}

Many reification categories can be necessary to represent every aspect of the system and each
aspect can need a very different data structure to be represented. However these reification cat-
egories provide a common interface for manipulating themselves (such an interface is shown
in the code above). The reification categories provide the mechanism used by the evolution-
ary pattern to notify a change in the representative to the consistency checker pattern (methods
changed(), reset(), andis changed()). Besides, they also provide the methods for keep-
ing synchronized the copy with the original object (methodslocal update() andmerge lo-

cal()). These two methods directly deal with the base-level and their implementation can be
easier if the adopted programming languages has reflective features.

49

Framework Patterns for the Evolution of Nonstoppable Software Systems

In a system there are as many reification instances as reification categories, and each instance
takes care of reifying the corresponding aspect. Therefore, the reification class is parametric on
the aspect it is reifying. The reification class provides only the methodreify(). It is used for
reifying the aspect, its implementation does not vary when changes the reified aspect because
it delegates the work to thelocal update() of the corresponding reification category, the
local update() is directly related to the reified aspect and its behavior changes when the
reified aspect is of a different kind.

bool on_event(event &e) {

//
//

when the base-level changes it returns true then its argument refers to the kind of
change occurred.

}

int main() {

event e;

reification_category<structure> str;

reification_category<behavior> beh;

reflection<structure> obj(str);

reflection<behavior> state(beh);

while (true)

if (on_event(e)) {

obj.reify(e);

state.reify(e);

}

}

The representative of the aspect is updated every time the corresponding aspect changes due to
the normal computation of the base-level. The updating takes place reifying the changed aspect
on the reification category again.

Applicability
The reification pattern is a basic component for realizing the causal connection between two
systems (see section 2 for a brief explanation about the causal connection relation). It can also
be used every time it is necessary a local representative of a nonlocal entity, e.g., for imple-
menting a remote method invocation in a client/server system, in this case the client asks the
server for services through a representative. It is the server itself which renders available (ex-
ports) to the client such a representative (e.g., inJava through the RMI registry and the bind
mechanism, see [11]) as in the reification pattern. Moreover, the reification pattern can be used
to provide a uniform access to remote and distributed data, e.g., to implement a clustering file
systemà la MOSIX [1]. MOSIX provides to each computer in the cluster a virtual view of the
clustering file system. Such a view is a composition of representatives of the singular file sys-
tems in the cluster and each change (e.g., to remove files) to the clustering file system affects
only the corresponding representative and not the original file system. These representatives are
provided by the kernel of theMOSIX system as it is done by the reification pattern.

Collaborations
The reification pattern is tightly coupled with the reflection pattern. Combining reification and
reflection patterns grants the causal connection between these two systems. Moreover in the
overall of our pattern language for evolution the reification pattern directly collaborates with:

– the evolutionary pattern providing the representatives it will use for evolution, and

50

Framework Patterns for the Evolution of Nonstoppable Software Systems

– the consistency checker pattern providing a copy of the aspects that the consistency checker
will use for validating the adaptation proposed by the evolutionary pattern.

Consequences
To export a representative of (part of) a system to another system has several benefits:

– it permits to simulate the adaptation of a system;
– it easily permits to verify/testing the system before rendering effective the change;
– it allows to modify the reified entity on a representative and testing the modification be-

fore rendering effective the change; if the changes are not satisfactory they can be easily
discarded, discarding the representative without really affecting the reified entity.

Obviously there are also some drawbacks: the two most relevant are the extra overhead due to
keep updated the representatives and the complexity of writing a reification category without
using a reflective programming language.

Related Patterns
Reification means to turn something that you would normally not think as an object into an ob-
ject. Several patterns in the literature approach to reification [10]:Strategy, Mediator, Memento.
For example, memento, by widening its application domain to many other system aspects than
the system state, can be used to realize ourreification categories. In [13] a pattern language
for implementing communication protocols has been presented, the exchanged data have been
reified by thedata-path reification pattern. TheDelegation pattern [7], allows objects to share
behavior without using inheritance and without duplicating code.

REFLECTION PATTERN

Intent. To import a representation of a system aspect from another system. Behavior, state,
and code are some of the system aspects that can be imported.

Problem
How to take changes performed on a representative and implement them on the represented
entity is not a simple job. We have to face two main problems:

– both represented entity and its representative belong to two separate systems, and
– there is not a simple and well-known mapping between an aspect of a system and its repre-

sentative in another system.

The representation of an aspect of a system is handled by a component of another system. Each
of these systems has its own access rights and usually it does not have the right to access the
other system data.

Moreover, represented aspects can be both abstract or concrete concepts, where they are
concrete when in the reified system there is a clear part of the code implementing those aspects,
such as an object, or a method. Both kind of aspects are represented by a data structure. There-
fore, there is no straightforward mapping between a change performed on the representative
and its implementation on the represented aspect when it is an abstract concept without a direct
counterpart in the system code (e.g., the system behavior).

These facts hinder the reintegration of the changes performed on the representative with the
represented aspect.

51

Framework Patterns for the Evolution of Nonstoppable Software Systems

Forces
The forces involved by the reflection pattern are:

– access rights and protection mechanisms hinder to import the changes made on a represen-
tative in the represented entity;

– the knowledge of many details of both systems is necessary to give a mapping between an
aspect of a system and its representative in the other system;

– the mapping among these systems tightly couple them together;
– to implement a change carried out on a representation of an abstract concept is not easy;
– to update (or to replace) an aspect of another system is a very intrusive operation;
– we need a wide knowledge of the system to update, of its computational flow and when it is

safe interacting with it.

Solution
Rather than enabling the system owning the representative to directly updating the represented
aspect of the other system, the represented system itself will import the representative and will
merge its content with the represented aspect. This approach overcomes the protection mech-
anisms because the system surely has all the necessary rights for modifying itself. Moreover,
the system has a direct knowledge about its execution (e.g., if it is running or idle) rendering
less intrusive the system updating, that is, the system itself will decide when it is time to update
itself and if the update is not obsolete with respect to its current state (e.g., it avoids to update
an object which does not exist anymore). Then the system itself will ask the supervising system
for the content of its representative and will be simpler for it to map the changes on its inner
representation than for another system.

Implementation
The consideration we have done for the implementation of the reification pattern still hold for
the implementation of the reflection pattern.

The code example below illustrates the basic steps carried out by the reflection pattern for
importing the changes done by a system on a representative into the original system. This algo-
rithm is realized by using theC++ language.

namespace computational_reflection {

template<typename aspect> class reflection {

public:

reflection(reification_category<aspect> a) : rc(a) {}

void reflect() {rc.merge_local();}

private:

reification_category<aspect> rc;

};

}

Both reflection and reification patterns are part of the same namespace and an instance of the
reification classshares the reification category with an instance of the reflection class.

The reflection class, as also the reification class, is parametric on the aspect represented by
the reification category. Moreover, it provides the methodreflect()which reflects the changes
carried out on the local representative on the corresponding aspect. Obviously the implementa-
tion of reflect() depends on the aspect we are managing, therefore, on the type of the aspect

52

Framework Patterns for the Evolution of Nonstoppable Software Systems

and on its operations (merge local() is a method belonging to the class of the aspect).

Applicability
The reflection pattern, as well as the reification pattern, is a basic component for realizing the
causal connection between two systems. Moreover, it can be applied to synchronize the content
of data structures shared among several processes and for serializing the concurrent writing ac-
cess to a centralized datum.

Collaborations
The reflection pattern is tightly coupled with the reification pattern and together they grant the
causal connection between two systems. Moreover in the overall of our pattern language for
evolution the reflection pattern directly collaborates with the consistency checker pattern. The
reflection pattern updates the reified system with the changes done to the corresponding lo-
cal representative after the validation of the local representative performed by the consistency
checker.

Consequences
To import a representative of (part of) a system from another system has several benefits:

– it permits to postpone the adaptation performed by another system to the most suitable
moment;

– it frees the rest of the application from matters about data representation, protection mecha-
nisms and so on.

The two most relevant problems are the extra overhead necessary for updating the original sys-
tem and the difficult of modifying the original system in accordance with the content of the
local representative above all without using a reflective programming language.

Related Pattern
TheStatic Reflection pattern [12], addresses the particular problem of building wrappers which
contain functions which takeC function pointers as parameters. TheReflection Pattern in [3]
on page 193, provides a mechanism for changing structure and behavior of software systems
dynamically. It supports the modification of fundamental aspects, such as type structures and
function call mechanisms. TheMicrokernel Pattern in [3] on page 171, applies to software
systems that must be able to adapt to changing system requirements. It separates a minimal
functional core from extended functionality and customer-specific parts.

4 Conclusion and Future Works

In this paper we have addressed the problem of evolving a nonstoppable system at run-time
through a reflective architecture. We propose a pattern language that describes the meta-level
of the reflective architecture and how the components of the meta-level cooperate for evolving
the base-level system. The meta-level system and its connection to the base-level system are
modeled byevolutionary, reification/reflection, andconsistency checker patterns. They cooper-
ate in evolving the base-level system without affecting its consistency and functionalities. The
evolution of a system can be settled by techniques based on different information, whereas the
overall structure of the evolving mechanism is quite general. Therefore, in this work we have

53

Framework Patterns for the Evolution of Nonstoppable Software Systems

just modeled the evolving architecture avoiding to fix a technique and detailing such a mecha-
nism. In general we refer to reification categories, consistency rules, and so on, but their detailed
description depends on the adopted techniques for evolution and it is beyond the scope of this
work. An example of evolution based on design time information has been given by the authors
in [5]. The pattern language for system evolution has been mined from the Escort system [17]
which exploits a reflective architecture for supervising the traffic flow in the city of Milan.

Acknowledgments

Authors wish to thank Kristian Elof Søresen who has perfectly shepherded us to shape the
paper at its best. They would also thank Mikio Aoyama, Richard Gabriel, Lars Grunske, Kevlin
Henney, Juha P̈arssinen and Michael J. Pont for the kind words they had for the early version
of this pattern language and for their advice to render the paper what it is now.

References

1. Ammon Barak, Shai Guday, and Richard G. Wheeler.TheMOSIX Distributed Operating System, Load Balancing for
UNIX, volume 672 ofLecture Notes in Computer Science. Springer-Verlag, 1993.

2. Grady Booch, James Rumbaugh, and Ivar Jacobson.The Unified Modeling Language User Guide. Object Technology
Series. Addison-Wesley, Reading, Massachusetts, third edition, February 1999.

3. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.Pattern-Oriented Software Archi-
tecture: A System of Patterns. John Wiley and Sons Ltd, 1996.

4. Walter Cazzola. Evaluation of Object-Oriented Reflective Models. InProceedings of ECOOP Workshop on Reflective
Object-Oriented Programming and Systems (EWROOPS’98), in 12th European Conference on Object-Oriented Program-
ming (ECOOP’98), Brussels, Belgium, on 20th-24th July 1998. Extended Abstract also published on ECOOP’98 Workshop
Readers, S. Demeyer and J. Bosch editors, LNCS 1543, ISBN 3-540-65460-7 pages 386-387.

5. Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. Reflective Analysis and Design for Adapting Object Run-time Be-
havior. In Zohra Bellahs̀ene, Dilip Patel, and Colette Rolland, editors,Proceedings of the 8th International Conference on
Object-Oriented Information Systems (OOIS’02), Lecture Notes in Computer Science 2425, pages 242–254, Montpellier,
France, on 2nd-5th of September 2002. Springer-Verlag. ISBN: 3-540-44087-9.

6. Ward Cunningham. The CHECKS Pattern Language of Information Integrity. In James O. Coplien and Douglas C.
Schmidt, editors,Proceedings of the 1st Annual Conference on Pattern Languages of Programs (PLoP ’94), Monticello,
Illinois, USA, August 1994.

7. Dwight Deugo. Foundation Patterns. In Steve Berczuk and Joe Yoder, editors,Proceedings of the 5th Annual Conference
on Pattern Languages of Programs (PLoP’98), Monticello, Illinois, USA, August 1998.

8. Jim Dowling and Vinny Cahill. The K-Component Architecture Meta-Model for Self-Adaptive Software. In Aki-
nori Yonezawa and Satoshi Matsuoka, editors,Proceedings of 3rd International Conference on Metalevel Architectures
and Separation of Crosscutting Concerns (Reflection’2001), LNCS 2192, pages 81–88, Kyoto, Japan, September 2001.
Springer-Verlag.

9. Brian Foote and Joseph W. Yoder. Evolution, Architecture, and Metamorphosis. In John M. Vlissides, James O. Coplien,
and Norman L. Kerth, editors,Proceedings of the 2nd Annual Conference on Pattern Languages of Programs (PLoP ’95),
Monticello, Illinois, USA, September 1996. Addison-Wesley Software Patterns Series.

10. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns: Elements of Reusable Object-Oriented
Software. Professional Computing Series. Addison-Wesley, Reading, Ma, USA, 1995.

11. jGuru. Fundamentals of RMI (Short Course). Available onhttp://developer.java.sun.com/developer/
onlineTraining/rmi/RMI.html.

12. Bob Jolliffe. The Static Reflection Pattern. In Dwight Deugo and Federico Balaguer, editors,Proceedings of the 8th Annual
Conference on Pattern Languages of Programs (PLoP’01), Monticello, Illinois, USA, September 2001. Addison-Wesley
Software Patterns Series.

13. Matthias Jung and Ernst W. Biersack. Order-Worker-Entry: A System of Patterns to Structure Communication Protocol
Software. In Martine Devos and Andreas Rüping, editors,Proceedings of the Fifth European Conference on Pattern
Languages of Programs (EuroPLoP 2000), Irsee, Germany, July 2000.

14. Luciane Lamour Ferreira and Cecı́lia M. F. Rubira. The Reflective State Pattern. In Steve Berczuk and Joe Yoder, editors,
Proceedings of the Pattern Languages of Program Design, TR #WUCS-98-25, Monticello, Illinois - USA, August 1998.

15. Pattie Maes. Concepts and Experiments in Computational Reflection. In Norman K. Meyrowitz, editor,Proceedings of
the 2nd Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’87), volume 22 of
Sigplan Notices, pages 147–156, Orlando, Florida, USA, October 1987. ACM.

54

Framework Patterns for the Evolution of Nonstoppable Software Systems

16. Dirk Riehle, Michel Tilman, and Ralph Johnson. Dynamic Object Model. In Eugene Wallingford and Alejandra Garrido,
editors,Proceedings of the 7th Annual Conference on Pattern Languages of Programs (PLoP 2000), Monticello, Illinois,
USA, August 2000.

17. Andrea Savigni, Filippo Cunsolo, Daniela Micucci, and Francesco Tisato. ESCORT: Towards Integration in Intersection
Control. In Proceedings of Rome Jubilee 2000 Conference (Workshop on the International Foundation for Production
Research (IFPR) on Management of Industrial Logistic Systems – 8th Meeting of the Euro Working Group Transportation
- EWGT), Roma, Italy, September 2000.

18. Francesco Tisato, Walter Cazzola, Andrea Savigni, and Andrea Sosio. Architectural Reflection. Realising Software Ar-
chitectures via Reflective Activities. In Wolfang Emmerich and Stephan Tai, editors,Proceedings of the 2nd International
Workshop on Engineering Distributed Objects (EDO 2000), Lecture Notes in Computer Science 1999, pages 102–115.
Springer-Verlag, University of California, Davis, USA, on 2nd-3rd of November 2000.

19. Emiliano Tramontana. Managing Evolution Using Cooperative Designs and a Reflective Architecture. In Walter Cazzola,
Robert J. Stroud, and Francesco Tisato, editors,Reflection and Software Engineering, Lecture Notes in Computer Science
1826, pages 59–78. Springer-Verlag, Heidelberg, Germany, June 2000.

20. Sherif M. Yacoub and Hany H. Ammer. A Pattern Language of Statecharts. In Steve Berczuk and Joe Yoder, editors,
Proceedings of the 5th Annual Conference on Pattern Languages of Programs (PLoP’98), Monticello, Illinois, USA,
August 1998.

55

55. The Executor Pattern, Decoupling Tasks from Execution

The Executor Pattern
Decoupling tasks from execution

Eric Crahen
VikingPLOP 2002

crahen@cse.buffalo.edu

Abstract:
Many modern programmers seek to improve the performance of their code by breaking parts of the

application down into several tasks that can be executed concurrently. Executing these tasks in separate
threads often helps improve the performance, and responsiveness of an application. The Executor pattern
describes the decoupling of these tasks from the method of execution. Where the Command pattern [GoF95]
focuses on abstracting the details of how to perform a task, The Executor pattern complements it by
abstracting the context and the means of execution for a task.

Example:
Consider how requirements can change throughout the lifetime of a web server. In order to maximize the

throughput and to increase the responsiveness it is desirable to use a multithreaded design. Using threads to
wait for incoming connections and to handle requests can help achieve this goal. To do this, a simple
framework for creating tasks that handle these things would be useful.

One method of creating a task to be run in another thread is to extend a Thread class and build the task
into that specialization. This is can be effective for long lived tasks, such as ones that listen for and accept
incoming connections. This type of heavy-weight task might look something like this,

// A very simple heavy-weight task
class ServerThread extends Thread {
 // ...
 public void run() {
 try {
 while(!Thread.interrupted())
 handleIncomingConnections();
 } catch(InterruptedException e) { }
 }
 // ...
}

However, for small, short lived tasks this not quite as effective. Once a connection is established, it might
be used to fill several requests. Each request would correspond to a separate task. The Reactor and Proactor
patterns [POSA99] provide a much more detailed explanation. Creating a series of heavy-weight tasks,
binding a different thread to each short task invokes a lot of overhead.

Often, a group of small tasks can be handled by creating a pool of threads. Creating a pool of threads
ahead of time helps to avoid the excessive overhead of creating a new thread for each task by creating a set
of threads ahead of time and reusing threads to execute each task. A typical thread pool might look like this,

56

The Executor Pattern

public class ThreadPool {
 private LinkedList queue = new LinkedList ();

 public ThreadPool(int size) {
 while(size-- >= 0)
 new Worker().start();
 }

 public void run(Runnable task) {
 synchronized(queue) {
 queue.addLast(task);
 queue.notify();
 }
 }

 private class Worker extends Thread {
 public void run() {
 try {
 for(;;) {
 synchronized(queue) {
 while(queue.isEmpty())
 queue.wait();
 ((Runnable)queue.removeFirst()).run();
 }
 }
 } catch(InterrtupedException x) {
 } catch(RuntimeException e) { /* shutdown on error */ }
 }
 }

}

Not all thread pools are implemented in the same fashion, and often times an implementation may be
tailored to a specific purpose. Using threads and some types of thread pools directly can mean placing an
additional burden on their users that can ultimately be responsible joining the thread that was spawn or for
returning a borrowed thread to the pool. Each thread pool implementations tends to meet slightly different
needs, and as a user, you are bound to the interface that pool provides. It makes it difficult to switch from
one (thread pools, single threads, no threads) method of execution to another.

As the implementation is being tested and stabilized, an additional set of requirements appears. It may be
very desirable to add some external synchronization to the tasks, allowing only a fixed number to run at any
given time. Allowing only one to run at a time or adding some kind of pre or post processing action can be
very helpful for debugging purposes.

Thread pools themselves aren’t always particularly good at is adding some customized behavior to each
task. The addition of logging or other performance monitoring of the tasks being executed is often useful.
This allows statistics to be collected which can help determine how long a task is taking, which can be
helpful in finding tasks that cause errors or in collecting error logs when tasks filling requests fail.

As the number of different types of tasks increase, creating some priority for those tasks may become
important. Including some method to assign priorities to each task could be desirable. The needs of an
application can grow and change quite a bit as this sort of program is developed. In order to simplify the
implementation and limit how much these changing impact the code using it a good abstraction for
executing tasks is needed.

Problem:
In order to create an abstraction that can remove the needs to deal with the details of how tasks are

executed from the user, the following forces need to be resolved:

57

The Executor Pattern

Simplicity:

A piece of code that desires to submit a task some object for execution has only one simple desire, to
make a request for a task to be executed. Creating an interface which provides a method to do just that
without placing any extra burden on the code making the request is important. Requiring any more would
encourage binding to a specific means of execution. In other words, clients submitting a task to another
object shouldn’t be responsible for assisting in the correct execution of that task. Finding a way to simplify
a clients’ interaction would also be an essential first step in abstracting the means of execution.

Overhead:

Specializing a class that encapsulates a method of execution in order to perform a specific task via that
method is a common approach to implementing the Command pattern (Swing Workers, for example
Sun00). However, this couples a task directly to a specific vehicle of execution. While this is not
necessarily a bad thing in and of itself, binding all of the overhead associated with that vehicle is not
always appropriate. When many very short tasks need to be serviced, much time and many resources would
be unnecessarily spent creating new threads. Since most of the servers time would be better spent filling
requests, finding some way to avoid that overhead would be very desirable.

Mechanism:

Most tasks are run by threads, but not all of them are. Some methods of execution never have to
manipulate threads directly. For instance, one method of execution is to use the current thread in
conjunction with some form of synchronization to run each task. For example, a semaphore could be used
to limit the number of tasks it ever allows to execute at once. Another is to use some form of RPC
(CORBA or RMI) to submit tasks to another machine instead of directly running them. Finding a way to
make these details interchangeable can be tricky.

Configuration:

Configuration can be somewhat awkward when directly using a resource that provides a method of
execution. Often times it would be very convenient to supply some hints about how tasks should be
executed. This can involve hints not only for adjusting how resources are utilized, but it also includes
providing information about how tasks are serviced. Some kinds of tasks may have different priorities
which should be reflected in the order of execution. When designing objects for executing tasks, which are
able to adapt to changing demand through controlling the resources allocated to meet that demand,
configuration becomes quite important.

Customization:

On some occasions it can be very convenient to associate some extra behavior with each task. For
example, keeping a log of the start and stop of each task is one simple use. Notifying other objects as a task
is executed, perhaps to update a statistic display, is another more complex example. In keeping with the
force of simplicity, a way to achieve this without placing an additional responsibility on the client code is
needed.

Solution:
Add a layer of indirection between a client and the execution of a task; instead of a client executing a task

directly an intermediate is asked to execute a task for a client. By creating a framework that includes Task
objects and Executor objects. A Task object ‘knows’ how to run a specific task, like a Command object, it
exposes a single method to trigger its execution. An Executor object that ‘knows’ where to execute Task
objects; it encapsulates the knowledge to of how to get a Task object into a context where it can be
executed.

This solution is similar in some respects to the Command Processor pattern. However, Command
Processor pattern [PLoPD96] illustrates more specifically how Command objects are managed. The
Executor is more concerned with how Command objects are executed.

58

The Executor Pattern

An Executor allows an application to deal only with light-weight Task objects (tasks) abstracting the any
need to directly manipulate any specific thread, network connection or any other resource used to place a
Task in the correct context for execution, decoupling the task from the means of execution. This abstraction
allows programmers to focus their efforts on creating individual Tasks; the need for the explicit
management of any resource is removed.

Tasks are considered light-weight because a task doesn’t necessarily bring with it the overhead of an
entire thread, or any other method of execution. For example, a task realized by extending a Thread would
be considered heavy-weight because it is a Thread, and can’t be decoupled from itself.

The context a created by an Executor to run a Task includes not only which thread runs a task, but also
what happens before a task is run, what happens when a task is completed. Defining context creates the
environment a task will be run in. Shifting these concerns from client into a context managed by an
Executor allows changes to be made to the context with regard where a task is executed without impacting
any client code. For instance, an Executor may change its context for execution from the current thread to a
cached thread from a pool to a new thread for each task.

Multiple executors can be used to address different execution needs. For example, an Executor that uses a
pool of threads might be used to execute tasks that download several files simultaneously. A series of
transactions might be committed to a log using an executor that will serialize the execution of the tasks
submitted to it.

Executors also provide for some customization of the order in which tasks are carried out by including a
Queue component. This component can be interchanged easily to select LIFO, FIFO, priority based or
some other ordering.

59

The Executor Pattern

Participants:
A Task defines an interface for some operation. As an application of the Command pattern it is

responsible for encapsulating knowledge of how to execute some task.

An Executor provides an interface for scheduling a task to be executed. The Executor encloses the
knowledge of how to place a Task in the correct context for execution. This may involve moving the Task
to another thread or even another machine

A Client creates both Tasks and Executors; it is responsible for submitting a Task to an Executor for
future execution.

A Handler can be associated with an Executor to provide a place to add some pre and post processing
options to each Task submitted. This could also have been achieved by wrapping each Task submitted with
another Task that would do these things; however providing a separate object to delegate this work to helps
to make the purpose clearer.

A Runner is the abstraction for the resource being used to execute these Tasks. For an Executor, this
provides access to anything that will directly run a task (a Thread, a set of Threads, a remote object, etc). It
hides the portions of the interface of those things which necessarily appropriate to expose in this framework.
How a Runner is realized is dependant on the programming language being used and the multithreading
facilities it provides. In this paper it will be described with a distinct interface to help clarify the intent
behind it.

Variants:
There are a few variants on the core solution that help in creating certain kinds of Executors. These

variants typically include the following additional participants,

 Threads; a Thread is optional portion of a Runner. Some executors may be designed to dispatch a
Task to a separate thread of execution. A Runner might provide customized Thread classes to add
different behaviors. How this is accomplished is dependant on platform and language.

 ThreadPools; a ThreadPool, like a Thread, is an optional part of a Runner. It is an application of the
Pooling pattern, a collection of threads that are used to help execute a Task.

 Queues; a Queue is an optional part of an Executor that accumulates Tasks for future execution. It’s
responsible for accumulating and ordering Tasks before they are placed in the correct context for
execution. It also acts a point to address other QoS concerns.

Allowing the user to supply custom threads to the executor is very useful. A factory could be provided for
a Runner by a user that creates named threads to assist in debugging. Customized threads could be used for
a lot of things, having this option leaves room for a lot of flexibility.

Executors can easily adapt to changing demands by adding or removing threads from its ThreadPool as
the frequency of task submission changes. Alternatively, they might create fixed size pools, or pre-allocated
sets of threads to speed up response.

Queues help fill any needs an Executor has with regard to the order of execution. By supplying various
Queues a user can easily configure an Executor to run tasks in different orders (LIFO, FIFO, Priority, etc.)

As previously mentioned, not all Executors need to use threads, and instead may simple use
synchronization to control the context of execution. In these cases, the optional roles described above can
be left out, or simply implemented as Null objects. However, most Executors will be multithreaded in
nature and use different kinds of Threads, ThreadPools and Queues.

60

The Executor Pattern

Implementation:
The following is a sample implementation of two very simple Executors, written in Java. One queues and

executes tasks in another thread. The other allows only one thread to execute a task at any given time.

public interface Executor {
 public void execute(Runnable task);
}

The Executor interface shared by all Executors describes it main responsibility, accepting tasks to execute
at some point in the future.

public interface Handler {
 public void beforeRun(Runnable task);
 public void afterRun(Runnable task);
 public void afterFailure(Runnable task, RuntimeException e);
}

The Handler acts as a kind of hooking mechanism, allowing a user to intercept the executing thread at
various stages. The interface shown here allows for customization of what happens before and after a task
is executed. It also provides a simple way to handle exceptions that might occur when a task is being
executed, without having to modify the Executor.

public class LockedExecutor implements Executor {
 // An internal object is used to prevent external interference
 // with the synchronization
 private Object lock = new Object();
 private Handler handler;

 public LockedExecutor() {
 this(new NullHandler()); // Null Object
 }

 public LockedExecutor(Handler handler) {
 if(handler == null)
 throw new NullPointerException();
 this.handler = handler;
 }

 public void execute(Runnable task) {
 try {
 synchronized(lock) {
 handler.beforeRun(task);
 task.run();
 handler.afterRun(task);
 }
 } catch(RuntimeException e) { handler.afterFailure(task, e); }
 }
}

This LockedExecutor is an Executor that executes each task in isolation from any other task. In other
words, only one task can be run by any thread at any time by this Executor.

61

The Executor Pattern

public interface class Runner {
 public void run(Runnable task);
}

public class DaemonThreadRunner implements Runner {
 public void run(Runnable target) {
 Thread worker = new Thread(target);
 worker.setDaemon(true);
 worker.start();
 }
}

The Runner interface creates an abstraction for what exactly is being used to run a task. A
DaemonThreadRunner is shown here which uses daemon threads to run tasks. It is possible to provide
Runners that use regular Threads, subclasses of Thread or even ThreadPools.

public class ConcurrentExecutor implements Executor {
 // Work queue
 private LinkedList queue = new LinkedList();
 private Handler handler;

 public ConcurrentExecutor() {
 this(new NullHandler()); // Null Object
 }

 public ConcurrentExecutor(Handler handler) {
 if(handler == null)
 throw new NullPointerException();
 this.handler = handler;
 Runner runner = new DaemonThreadRunner();
 runner.run(new ExecutorTask());
 }

 public void execute(Runnable task) {
 synchronized(queue) {
 queue.addLast(task);
 queue.notify();
 }
 }

 private class ExecutorTask implements Runnable {
 public void run() {
 try {
 synchronized(queue) {
 while(!Thread.interrupted()) {
 // Wait for work to arrive
 while(queue.isEmpty())
 queue.wait();
 Runnable task = (Runnable)queue.removeFirst();
 handler.beforeRun(task);
 task.run();
 handler.afterRun(task);
 }
 }
 } catch(InterrtupedException x) {
 } catch(RuntimeException e) { handler.afterFailure(task, e); }
 }
 };

}

62

The Executor Pattern

This ConcurrentExecutor demonstrates how Runners and Queues can be used to create an Executor that
will run tasks in other threads. This implementation uses only a single thread, but it can easily be made to
use more than one by replacing the Runner used here with one using a ThreadPool.

Benefits:
Eliminating the direct dependence on any single type of execution mechanism, whether it is a thread, a

thread pool or something else, introduces a good deal of flexibility into an application.

 A simple interface is provided for executing commands. A user does not need to do anything other
than to ask an Executor to execute() a task to gain these benefits.

 Each task does not necessarily impose a significant amount of overhead. Binding a separate thread to
each task is optional. A user may choose an Executor that creates new threads for each submitted
task; but when resources are at a premium an Executors implementing a pooling pattern can be
selected instead.

 The mechanism of execution is easily interchangeable, by exchanging Executors an application can
select between varieties of execution strategies. You can move from running tasks in the current
thread, to running tasks in a single worker thread, to running tasks in a thread pool with very little
effort.

 Customization, using Handlers, Runners and Queues can be achieved without making any
modifications to an Executor. Handlers can be provided to modify some of a tasks behavior, adding
pre and post actions without requiring a user to wrap each individual task. Similarly Runners and
Queues could be supplied to Executors to provide customized execution resources (specialized
Threads, ordered Queues, etc) without having to modify the Executor classes.

Drawbacks:
The portions of the program that are to run concurrently must be broken down, effectively, into a set of

light-weight Task objects. There are a few pitfalls that require a programmer’s careful attention:

 Using Executors doesn’t provide automatic thread safety. It is the responsibility of the programmer
to ensure that tasks created are synchronizing access to shared data.

 Tasks should be somewhat thought out; for example, submitting a set of tasks that put the executing
threads to sleep may counteract the benefits an Executor provides.

 Some kinds of tasks may not be suitable for all Executors. A task that runs without trouble in a non-
threaded or single-threaded Executor may not always behave as expected in a threaded Executor. It is
still the responsibility of the programmer to ensure tasks submitted to threaded Executors are actually
thread-safe.

 To customize the behaviors of some kinds of Executors may still require a user to interact with the
concrete type rather than the general interfaces. For example, to adjust the number of threads being
used by an Executor that uses a thread pool would require the user to work with a concrete
PooledExecutor (or similar) class since the Executor interface doesn’t describe that functionality.

Known Uses:
Executors sometimes can be found in other patterns. The Active Object pattern [POSA99], which

provides an asynchronous execution wrapper for an object, uses a kind of executor to schedule the
execution of the various future tasks it creates for each method invocation.

63

The Executor Pattern

Other implementations of Executors can be found in some concurrency libraries. For example, Doug
Lea’s util.concurrent package for Java provides a framework of classes for using thread effectively in Java.
As a part of that package, several kinds of Executor classes are included. In fact, the ConcurrentExecutor
presented here is very similar to the QueuedExecutor found in this package.
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html

Another library containing this abstraction is ZThreads, a portable, object-oriented thread library for C++.
In it, a set of Executor templates that are designed to assist in running tasks in different threads.
http://zthread.sourceforge.net

Acknowledgements:
I would like to thank Kevlin Henney who was the shepherd for this paper. His guidance was invaluable in

transforming my ideas into the paper you are now reading. Thanks are also extended to Frank Buschmann
who oversaw the shepherding process and to all the others who provided me with feedback early on.

References:
[KJ02] Michael Kircher, Prashant Jain, Pooling,
http://www.hillside.net/patterns/EuroPLoP/papers/Kircher_Jain.zip, 2002.

[GoF95] GoF, Design Patterns, Command Pattern, p 233 – 242, Addison-Wesely, 1995.

[Sun00] Sun Microsystems, Using a Swing Worker Thread,
http://java.sun.com/products/jfc/tsc/articles/threads/threads2.html, 2000.

[PLoPD96] Eds Vlissides, Coplien, Kerth, Command Processor, in Pattern Languages of Program Design
1, Addison-Wesley, p63-74, 1996.

[POSA99] Schmidt, Stal, Rohnert, Buschmann, Active Object, in Pattern Languages of Program Volume 2,
Addison-Wesley, p369-398, 1999.

65

65. Automated Determination of Patterns for Usability Evaluations

Automated Determination of Patterns for Usability
Evaluations

Michael Gellner

 University of Rostock, Department of Computer Science, Software Engineering Group,
Albert-Einstein-Str. 21, Rostock 18051, Germany, Phone ++49 (381) 498-34 33

mgellner@informatik.uni-rostock.de

Abstract. Although usability evaluations deal with improving usability of the
inspected artifacts the process that leads to these results often misses usable
attributes. As a result working in that field is a domain of usability experts only.
Since in a lot of environments so called computer-aided solutions are successful in
either lowering the efforts for the employees or in filling their gaps by being
supported from such a system, this work is one step toward computer aided
usability evaluating (CAUE). In a view with eight components beginning with the
declaration of evaluation tasks up to reporting the entire evaluation process the
following work shows how the second step could be supported by a CAUE system.
In that phase the goal is how to determine optimal usability method of many
dozens without the necessity to study them before deciding.

1 Introduction

The following work describes a concept that can be used in a computer aided usability
evaluation (CAUE) tool. It is based on the eight phase model [9], a process pattern that
describes the steps, that has to be done by conducting a usability evaluation and that
integrates the common aspects of the published models [6], [8], [11], [12], [16], [20]
and [22].

Background Information: What are process patterns?
The term process patterns comes from Coplien, who defined in [7] that processes
often can be considered as patterns of activity within an organization or a project. To
differentiate such patterns from the design patterns published in 1995, he created this
term. Since then the term process patterns is widely used, especially by Ambler in
his two books about object oriented software development Process Patterns [2] and
More Process Patterns [3] from 1998. The eight phase pattern that paper deals with
is an derivation of this view applied on usability evaluation.

In contradiction to these models the intention of the eight phase model is to create a
foundation for a software tool. This model is created for formative purpose, whereas the
cited models primary describe usability evaluations as they are. Structurally the eight
phase model can be considered as an usability pattern [4], [23] and as a process pattern
[2], [3], since it has properties of both ones. Each phase is composed of other patterns.
The following approach demonstrates a way to determine methods from a pool of

66

Automated Determination of Patterns for Usability Evaluations

testing methods. This especially supports the needs of the second phase of the eight
phase pattern (see Fig. 1) in which testing methods have to be chosen. At present the
literature counts around 60 methods (the exact number depends on the way of counting
them; psychologists count every questionnaire as separate evaluation method whereas
less well methodically working disciplines often treat the usage of any questionnaire as
a general application of the method ‘questionnaires’).

Background Information: evaluation methods and method patterns – what’s the
difference?
The whole literature is about evaluation methods. Up to now you find more than 60
methods for usability evaluations. We can assume that even an usability expert won’ t
know them all. They are distributed in various papers, books and reports. Although
this is the typical way of publishing in the academic community it is absolutely
unhandy to the practitioner. It is possible that even someone who works for a long
time in that field has never heard of a testing method that could optimize his work.
No one can keep track of this source jungle, maybe with the exception of someone
who does nothing else. If so: Usually you do not look for methods but for solutions of
your problem (with the testing situation as the problem). For that reason we want
represent the testing methods in another way: the situation an evaluation will take
place should be given (that can be early in the development cycle) and the solution –
that is one or more methods that fit to the situation – should be delivered. The
attribute of being solution oriented is fulfilled by patterns. That is the reason why we
want to describe and use testing methods as patterns. The content doesn’ t change: the
testing method heuristic evaluation e.g. has the equivalent meaning with the method
pattern heuristic evaluation. Rewriting the evaluation methods and collecting these
method patterns in a usability pattern catalogue would ease learning how to conduct
usability evaluations and how to apply different methods.

Three preconditions have to be fulfilled in order to realize the concept:

1. The forces and the context that influence an usability evaluation have to be described
sufficiently. Both are summaries of the environments and circumstances but have
different main focuses:

��The context determines which kind of pattern can be possibly applied.
��Forces help to decide which one of them fits in optimally.

For the following procedure attributes of forces and context are summarized
»requirements«. These requirements include attributes such as funds for equipment
of the evaluating department or the progress of a project, the targets of an evaluation
and further more are specified (for details see upside).

2. The method patterns have to be described sufficiently: specify what equipment is
needed to use the method, what is the best moment for a method to be executed, and
what priorities have to be set up.

3. The descriptions for the requirements and the method patterns have to be in the same
format. Any given data has to match the used criteria.

For the presentation of the requirements and the method patterns a fixed but extensible
format is used.

67

Automated Determination of Patterns for Usability Evaluations

Eight phase

model, used as
pattern

Usability Engineering Framework (e.g.
from Nielsen [Nie 93]

Determining testing targets

Choosing testing methods

Develop. testing material

Planning and organization

Executing the test

Editing data

Writing the study

Evaluating data

P
at

P
at

Pat1

P
at

P
at

Pat1

P
at

P
at

Pat1

P
at

P
at

Pat1

Pa
t

Pa
t

Pat1

P
at

P
at

Pat1

P
at

P
at

Pat1

P
at

P
at

Pat1

Fig. 1. The eight phase pattern is a process pattern [2] that can contain further patterns in its phases.

Background Information: What is the eight phase pattern and why did we
create it?
Conducting an usability evaluation is nothing else than a project. To support this we
want to create a catalogue with all necessary patterns (or maybe a pattern language)
to conduct usability evaluations. We describe the process in pattern format. The
evaluation process consists of eight phases, that are structured in a waterfall view.
One clear advantage is that software developers should be able to adapt this easily
since there also exists a waterfall model that shares a lot with ours. One important
difference is that the eight phase model offers ways back from every phase to the
beginning. The lack of such ways back in the waterfall model for software
development caused a lot of problems in the past. That is one reason why the
waterfall model for development today is often considered more as an antipattern
than as a wishful foundation for work. Our approach avoids this.

We created the eight phase pattern although there where several models that also
tried to capture the evaluation process because none of them seemed to fit to most of
the typical situations in that evaluations are done. This is discussed more in detail in
[10]. Another important aspect is the integration of the eight phase pattern in the
known and applied development models: when do we do an evaluation? Fig. 1 shows
parts of the usability engineering model – with this we want to show the integration
of our pattern in this model. For connections to other development please have a view
in [9].

ield use

nale

esting

68

Automated Determination of Patterns for Usability Evaluations

2 Representing Knowledge about Methods

A lot of approaches describe how differences between usability testing methods and
their common elements can be cataloged, but capture only descriptive aspects, e.g. see
[13], [14] and [21]. None of these sources offers an algorithm that finds optimal
methods for actual problems or that describes which properties are necessary to
characterize a testing situation. Since such a procedure is needed for a CAUE system a
more detailed view is necessary. The result should match the following specification:
• The procedure should find a testing method for a given situation that could be

considered as a good (or even optimal) decision, comparable to the advise of an
human expert

• The output should be given in form of a list that contains all analyzed methods. The
optimal fitting ones should be listed first, the fewer they fit the later they are listed.

• The pool of testing methods has to be modifiable to add methods or to remove them
• The methods have to be valued multi-dimensional (that means with more criteria)
Important criteria are

- time
- costs
- personnel
- hardware skill
- software skill
- testing version
- comparability
- efficiency
- importance of the production stage
- necessity of following standard
- enjoyment of use
- error frequency

These have to be considered as suggestions for the presentation of the procedure and
will be templates for the construction of the method patterns. These criteria will be the
basis for semi-automated findings of the matching methods. During the procedure the
list of criteria has to be identical with the analyzed methods and the given situation,
otherwise a comparison is not possible. In general the number of the items and the
content of single items can be changed. For example after a series of tests is made, the
criterion experience with a method could be considered important, since learning a new
and perhaps more efficient method can cost more than one that can be applied without
learning or without loss by novice errors. Furthermore a software realization should
describe how a recommended method is applied and what results are expected; these
parts of the template are not described in that work and are not considered in the
procedure.

Another reason for the changeability of the criteria lists is that not every motivation
for usability tests can be foreseen. Moreover it would not be useful to maintain a lot of
irrelevant data. Maintaining higher specialized criteria are only necessary when it is
required to evaluate software that wants to fulfill such them. Examples are the

69

Automated Determination of Patterns for Usability Evaluations

Die
very low very high
� � � � � � �
-3 -2 -1 0 1 2 3

Erforderliche Stabilität des
very low very high
� � � � � � �
-3 -2 -1 0 1 2 3

functionality for special qualifications, the possibility to recognize displays about a
wider distance or the support for handicapped persons.

To work with the procedure data are given that represent experience values. All data
come in form of a semantic differential with the interval –n to n by 1. To show the
procedure we consider arbitrarily n = 3 (depending to the required granularity other
values could be used). The values are obtained by a mapping of the values to that
interval. A priority in further work is to find representative data for all methods and to
keep them current. A feature of scaling is a balanced view among all criteria. Otherwise
a problem of different valuations comes up: The maximum value e.g. of the criterion
time for a testing method can hold for hours in one department that is used to test short
periods with small systems only whereas another lab measures time in days. A dozen
hours is a high number that would be represented by the value a = 3 in dimensions the
first lab works. In the second one a dozen days is only below average and so might be
set on the value b = 0. Although the value a is higher than b this comparison would be
invalid since there are different dimensions represented. Assuming the dimensions of
the first lab the value that represents b could not be set adequately: 12 hours got the
maximum value – how to describe 12 days? Assuming the dimensions of the second
lab, 12 hours might be set on the value -1 or -2.

A neutral element outside the scale (“don’ t know” , “no statement” , “can’ t judge” etc.)
as often given in questionnaires to avoid distortions the results, is not used here but can
be introduced if it becomes obvious that non-experts are involved that would need a
way to abstain from valuating. The problem that should be avoided in tests with testing
persons is that people who feel overburdened or unsure answer arbitrary. With such a
neutral channel they can be sorted out and these answers do not mislead the quality of
the whole study. In this case, adding and removing testing methods and criteria will be
done by an usability expert, a qualified administrator or with an update automatism of
an CAUE system, when new information about methods or criteria become available.

Other scales are possible and their support in a software system is desirable. A wide
range of absolute values that have to be captured can lead to the need for wider scales,
especially when such experiences have to be combined for summaries in one diagram or
table. But for this description that aspect is without means, we do not engross this
thoughts.

Fig. 2. Application of a semantic differential for the criterion stability (left side)
and for requirements analyses.

Semantic differentials, also called polarity profiles, use two contradicting expressions to
get an estimation of an asked person (see Fig. 2). With such an amount of estimations of
attitudes and mindsets of a certain group to a theme can be measured, such
investigations are subject of different psychological disciplines, the sociology, the
opinion research, literary studies and many others. Usability evaluations use this
technology e.g. when questionnaires are developed. Examples are the often used

The stability of the system seemed to me Required stability for the system:

70

Automated Determination of Patterns for Usability Evaluations

ISONORM questionnaire and the System Usability Scale (SUS). Every criterion
consists of three components:

�� a name for the criterion
�� a string for the presentation and
�� the chosen value

Similar to that the description of the requirements follows (see Fig. 2):

�� a name for the criterion
�� a string for the presentation and
�� a value of the need

The suggested procedure consists of the comparison of the criteria for the requirements
with the criteria of all method patterns. This comparison leads to a value, that is taken as
an index for the relation of the method pattern to the requirements. As mentioned the
criteria are subject of further works. For the user the criteria and the valuations of the
methods have to be considered as given. His work is to value the requirements criteria
by criteria for each usability test. This should be done dialog based, every presentation
string has the form of a question and must be answered by choosing a value from the
given scale.

Table 1. Method patterns in table form

Criterion

Testing method

tim
e needs

cost needs

personal needs

hardw
are needs

softw
are needs

efficiency needs

com
parability needs

stage consideration needs

standard consideration

enjoym
ent of use needs

error frequency needs

earlier test consideration

 Example method 1 0 0 -1 -3 -2 -2 0 3 -3 1 -3 3

 Example method 2 3 0 3 -3 -3 -1 -1 3 3 -3 -3 0

 …

The list of values for one method characterizes the method, this is called method
pattern. The other list of values, that is compared with all method patterns are the
requirements. Requirements and method patterns have to be in the same format. A
certain list of criteria is a template. As said this can alter if necessary. Table 1 shows the
representation of different method patterns in a table. Beneath a table method patterns
can be represented in a graphical form (see Fig. 3). From a mathematical view this
graph should contain discrete points (one value for a criterion) but drawing lines eases
the usage since those graphs should be read like fingerprints from methods (if someone
cannot go with this suggestion also discrete points can be left). A single method could
be judged easier with a graphic representation, to compare different methods the tabular
form seems to offer a more transparent view.

71

Automated Determination of Patterns for Usability Evaluations

time needs
cost needs

personal needs
hardware needs
software needs

efficiency needs
comparability needs

 stage consideration n.
standard consider. n.

enjoyment of use n.
error frequency needs

earlier test consider. n.

-15 -10 -5 0 5 10 15

very low 0 very high

Fig. 3. Representation of the profile of a testing method

3 The Procedure in Detail

3.1 Preconditions

For the following description it is a precondition to have a database with valued
methods. The database is part of the further work and will be considered here as given,
also a list of criteria is considered as given. Formal the database consists of a list of
values for each method as shown in Table 1, where every value stands for the assumed
ability of the method to fulfill the assigned criterion.

3.1 Computation of the Differences between Requirements and Method

1. Analyzing the requirements: All criteria of a template are presented to an user (here:
the one who conducts the usability test), who gives every criterion a value on a scale
that describes his available resources, abilities and needs. To simplify this, every
criterion requires a string that formulates the criterion as a question. Dialog box by
dialog box those questions are asked.

2. Weighting criteria: Not all criteria have always the same meaning. The weight they
have can change from test to test. If necessary, some criteria have to be stressed, in
other cases they have to be belittled. To reach this every criterion can get a factor.
This causes that both the value of the method pattern and the value of the
requirements criterion are multiplied with the factor before the comparison. Since a
difference between the value of the requirements criterion and the value of the
method patterns criterion is computed, the amount of the difference increases.

3. Setting the Always Count Flag: Every criterion with this flag set, ‘positive’
differences are ignored. Positive differences are ones that are not caused by failing
the requirement value but by over fulfilling it. Both, failing a requirement and over

72

Automated Determination of Patterns for Usability Evaluations

fulfilling, leads to a difference. The first one is the difference that shall be used for
summing up the differences. The higher this sum is the more a method fails the
requirements. Normally it seems not to be adequate to treat saving resources in the
same way as wasting them. So without setting this flag such positive differences are
set to 0. Theoretically (and computationally) it would be possible to compensate a
failing with an over fulfilling, practically this would be a misspecification: if there is
a lack of personal it is not possible to compensate this with a lot of hardware. If it is
needed to test the criterion of enjoyment of use a method have to fulfill this
requirement. Another method that is not suitable for this but considers e.g. more
exactly the observance of usability standards would simply be a wrong advice. For
that reason these two kinds of differences have to be treated separately. In order to
find a fitting method pattern for given requirements, in general the negative
differences count more than positive ones, since a method cannot be used if special
resources are not available, absolutely independent from the plenty of other resources.
Applying this flag seems to be useful in two cases:
a) Two methods have the same value: Now it can be analyzed which one of the

methods that offer the same efforts can do this in a more economic way.
b) The user wants to force that available resources are used.

4. Comparing the requirements with the available methods: Requirements that are
analyzed by following topic 1 has to be compared with all method patterns.
c) The products between the values of the criteria of the method patterns and the

weights are computed and the products between the criteria of the requirements and
the weights. If a weight is not explicitly given, its value is 1.

d) For each criterion a difference between the value of the method criterion and the
weighted value of the criterion of the requirement value is computed.

e) If a difference results only during over fulfilling the requirements, that are set up by
the requirements, it has to be set to 0 (except the always count flag is set, then the
computed amount has to be taken). This step is called the correction.

5. Summing up: Now for each criterion there is a number that describes the difference
between the requirements and the method for a certain criterion. These numbers (the
corrected differences) are summed up. The resulting sum is the called the
Requirements-Pattern Difference (RPD).

6. Sorting RPD: The RPD shows the degree, in that a method differs from the
requirements. The smaller the RPD the better a found method patterns fits to the
requirements, an optimal RPD has the value 0. The higher a RPD the bigger is the
difference between requirements and analyzed method. Sorting the methods by the
values of the RPD leads to a list that shows the best fitting method on its top and the
most inadequate method for the given requirements at the bottom.

7. In case there is more than one minimal RPD:

• In a second step the unconsidered positive differences can be computed to find out
which one of the methods works more economically, that means the method that
uses less resources. Such a second step automation is not hard to realize.

• Furthermore the system can provide the materials about the concerned methods for
the user, so that the user has to choose the methods which are wanted. Identical

73

Automated Determination of Patterns for Usability Evaluations

RPD must not necessarily result from an identical constellation between method
and requirements, so it is not improbable that in spite of the identical score one of
those methods could be preferred. At this point the efforts for an automation is
hardly to justify, unless this is impossible.

Background Information: What has that to do with patterns?
There are two things to stress:
I. Of the contents the shown procedure helps to value the attributes of the method

patterns (in former works: evaluation methods).
II: For the purpose of representation this procedure helps to create visual signatures

that can be read fast and easily.
At the first point: we take testing methods and rewrite them in a certain pattern
format. Consider the procedure as an operator that supports this translation.
More didactically is the second point: Alexander said, if you cannot draw a picture to
it, it is not a pattern. Shortly said: He put some weight on a graphical representation.
We share this opinion strongly and so we add to every testing method such a visual
»fingerprint«. The procedure might look complicated but simple results often require
elaborate background works (e.g. making WinWord was far more complicated than
using WinWord). The shown procedure is not thought to be applied by usability
evaluators. It shows how developers could create a supporting system for usability
evaluators.

3.2 Constructing an example for the procedure

For the example hypothetical requirements are thought up. We consider a situation in
which a software developer has to care for good usability attributes in his product. So
first the user of the procedure is a software developer. The situation is characterized
from a high pressure of time (the method can only require minimal time, the chosen
value is -3), although a maximal efficiency is needed (valued with 3) and a minimal
error frequency should be achieved (valued with three), for the complete valuation of
the requirements see Table 2. All others resources can be realized. The only importance
is to improve the usability of the advanced production, so far that the hypothetical
product becomes usable at all.

Following the department of defense (DoD) of the United States this scenario is
representative for around 90 percent of their software producers and suppliers. In the
stages of the Capability Maturity Model (CMM) about 99 % of the companies are
placed in the first two stages (from five), that are marked by problems as in the
hypothetical situation. The CMM is a model that allows to judge the maturity of a
software development process in a company, this stand for the ability of a company to
fulfill needs in time, quality and costs reliably and repeatable. The CMM is developed
and used in the USA and often compared with the ISO 9000 standard that is favored in
the European countries.

In every method analysis all method patterns are compared to the requirements. From
all computed RPDs the minimal ones are shown first respectively on top of the list. It
can be supposed that not all dozens of further results are interesting, except of the first

74

Automated Determination of Patterns for Usability Evaluations

five or ten results. For a better transparence the example is limited to two methods that
are chosen arbitrarily: the GOMS method introduced in [5] and the heuristic evaluation
due to [17], [18]. Table 2 shows the requirements and the method patterns for GOMS
and the heuristic evaluation.

Table 2. Hypothetical requirements and the both method patterns to compare with

Criterion

 Testing method

tim
e needs

cost needs

personal needs

hardw
are needs

softw
are needs

efficiency needs

com
parability needs

stage consideration needs

standard consideration

enjoym
ent of use needs

error frequency needs

earlier test consideration

 3 0 3 - 2 - - 3 - - - 0 Requirements -3 3 3 1 1 3 3 3 -2 1 3 -3
 GOMS pattern 3 0 3 -3 2 -3 -3 3 -3 -3 -3 0
Heuristic evaluation
pat.

-3 -2 -2 -3 -3 3 0 2 -2 1 2 0

Since the first point, analyzing and putting in the requirements, is done above, the
example starts with weighting the criteria. Important criteria should get higher weights,
so that even small differences in that points lead to obviously high RPDs and become to
KO criteria). Since time, efficiency and error frequency have the highest meaning, they
are weighted with a factor of 5. It can be assumed that similar situations will lead to
similar lists of weighting factors. So these lists can be considered as weighing patterns.

Weight (factor) 5 1 1 1 1 5 3 1 3 1 5 0

Next always count flags can be set, to handle ignored resources the same way as
wasting them. This flag should be set if resources are wanted to be used up. In this
example one always count flag is set only for demonstrating.

Always Count Flag - - - - - - - - � - - -

After setting the weights the following values for the requirements and the method
patters result:

Requirements -15 3 3 1 1 15 9 3 -6 1 15 0
 GOMS pattern 15 0 3 -3 2 -15 -9 3 -9 -3 -15 0
Heuristic evaluation
pat.

-15 -2 -2 -3 -3 15 0 2 -6 1 10 0

The differences between the requirements and the method patterns are calculated
criterion by criterion. First this is done for the GOMS method:

Requirements -15 3 3 1 1 15 9 3 -6 1 15 0

GOMS pattern 15 0 3 -3 2 -15 -9 3 -9 -3 -15 0
 |Differences| 30 3 0 4 1 30 18 0 3 4 30 0

75

Automated Determination of Patterns for Usability Evaluations

time needs
cost needs

personal needs
hardware needs
software needs

efficiency needs
comparability needs

 stage consideration n.
standard consider. n.

enjoyment of use n.
error frequency needs

earlier test consider. n.
very low 0 very high

-15 -10 -5 0 5 10 15

very low 0 very high

-15 -10 -5 0 5 10 15

And second for the heuristic evaluation:

Criterion

 Testing method

tim
e needs

cost needs

personal needs

hardw
are needs

softw
are needs

efficiency needs

com
parability needs

stage consideration needs

standard consideration

enjoym
ent of use needs

error frequency needs

earlier test consideration

 3 0 3 - 2 - - 3 - - - 0 Requirements -15 3 3 1 1 15 9 3 -6 1 15 0
Heuristic evaluation
pat.

-15 -2 -2 -3 -3 15 0 2 -6 1 10 0
 |Differences| 0 5 5 4 4 0 9 1 0 0 5 0

In both cases the always ignore flag is without influence, since for GOMS as well as for
the heuristic evaluation the required value is failed. Further these differences are
provisional results, now it must be distinguished between ‘positive’ (to strike) and
‘negative’ (to use for computation) differences:

Requirements -15 3 3 1 1 15 9 3 -6 1 15 0

GOMS pattern 15 0 3 -3 2 -15 -9 3 -9 -3 -15 0
 |Differences| 30 3 0 4 1 30 18 0 3 4 30 0
 RPD[GOMS, Requirements] = � 120

Requirements -15 3 3 1 1 15 9 3 -6 1 15 0

Heuristic evaluation pat. -15 -2 -2 -3 -3 15 0 2 -6 1 10 0
 |Differences| 0 5 5 4 4 0 9 1 0 0 5 0
 RPD[heur. Eval., Requirements] = � 15

The remaining differences are summed up to the RPD. Since the both indices are not
identical the procedure has reached the end. The RPD of 15 makes the heuristic
evaluation seem to be more suitable than GOMS with the RPD of 120.

Fig. 4. Graphs of a comparison between the requirements and a method pattern (left:
GOMS, right: heuristic evaluation, methods are shown in blue unbroken lines,
requirements are in both graphs shown with a broken red line.

76

Automated Determination of Patterns for Usability Evaluations

time needs
cost needs

personal needs
hardware needs
software needs

efficiency needs
comparability needs

 stage consideration n.
standard consider. n.

enjoyment of use n.
error frequency needs

earlier test consider. n.
very low 0 very high

-15 -10 -5 0 5 10 15

very low 0 very high

-15 -10 -5 0 5 10 15

This coincides with a very high probability with the advice that usability experts would
give in the same situation under the condition that only the same two possibilities are
available. Alternatively this computation graphs of the method patterns and the
requirements can be compared. This graphs is less exact then the shown computation,
but it can be done without technical equipment and it gives at least a fast overview.

Fig. 5. Visualization of the differences between method patterns and requirements
(left: GOMS, right: heuristic evaluation, red unbroken lines symbolizes failing the
requirements, blue lines dotted show over fulfilling a criterion).

The enormous differences between the GOMS pattern and the requirements (more than
a factor of 8 in comparison to the differences between the heuristic evaluation pattern
and the requirements) are easy to recognize in Fig. 4. As clear as here this cannot
always be seen. Another graphical view is possible by putting the differences in a
diagram (see Fig. 5).

Again, this view doesn’ t show the exact values of the contradiction between the
requirements and the analyzed method, but it displays the tendency.

Background Information: I f this is done how will those method patterns look?
At the moment this is not absolutely sure, but possibly something like this:

Heuristic Evaluation Pattern (similar: Next Door Testing, Discount Testing)

Author : Jakob Nielsen (Heuristic Evaluation Method), Michael Gellner (Pattern)
Problem: You have to conduct an usability evaluation but only small funds for

hard- and software. The evaluation comes very late since there is already
done a lot of work. Although this is not a wishful situation you have to
take it as it is and to take care for the best usability attributes that can be
realized at this point.

Examples: - A piece of software should be tested separately for its usability
attributes.

 - An usability evaluation has to be conducted spontaneously.
Context: There is not much time, not much funds for buying equipment and there

are hardly human resources except of some other developers.

77

Automated Determination of Patterns for Usability Evaluations

Solution: Use the heuristic evaluation method. You need no real testing persons
and no special equipment (hard- and software). A handful of developers
are enough. Act as follows:

 Here will follow a “how to”-description of the heuristic evaluation. We
skipped this since we want to show how our patterns could look like and
do not want to focus on one usability evaluation method.

 The common signature of the heuristic evaluation pattern in a nutshell:

That signature is the part of the pattern what the procedure is for.

4 Conclusion

The shown procedure offers a way to compare different usability evaluation methods.
The idea of patterns as tools and as alternative to guidelines (discussed by van Welie et
al. [25]) is applied in this concept. This is an important step to guide and advice non-
expert users in their workflow by evaluations. In internal workshops further areas of
usage could be named. They are given below.

5 View

A further usage beneath the finding and application of methods could be to support
documentation and communication. These abilities are already published for the design
patterns in an early work from Johnson [15]. A transfer of his results to the presented
usability evaluation patterns would be helpful.

One more important point is the described database. The literature gives a lot of
reference numbers which have to be extracted but not all data is given there. For many
important criteria such numbers are not presented until now, that means a lot of testing
activity is necessary to get them. A cooperative network with usability oriented
departments that organize testing series with such special methods could find out a lot
of this missing data rapidly.

As a consequence the comparability of usability departments has to be improved. An
article from Nielsen shows the necessity: Nielsen tried 1994 to compare different

time needs
cost needs

personal needs
hardware needs
software needs

efficiency needs
comparability needs

 stage consideration n.
standard consider. n.

enjoyment of use n.
error frequency needs

earlier test consider. n.
very low 0 very high

-15 -10 -5 0 5 10 15

78

Automated Determination of Patterns for Usability Evaluations

usability departments. As criteria he uses the number of used rooms and the possibility
to use a scan converter [19]. It is true that such points are easy to answer exactly,
otherwise it seems really questionable if those formalities are valid criteria to compare
usability departments. Wiklund avoided such criteria and edited a book in that different
usability departments are shown completely in their own words [24]. This really gave a
good imagination about how the labs in really known companies work, but on the other
hand he avoided completely any comparison. Obviously both authors stood for the
problem of finding satisfying criteria.

The given idea of method patterns can be used to mark the abilities of a usability lab.
A method pattern gives an index about the attributes of a testing method by correct
usage in a correctly described situation. But be aware: by no means these indices are
guarantied specifics or absolute values. Bigger differences from the given indices
indicate either an index that has to be corrected or a weakness in the applying
environment. In partnerships of usability labs such indices could be compared to find
possible lacks of efficiency.

By comparing with others the measurement of the own environment becomes
possible: how far are the new hard- and software or the new approach really useful? The
pattern approach in combination with the testing methods make quality management in
the area of usability testing possible.

References

1. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I. and
Angel, S., A Pattern Language. Oxford University Press, New York, 1977.

2. Ambler, S. W., Process Patterns: Building Large-Scale Systems Using Object
Technology. SIGS Books/Cambridge University Press, New York, 1998.

3. Ambler, S. W., More Process Patterns: Delivering Large-Scale Systems Using
Object Technology. SIGS Books/Cambridge University Press, New York, 1998.

4. Borchers, J., A Pattern Approach to Interaction Design. John Wiley & Sons,
Chichester, England, 2001.

5. Card, S. K., Moran, T. P. and Newell, A., The Psychology of Human Computer
Interaction. Hillsdale, New Jersey, Lawrence Erlbaum Associates, 1983.

6. Constantine, L. L. and Lockwood L. A. D, Software for use, a practical guide to the
models and methods of usage-centered design. Addison Wesley Longman, Inc.,
Reading, Massachusetts, 1999.

7. Coplien, J., A Generative Development-Process Pattern Language. In: Coplien,
J.O. und Schmidt, D. [Hrsg.], Pattern Languages of Program Design, Addison-
Wesley, Reading, Massachusetts, pp. 183 - 237.

8. Dumas, J. S. and Redish, J. C., A Practical Guide to Usability Testing. Revised
Edition. Intellect Books Limited, Exeter, England, 1999.

9. Gellner, M., Modellierung des Usability Testing Prozesses im Hinblick auf den
Entwurf eines Computer Aided Usability Engineering (CAUE) Systems. In:
Rostocker Informatik-Berichte, Vol. 24, pp. 5 – 21. Rostock, 2000.

10. Gellner, M. and Forbrig, P., Modeling the Usability Evaluation Process with the
Perspective of Developing a Computer Aided Usability Evaluation (CAUE) System.

79

Automated Determination of Patterns for Usability Evaluations

Proceedings of INTERACT 2001, Workshop on “Usability throughout the entire
systems development lifecycle” , 2001, Tokyo, Japan.

11. Good, M., Spine, T. M., Whiteside, J. and George, P., User-derived impact analysis
as a tool for usability engineering. In: Mantei, M. und Oberton [Hrsg.], Human
Factors in Computing Systems, CHI’86, Conference Proceedings, pp. 241 - 246,
ACM Press, New York, 1986.

12. Hix D. and Hartson H.R., Developing User Interfaces: Ensuring Usability
Throught Product and Process. John Wiley & Sons, New York, 1993.

13. Hom, J., The Usability Methods Toolbox. URL: http://www.best.com/~jthom/
usability/usable.htm, San Jose State University, Department of Industrial and
Systems Engineering, 1998.

14. Hüttner, J., Wandke, H. and Rätz, A., Benutzerfreundliche Software,
Psychologisches Wissen für die ergonomische Schnittstellengestaltung. Bernd-
Michael Paschke Verlag, Berlin 1995.

15. Johnson, R. E., Documenting Frameworks using patterns. In: Object-Oriented
Programming Systems, Languages, and Applications Conference Proceedings,
publiziert als ACM SIGPLAN Notices, volume 27, number 10, Vancouver, British
Columbia, Canada, ACM Press, 1992, pp. 63 - 76.

16. Mayhew, D. J., The Usability Engineering Lifecycle. Morgan Kaufmann Publishers,
Inc., Kalifornien, San Francisco, 1999.

17. Nielsen, J., und Molich, R. (1990). Heuristic evaluation of user interfaces. Proc.
ACM CHI'90 Conf. (Seattle, WA, 1-5 April), pp. 249 - 256.

18. Nielsen, J., Usability Engineering. AP Proffessional, New Jersey 1993.
19. Nielsen, J., Usability Laboratories: A 1994 Survey. In: Behaviour & Information

Technology 13, 1&2, S. 3 – 8.
20. Preece, J., Human-Computer-Interaction, Addison-Wesley, Harlow, 1994.
21. Rubin, Jeffrey, Handbook of Usability Testing: How to Plan, Design, and Conduct

Effective Tests, John Wiley & Sons, Inc., 1994.
22. Stary, C., and Riesenecker-Caba, T., EU-CON II – Software-ergonomische

Bewertung und Gestaltung von Bildschirmarbeit. Schriftenreihe der Bundesanstalt
für Arbeitsschutz und Arbeitsmedizin [Hrsg.], Forschung FB 826.,
Wirtschaftsverlag NW, Dortmund/Berlin, 1999.

23. Tidwell, J., A Pattern Language for Human-Computer Interface Design.
Washington University Tech. Report WUCS-98-25, 1998, (Basierend auf der
Präsentation Interaction Design Patterns, Conference on Pattern Languages of
Programming IV. (PloP’98), Monticello, Italien.

24. Wiklund, M. E. [Hrsg.], Usability in Practice, How Companies Develop User-
Friendly Products, Academic Press, Inc., London, 1994.

25. van Welie, M., van der Veer, G. and Eliëns, A., Patterns as Tools for User
Interface Design. In: International Workshop on Tools for Working with
Guidelines, pp. 313-324, 7- 8 October 2000, Biarritz, France.

81

81. Transformational Pattern for High-Level-Architectural Connectors

Transformational Pattern for High-Level-Architectural
Connectors

Lars Grunske
Department of Software Engineering

Hasso-Plattner-Institute for Software Systems Engineering at the University of Potsdam
Prof.-Dr.-Helmert Strasse 2-3
D-14482 Potsdam (Germany)

+49(0)3315509152
grunske@hpi.uni-potsdam.de

ABSTRACT
Today’s software systems are often built from a set of
independent components. For interconnecting these
components the interaction mechanisms are capsulated in
connectors. This leads to an architectural description,
which uses both components and connectors as first class
modelling entities. Existing research provides a large
fundament for the component construction. For the
ability to build connectors, some work is still needed.
Therefore, this paper presents a set of patterns for high-
level architectural connectors, such as:

- secure transmission connector

- error detection or correction connector

- compressed transmission connector

- split bi-directional transmission connector

- redundant channel connector

- adapter connector.

These patterns restructure existing software architectures,
so they meet their non-functional requirements, such as
maintainability, security and safety.

Keywords
software architecture, components, connectors, pattern
language, high-level architectural connectors,
construction of concrete connectors

1. INTRODUCTION
In the past decades, the development of software
architectures has received increasing attention by
researchers and practitioners [Hofmeister et al. 99],
[Shaw, Garlan 96]. Thus specifying the software
architecture addresses problems in the engineering of
large and complex systems. This results in a description
of the “big picture” which is associated with software
architecture. Using software architecture, developers can
clarify their understanding of the system and
communicate with each other [Medvidovic, Rosenblum

99]. Furthermore the construction process of the system
can be eased and the code generation can be done
automatically or semi automatically with well-defined
architectural models [OMG 01]. The effect is a decreased
time to marked and a reduction of the development costs.
Thus, there is high interest to apply this in industrial
software engineering projects.

Furthermore, with the designing of software architecture,
important aspects are modeled early in the development
process. Thus problems can be identified and removed
cost and time efficiently. To remove the identified
problems the architectural model can be restructured. For
this, transformational patterns can be applied, which are
similar to code level refactorings as proposed by [Folwer
99]. A transformational pattern is a refactoring at an
architectural level, which only change parts of the
architectural model without alternation of the provided
external behavior of the system. So transformational
patterns can be viewed as recipes for improving the
quality of the software architecture. This paper presents
the concepts of transformational patterns. To illustrate
this concept the paper introduces some transformational
patterns, which especially address high-level
architectural connectors.

These high-level architectural connectors are introduced
in Section 2 where it is described how to specify and
implement them. An introducing example is given after
this, which shows the practical relevance of high-level
architectural connectors. Furthermore, it gives some
examples of how an architectural model can be
restructured and it motivates the usage of
transformational connector patterns. The concepts of
these transformational connector patterns are described
in section 4. Section 5 illustrates this concept, by
presenting commonly used patterns for restructuring
high-level architectural connectors. Finally, section 6
concludes the paper and makes remarks on further work
in this area. In the appendix of this paper the used
architectural notation is presented.

82

Transformational Pattern for High-Level-Architectural Connectors

2. CONNECTORS
2.1 What Are Connectors and Why Are
They Useful?
Today’s software systems are often constructed with a set
of components [Scipersky 98][Balek, Plasil 00]. Thus, to
specify the software architecture of a system, the
fundamental components should be described by a well-
defined interface and a concrete behavior specification.
This is the purpose of many published works [Allen,
Garland 97, Scipersky 98].

Based on research in component technology, it is pointed
out that the communication between the components
should be encapsulated by other architectural elements
[Balek Plasil 00, Allen, Galand 97, Shaw, Garlan 96].
These elements are called connectors. With the
introduction of these connectors in architectural
specification a separation of computation (components)
from control and communication (connectors) is possible
[Hofmeister et al. 99]. The benefit of this separation is
the reusability of the components, because of the looser
coupling between the components and the possibility to
specify adaptation mechanisms in a connector [Garlan et
al. 95, Medvidovic et al. 97]. In addition to this, the
introduction of connectors has benefits for the
maintenance, flexibility and scalability. Furthermore, in
distributed systems location transparency and mobility of
the components can be achieved with connectors. Finally,
the usage of connectors solves the deployment anomaly
described in [Balek 02]. This addresses the problem of
hard coded communication mechanisms in the
components.

To summarize this, the software architecture needs two
first class architectural elements, the components and the
connectors. [Perry,Wolf 92]. The components capsule the
functionality of the system and the connectors capsule the
control and communication aspects of the system
[Hofmeister et al. 99].

2.2 Specification of Connectors
For the specification of high-level architectural
connectors, two kinds of connectors exist, basic and
composite. Basic connectors provide common com-
munication and/or control primitives. The
communication primitives are for example remote
procedure calls, asynchronous message passing,
synchronous message passing, rendezvous etc. [Mehta et
al. 00] [Eugster et al. 01]. The control primitives define
which components get which information [Mehta et al.
00]. This is relevant if more than two components are
connected with one connector, as presented in figure 2-1.
In this example the information generated by component
A can be forwarded to component B or to component C or

to both. For the specification of these communication and
control primitives an architectural description language
(ADL) or a glue description language [Alan, Garlan 97]
can be used.

:Con:A

:C

:B

Figure 2-1 Example topology (one connector and tree
components)

Composite connectors are built of nested components and
connectors. A topology specification must be used to
describe the formation and the interconnection of these
nested components and connectors. This topology
specification describes the internal structure of a
connector with internal elements and their interactions.

For the topology specification the notation of [Hofmeister
et al. 99] is utilized in this paper. The relevant parts of
this notation and the underlying model are presented in
the appendix.

2.3 Implementation and Realization of
Connectors
To apply the concepts of high-level architectural
connectors in the construction of systems, it is necessary
to point out how to realize them at the code level. For the
realization the following two possibilities exist:

- Connectors are implemented by the code level
modules of the associated components or,

- Connectors are implemented in their own code
level modules

The first variant is used for basic connectors, which only
implement simple communication primitives. For
example, if two components communicate with procedure
calls, the sending component uses a reference, which
identifies the receiving component.

The second variant is used for connectors that implement
control primitives. As an example for this, the connector
in Figure 2-1 can be implemented with a code level
module, which follows the mediator pattern [Gamma et
al. 96]. In this case the connector is realized with a
mediator class and the components are colleagues of this
mediator class. This works well for static relationships
between connector and components. But if the number of
associated components is changing dynamically, the
solution with the mediator pattern is not suitable. In this
case the connector can be implemented with the observer
pattern [Gamma et al. 96]. According to this, the

83

Transformational Pattern for High-Level-Architectural Connectors

connector contains a subject class, which can
dynamically attach the new components.

To realize composite connectors the second variant
should always be used. In any case these connectors
contain nested components, which are implemented in
own code level modules. These code level modules can
be used for the implementation of the control and
communication primitives of the nested components.

3. MOTIVATING EXAMPLE: A
TELEPHONE BUSINESS SYSTEM
An architectural example is utilized to clarify the
understanding of a connector and to motivate the
usefulness of transformational connector patterns.

:telephone
sw

itch

:accounting
controller

:adm
inistration

:customer
management

:telephone

InOut

:telephone business system

:print
system

:email
system

:accounting
system

:administration
GUI

Figure 3-1 Example telephone business system

The chosen example is a telephone business system
(figure 3-1). In this example telephones are connected
with a telephone switch, which is responsible for
connecting phones in order to allow users of the phones
to communicate with each other. Every time a telephone
call is completed the telephone switch transfers the
corresponding data (source number, destination number,
length of call, etc.) to the telephone business system. The
telephone business system consists of the accounting
system, the customer management, the accounting
controller, the print system and the email system. The
accounting system stores the call data. In order to create
invoices the accounting controller gets customer data
from the customer management, which is responsible for
maintaining addresses, names, telephone numbers and
other customer related data and the corresponding call

data from the accounting system. The invoices are sent to
a print system and/or an e-mail system component in
order to be transferred to the customers. The whole
telephone business system can be administrated via an
administration GUI that is connected via an
administration connector with the telephone business
system.

Now we have a more detailed look at the administration
connector. The linked components administration GUI
and telephone business system are executed on different
hardware platforms with different processor types, so
they communicate by means of a public network. Thus,
the connector is implemented with a middleware, such as
CORBA or DCOM. The information flow through the
connector is security relevant, because it contains the
data of the customers and their bills. To prevent security
problems, the connector must be replaced by a connector
which encrypts/decrypts the transferred information. This
is an often-recurring problem, which can be solved with a
transformational pattern. As a solution the architecture
and especially the connector can be transformed with the
secure transmission connector pattern, which is described
in section 5.2. The transformation substitutes the
administration connector with the secure transmission
[administration] connector, which is presented in Figure
3-2.

:encryptor :decryptor:administration

secure transmission [administration]

Figure 3-2 The improved connector secure
transmission [administration]

4. CONCEPTS OF
TRANSFORMATIONAL PATTERNS
In the introducing example an improved connector
substitutes the former connector. This substitution does
not change the functionality of the whole system. This is
exactly the intention of a transformational pattern. Thus
it can be easily applied in the software architectural
phase and in later “lifecycle” phases. The usage of
transformational patterns in later phases in the software
system lifecycle is often necessary. This is because many
problems, which are initiated from connectors, are
identified during the runtime of the system. For example
security problems in the telephone business system can
only be detected when the system is operating. Thus the
transformational patterns must be applied in the
maintenance of the system

For the systematic construction of the improved
connector it is necessary to use the former connector, as it

84

Transformational Pattern for High-Level-Architectural Connectors

is presented in the introducing example (Figure 3-2).
Therefore the mechanisms of high-order connectors from
[Wermelinger et al. 2000] and [Garlan 97] can be taken
as a suitable solution. This concept can be adapted for the
transformational connector pattern. Thus, for the
construction of the improved connector a pattern takes
the former pattern as parameter. Therefore the topology
of the patterns should contain at least one placeholder,
which are used for the inclusion of the former connectors.
The placeholders are represented in the used notation as
connectors with a dashed line (cp. Figure 4-1).

:encryptor :decryptor

secure transmission [administration]

:administration

improved connector

former connector

Figure 4-1 Inclusion of the former connector
(topology)

For the inclusion of a connector into a placeholder it is
necessary to pay attention to a set of rules. For example, a
substitution is only feasible if the obeyed protocols are
compatible. In addition to this, all roles of the included
connector must be connected or bound. To ease this the
presented pattern language only contains patterns and
placeholders with two roles. Furthermore the substitution
is not associative. This means that the order of nesting is
relevant for the quality of the resulting connector.
Furthermore the quality improvement is not always
additive. That means, if for instance an architectural
connector is transformed twice with the secure
transmission pattern, the quality (secureness of the
transmitted information) does not improve double.

5. TRANSFORMATIONAL CONNECTOR
PATTERNS
In this chapter a set of possible transformational patterns
for high-level architectural connectors is presented to
confirm the presented concepts. These patterns can be
found in many current applications. They all have a static
topology, which is presented for each pattern.
Furthermore all presented patterns and the containing
placeholders own two roles, which eases the substitution.

The description of a single pattern in this chapter
consists of the following two points:

- Problem description and context

- Solution.

The problem description points out the problem the
pattern has to deal with. The context gives some
impression about the relevant applications types and
points out under which circumstances the problem
occurs. Then, the main part of the pattern description
presents the solution for the problem. This solution
includes a textual and a topology description of the
pattern. Furthermore, in the solution part the
participating components and connectors are described.

5.1 Compressed Transmission Connector
5.1.1 Problem description and context
When a message is sent between distributed hardware
nodes and messages contain a large amount of data the
transmission of these messages needs a lot of time. This
leads often to a missing of economical and soft real time
requirements.

This problem can be found in modern web applications,
where the amount of data constantly increases. Other
relevant application types are for example distributed
tools for processing video streams.

5.1.2 Solution
To solve this problem the messages should be compressed
before sending and decompressed after receiving. For the
compression and decompression an application specific
algorithm should be used (i.e. MPEG for audio and video
data or Zip/Rar for normal data). In figure 5-1 the
general topology for this pattern is presented. The
participating components are an instance of the
component type compressor and of the component type
decompressor. These two component types implement
the algorithms for the compression and decompression.
The fact that the message can only be sent from the
compressor to the decompressor results in an
unidirectional message flow in this pattern .

:compressor :decompressor

Figure 5-1 Topology of the pattern compressed
transmission

If this pattern is used, a trade-off between the required
time for the compression and decompression and the
saved time by the transmission of the message should be
considered. That is because for small and incompressible
data the pattern and the compression algorithms are only
an overhead.

85

Transformational Pattern for High-Level-Architectural Connectors

5.2 Secure Transmission Connector
5.2.1 Problem description and context
If a message is sent via a connector in a public network,
an unauthorized person can intercept this message.
Hence a person who can read the message is capable of
getting the contained information.

The problem can be found in the context of applications,
which must secure the sending of confidential
information. Typical fields of applications can be found
especially in the military, business and banking sector.

5.2.2 Solution.
To solve this problem the messages should be encrypted.
For this purpose, several algorithms exist (i.e. the RSA
encryption standard), which encrypt a message with a
special encryption key. These encryption algorithms must
be implemented in the component type encryptor (cp.
Figure 5-2). This component encrypts an arriving
message and sends it to a component of the type
decryptor. This component has to know the encryption
key in order to restore the original message. Thus, an
unauthorized person who intercepts the message and does
not know the encryption key and the encryption
algorithm is not able to get the contained information.

:encryptor :decryptor

Figure 5-2 Topology of the pattern secure
transmissions

5.3 Error Detection or Correction Connector
5.3.1 Problem description and context
The information contained in a message can be corrupted
via sending this message over a connector. This may
appear by a failure of the hardware channel, which is
responsible for the transmission of the message. Such
failure might be a bit error. Another way to corrupt a
message is to intercept it and send a manipulated
message to the receiver. If a message contains critical
information a corrupted message leads to a failure of the
system. These failures must be avoided especially for
safety critical systems.

5.3.2 Solution.
As a solution for this problem a message should contain
additional information. This information is redundant
and describes the original message. For instance
checksums like CRC (Cyclic Redundancy Checksums),
parity bits and hamming codes can be used [Birolini 99].
The redundant information is generated in the instance of

the component type message-encoder (compare the
topology description of this pattern in figure 5-3). In the
component message-checker the correctness of each
arriving message is checked. Two handling strategies
exist for incorrect or invalid messages. The first one
identifies the failure and sends requests component a
repeated transmission from the message-encoder. This is
an optimistic strategy. The second strategy is a
pessimistic one and requires a positive reply for each
received valid message . If this sending component does
not receive the positive reply after a specified amount of
time, the message is sent again.

But not only an error detecting information can be sent.
The receiving component could also correct a non-valid
message. For this purpose an error correcting code should
be used. This code needs a larger amount of redundant
information than the error detecting code. Thus, an
increase of the message transfer time and a trade-off
between the correctness of the information and the
message transfer time is necessary. Furthermore the
decoding and error correction of the message times need
computation time, which must be considered.

message-
encoder

message-
checker

Figure 5-3 Topology of the pattern error detection or
correction

5.4 Redundant Channel Connector
5.4.1 Problem description and context
Even though single message missing can lead to an
accident, the transmission of the message must not fail
necessarily. A loss of a message can occur for instance if
the message sending hardware channels fail. The
problem must be especially addressed in many safety
critical technical systems. Such systems can be for
instance railroad, avionic, military or automotive
systems.

5.4.2 Solution.
In this pattern the messages are sent over a set of
independent redundant connectors. In order to achieve
this a component of the type redundant-sender sends the
message to n independent channels. In the figure 5-4
three independent channels are used. The messages are
received by a voting component (voting-receiver). This
component implements a comparison strategy, which
forwards a message only if from m channels identical
messages are received. This leads to a m-from-n voting
strategy. Typical voting strategies are two-from-two, two-
from-three and three-from-five[Birolini 99].

86

Transformational Pattern for High-Level-Architectural Connectors

:redundant-
sender

:voting-
receiver

Figure 5-4 Topology of the pattern redundant channel

If you apply this transformational pattern, consider also
the reliability of the sending and voting component.

5.5 Adapter Connector
5.5.1 Problem description and context
The reuse of large grained components has a benefit for
the development cost and time. But this reuse is
problematic if the reused components are incompatible
with the existing components. This incompatibility is
based on the incompatibility of the obeyed protocols.
Occurring problems are messages with different names or
different data types. More problematic than this are
incompatibilities in the order in which the messages have
to be sent.

5.5.2 Solution.
This problem can be solved if the connectors are enriched
by an adapter mechanism. This adapter mechanism must
be implemented in the component type adapter. For each
problem the adapter mechanism must be defined
separately, so that no common code can be used for the
component type adapter.

:adapter

Figure 5-5 Topology of the pattern adapter

The original adapter pattern can be found in [Gamma et
al. 95]

5.6 Split Bi-directional Transmission
Connector
5.6.1 Problem description and context
Many of the presented patterns can only support a
unidirectional message flow. Therefore it is necessary to
split the bi-directional message flow into two
unidirectional message flows.

5.6.2 Solution.
In figure 4-1 the general topology for this pattern is
presented. The instances of the component type sender
select all messages and send them to the opposite
instance of the component type receiver. Thus, in this
topology the two directions of the message flow can be
identified. The two containing placeholders represent

these directions. They can be substituted by a high-level
architectural connector pattern, which only supports a
unidirectional message flow.

:receiver

:sender :receiver

:sender

Figure 5-6 Topology of the pattern Split Bi-directional
transmission connector

6. CONCLUSION AND FUTURE WORK
In this paper a set of transformational patterns for high-
level architectural connectors was presented. These
patterns address several often-occurring problems in the
interconnection of architectural components.
Furthermore, with these patterns and a set of basic
connectors and components it is possible to construct
systematically an improved connector, which substitutes
the former connector.

Besides, this work was not intended to be complete since
it can be extended by other high-level architectural
patterns. These extensions are necessary especially for
patterns, which implement multicast functionalities. The
presented pattern cannot handle these at the time.

For future work in this area an implementation for each
of the participating components and connectors in a
pattern should be given. Afterwards, the improved
connector can be constructed automatically.

7. REFERENCES
[Agha 88]

G.A. Agha. Actors: a model of concurrent
computation in distributed systems, MIT Press, 1988.

[Agha 97]
G. A. Agha, Abstracting Interaction Patterns: A
Programming Paradigm for Open Distributed
Systems, Formal Methods for Open Object-based
Distributed Systems, IFIP Transactions, E. Najm and
J.-B. Stefani, Eds., Chapman & Hall, 1997.

[Alfaro,Henzinger 01]
L. de Alfaro and T.A. Henzinger. Interface automata.
Proceedings of the 9th Annual Symposium on
Foundations of Software Engineering (FSE), ACM
Press, pp. 109-120, 2001.

[Allen, Garlan 97]
R. Allen and D. Garlan. A Formal Basis for
Architectural Connection. ACM Transaction on
Software Engineering and Methodology, July 1997.

87

Transformational Pattern for High-Level-Architectural Connectors

[Bálek 02]
D. Bálek. Connectors in Software Architectures,
Ph.D. Thesis, March 2002.

[Bálek, Plasil 00]
D. Bálek and F. Plasil. Software Connectors: A
Hierarchical Model. Tech. Report No. 2000/2, Dep. of
SW Engineering, Charles University, Prague, 2000.

[Buschmann et al. 96]
F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerlad, and M. Stal, Pattern-Oriented Software
Architecture - A System of Patterns, John Wiley &
Sons, 1996.

[Eugster et al. 01]
P. Eugster, R. Guerraoui, and C. Damm. On objects
and events. Proceedings for OOPSLA 2001, Tampa
Bay, Florida, October 2001.

[Fowler 99]
M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

[Gamma et al. 95]
E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design
Patterns, Elements of Reusable Object-oriented
Software, Addison-Wesley 1995.

[Garlan et al. 95]
D. Garlan, R. Allen, J. Ockerbloom, Architectural
mismatch or why it's hard to build systems out of
existing parts, Proceedings of the 17th international
conference on Software engineering, p.179-185,
Seattle, Washington, 1995.

[Garlan 98]
D. Garlan, "Higher-order connectors", Position paper
for the Workshop on Compositional Software
Architectures, January 1998.

[Hofmeister et al. 99]
C. Hofmeister, R. Nord and D. Soni, Applied
Software Architecture, Reading, MA: Addison
Wesley Longman, 1999

[Medvidovic et al. 96]
N. Medvidovic, P.Oreizy, J. Robbins and R. Taylor.
Using Object-Oriented Typing to Support
Architectural Design in the C2 Style, Proceedings of
ACM SIGSOFT’96: 4th Symposium on the
Foundations of Software Engineering (FSE4), pp. 24-
32, San Francisco, California, October 1996.

[Medvidovic et al. 97]
N. Medvidovic, P. Oreizy, and R. N. Taylor. Reuse of
Off-the-Shelf Components in C2-Style Architectures.
Proceedings of the 1997 Intemational Conference on
Software Engineering (ICSE’97), Boston, MA, May
1997.

[Medvidovic, Rosenblum 99]
N. Medvidovic and D. S. Rosenblum. Assessing the
Suitability of a Standard Design Method for Modeling
Software Architectures. Proceedings of the First
Working IFIP 52 Conference on Software
Architecture (WICSA1), San Antonio, TX, February
1999.

[Mehta et al. 00]
N. Mehta, N. Medvidovic and S. Phadke. Towards a
Taxonomy of Software Connectors, Proceedings of
the 22nd International Conference on Software
Engineering, Limerick, Ireland, June 2000.

[OMG 01]
OMG ormsc/01-07-01: Model Driven Architecture
(MDA). 2001.

[Plasil et al. 01]
F. Plasil, S. Visnovsky and M. Besta, Behavior
Protocols, Tech. Report No. 2000/7, Dep. of SW
Engineering, Charles University, Accepted for
publication for the IEEE Transactions on Software
Engineering. Prague, 2001.

[Shaw 93]
M. Shaw. Procedure calls are the assembly language
of system interconnection: Connectors deserve first-
class status. In Proceedings of the Workshop on
Studies of Software Design, May 1993.

[Shaw, Garlan 96]
M. Shaw & D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice
Hall, 1996

[Birolini 99]
A. Birolini. Reliability engineering: theory and
practice (third ed.), New York, Springer, 1999.

[Szyperski 98]
C. Szyperski: Component Software. Beyond Object-
Oriented Programming. ACM Press/Addison Wesley,
1998

[Taylor et al. 96]
R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J.
Whitehead, J. E. Robbins, K. A. Nies, P. Oreizy and
D. L. Dubrow. A Component- and Message-Based
Architectural Style for GUI Software. IEEE
Transaction on Software Engineering, 22(6), 1996.

[Wermelinger et al. 00]
M. Wermelinger, A. Lopes and J. L. Fiadeiro.
Superposing Connectors. Proc. 10th International
Workshop on Software Specification and Design.
IEEE Computer Society Press 2000.

88

Transformational Pattern for High-Level-Architectural Connectors

APPENDIX

8. COMPONENT-CONNECTOR-MODEL
As motivated in the paper, components and connectors
should be used as first class entities [Perry, Wolf 92] of
the architectural specification. The usage of the two
architectural element types leads to a model for the
software architecture known as component-connector
model (CCM). A detailed description of the CCM can be
found in [Hofmeister et al. 99]. Further information about
this topic are presented in [Medvidovic et al. 97,
Medvidovic et al. 96, and Taylor et al. 96]. They describe
the C2 architecture style, which uses the component-
connector-model in restricted form and focuses on GUI-
specific applications.

8.1 General Overview
The meta-model of the component connector-model is
presented in Figure 2-1. It is shown, that the software
architecture is described by a set of components and
connectors. The only way to interact with the
environment of these connectors and components is to
use interfaces. Thus, to each component a set of ports and
to each connector a set of roles is assigned. These ports
and roles obey exactly one protocol, which specifies the
order of the incoming and outgoing messages.

To build more complex systems, component and
connector can be hierarchically decomposed. Thus, in
each component and connector other architectural
elements can be nested. This leads to a composition
hierarchy that can be represented as a tree. In this tree
the leaf nodes are basic architectural elements, which
cannot be further decomposed. The top node is the
system as a whole.

Software
Architecture

Component Connector

Port Role

Protocol

*
*connection

*

0..1

*

1

*

1

*

0..1

1

*

1

*

*

0..1 0..10..1

* *

*

*

*

*

binding binding

obeys
obeys

conjugate

Figure 8-1 Meta-model of a component-connector-
model [Hofmeister et al. 99]

Furthermore, the components and connectors must be
interconnected. For this, two general mechanisms exist.

The first one is the connection mechanism, which
interconnects a component and a connector through ports
and roles. For the connection mechanism the component
and the connector must be in the same level in the
composition hierarchy. The second one is the bind
mechanism, which is used to bind an inner port to a port
of the enclosing component, or to bind an inner role to a
role of the enclosing connector respectively. To ease the
understandability of the figures in this paper, these
connection mechanisms are not used in a strict way.

8.2 Construction of a composite connector
For the construction of a composite connector the
following BNF (Backus-Naur-Form) is used, which
introduce the in chapter 4 presented placeholder to the
CCM:

<connector> ::
=

<composite connector> |
<basic connector>

<composite
connector>

::
=

(<component> |
<connectors>)+ |
<connector pattern>

<connector pattern> ::
=

(component |
<connectors>
|<placeholder>)+

<placeholder> ::
=

connector

The language contains two terminal symbols, the basic
connector and the components. They are marked bold
and in angel brackets In addition to this the language
contains with the connector, the composite connector, the
connector pattern and the placeholder four non-terminal
symbols. With the BNF it is shown that a connector can
be constructed with the terminals (the basic connector
and the components). Furthermore, the substitution
mechanism is presented. Thus, a connector can substitute
a placeholder. This connector can be a composite or a
basic connector. The composite connector can be build as
postulated in the meta-model of the CCM (cp. figure 8-1)
or it can be a build with a connector pattern.

The components are terminal symbols to ease the
language. In a complex architectural language the
components can also decomposed and so they must be
represent by non-terminal symbols. This is also described
in section 2 and the meta-model of the CCM.

8.3 Representation
To specify the software architecture with the component-
connector-model a notation is necessary. For this
notation the UML can be tailored with stereotypes. A
suggestion for the stereotypes is given in [Hofmeister et
al. 99]. The stereotypes can also be represented by

89

Transformational Pattern for High-Level-Architectural Connectors

graphical symbols. These symbols are presented in Table
8-1, and are used in this paper.

Table 8-1 Types of the component-connector-model

Type Stereotype Graphical
Symbol

Component <<component>>

Connector <<connector>>

Placeholder <<connector-
placeholder>>

Port <<port>>

Role <<role>>

Protocol <<protocol>>

:Con:A

:C

:B

Figure 8-2 Example topology

Now we reuse the abstract example presented in Figure
2-1, to explain the usage of the notation (cp. Figure 8-2).
In this example topology the three components A ,B and
C are represented by shadowed rectangles. The symbol
used for the connector Con is an elongated hexagon.
These components and connectors have interfaces, called
ports and roles, which are represented by small black
squares and circles and placed on the rectangle's and
hexagon's edges. A connection between ports and roles is
shown with a UML association.
For further interest in the usage of this notation and their
elements in [Hofmeister et al. 99] some concrete
examples are given.

91

91. Methods for States

Methods for States
A Pattern for Realizing Object Lifecycles

Kevlin Henney
kevlin@curbralan.com

kevlin@acm.org

March 2003

Abstract
Substance doesn't change. Method contains no permanence. Substance relates to the form of the
atom. Method relates to what the atom does. In technical composition a similar distinction exists
between physical description and functional description. A complex assembly is best described first
in terms of its substances: its subassemblies and parts. Then, next, it is described in terms of its
methods: its functions as they occur in sequence. If you confuse physical and functional description,
substance and method, you get all tangled up and so does the reader.

Robert M Pirsig, Zen and the Art of Motorcycle Maintenance

The intent of the METHODS FOR STATES pattern is to encapsulate modal behavior of an object
within a single class. In stateful objects with strongly modal lifecycles, the behavior of a
given method can be history sensitive, differing significantly according to the current state
of the object. Simple lifecycle models can be implemented in terms of flags and conditional
statements in each method; an approach whose code comprehensibility scales poorly. More
sophisticated modal behavior can be realized through object delegation, drawing on a
community of dependent classes to express the behavior. However, the larger the
community, the more pronounced coupling and comprehensibility problems become.

Using METHODS FOR STATES a class is able to express all of the different behaviors as
ordinary methods. It can do so without either the control coupling and reduced readability
of large conditional statements or a large supporting cast of ancillary classes. Indirection,
based on referring to methods as objects, is used to both represent the state and dispatch
from a public method request to the correct underlying method for the state.

A structured but lightweight pattern form is used in the paper: the problem is summarized;
a worked example with code presented in C++ and Ruby follows, exploring some possible
solutions but not the pattern's proposed solution; the forces that circumscribe the problem
are listed; the pattern solution is described; a resolution of the example is presented; the
pattern consequences are then detailed; an appendix lists problem–solution thumbnails for
related patterns; acknowledgments and references are listed at the end.

92

Methods for States

Problem
Some types of stateful object can be said to have strongly modal lifecycles. In such an object
the behavior of some of its methods appears to alter significantly over the course the
object's life. It is possible to distinguish different modes of operation — sometimes known
as macrostates or, more ambiguously, states — that collectively describe such behaviors. A
method's behavior depends on the object's internal state, including its current mode, and a
change in mode comes about as a response to an event, such as a method call.

Assuming that each mode does not have associated state of its own, what is the most
effective configuration for expressing the mode and its dependent behaviors?

Example
Consider a simple digital clock:

 It displays hours and minutes in normal 24-hour time.

 Two buttons can be used to adjust the current time: one button to change the mode
and another to increment the hour or minute, depending on the mode.

 A heartbeat event is generated internally once a second to allow the clock to update. To
keep the example simple, no latency is assumed.

The clock has three specific modes:

 Displaying the time, in which the increment button is ignored and the update event
advances the stored time.

 Setting the hours, in which the clock ignores the update event and the increment
button increments the displayed hour value.

 Setting the minutes, in which the clock ignores the update event and the increment
button increments the displayed minute value.

This is not exactly a complex state machine, but there is enough here to get your teeth into.
What are the options available for implementing such a state model?

Flags for States in C++
Let's start what might be termed the FLAGS FOR STATES pattern (see Appendix), expressed
using a flag with a switch accompaniment in C++. The following code shows the essential
public interface and a simple representation:

class clock
{
public:
 void change_mode();
 void increment();
 void tick();
 ...
private:
 enum mode
 {
 displaying_time, setting_hours, setting_minutes
 };
 mode behavior;
 int hour, minute, second;
};

93

Methods for States

The clock has a simple lifecycle model: the only significant behavioral changes come from
the change-mode button. The change in mode is independent of data values or any
intermediate behavior. Therefore, only the change_mode function affects behavior:

void clock::change_mode()
{
 static const mode next[] =
 {
 setting_hours, setting_minutes, displaying_time
 };
 behavior = next[behavior];
}

This particular implementation takes advantage of an enum's implicit conversion to an
integer, using it to lookup the next state in a table. More verbosely, a switch statement
could have been used to achieve the same effect. More tersely, the next state can be
calculated by incrementing the current one, wrapping around from last to first as
necessary, because the state transition model forms a simple cycle.

The realization of increment is less open to alternatives:

void clock::increment()
{
 switch(behavior)
 {
 case displaying_time:
 break;
 case setting_hours:
 hour = (hour + 1) % 24;
 break;
 case setting_minutes:
 minute = (minute + 1) % 60;
 break;
 }
}

The empty case for displaying_time is included for completeness, demonstrating statewide
coverage for the event explicitly. The event response for tick is complementary:

void clock::tick()
{
 switch(behavior)
 {
 case displaying_time:
 if(++second == 60)
 {
 second = 0;
 if(++minute == 60)
 {
 minute = 0;
 hour = (hour + 1) % 24;
 }
 }
 break;

94

Methods for States

 case setting_hours:
 break;
 case setting_minutes:
 break;
 }
}

There is a temptation to tow an orthodox object-oriented hard-line and come down against
flags and switches, assuming them to be an indicator of deficient design. However, this line
is a narrow and not always convincing one. For the scope and scale of the given problem
almost any other solution not based on explicit selection will be longer and more intricate.

However, if we imagine a slightly broader version of the problem, the context shifts and
the flag and switch solution becomes increasingly — indeed, in terms of lines of code,
exponentially — inappropriate. Consider adding an alarm feature to the clock, and
perhaps a date feature. Taking it further, a digital watch typically offers all these features
and more: stopwatch, multiple time zones, phone book, etc. The FLAGS FOR STATES design
will collapse under its own weight, acquiring the flexibility of a block of concrete, the
cohesiveness of loose sand, and the plot comprehensibility of a telephone directory. Such
consequences would justify the pursuit of alternative approaches.

Objects for States in Ruby
The OBJECTS FOR STATES pattern† (see Appendix) offers itself up as a likely candidate. The
organizing principle behind the pattern is the introduction of an object to represent the
behavior of the main object — the clock in this case — in each mode. The behavioral object
offers a method for each event the main object can respond to — in this case change_mode,
increment, and tick.

Here is a sketch of this from the main object's perspective in Ruby:

class Clock
 def initialize(hour, minute, second)
 @now = TimeOfDay.new(hour, minute, second)
 @behavior = DisplayingTime.new
 end
 def change_mode
 @behavior = @behavior.change_mode(@now)
 end
 def increment
 @behavior = @behavior.increment(@now)
 end
 def tick
 @behavior = @behavior.tick(@now)
 end
end

All the responsibility for behavior is forwarded to the behavior object. For each mode of
behavior there is a class that implements the same method interface, namely change_mode,
increment, and tick. Explicit switch-like selection has been replaced with runtime
polymorphism, and each delegated method selects the next behavior. When there is a state

† OBJECTS FOR STATES is also known as the STATE pattern, but this name is misleading and not particularly descriptive. It
is misleading because it is often mistaken as definitive: the state pattern. It is not particularly descriptive because there is
no suggestion of the solution structure in the name, just a hand-waiving reference to the problem. The OBJECTS FOR
STATES name is listed [Gamma+1995] as a synonym for STATE. It more accurately captures the pattern's intent and
structure, and should be preferred.

95

Methods for States

transition the delegated method will return the mode object for the new state; when there
is no transition, the delegated method simply returns self. The behavior for each mode has
been localized and encapsulated rather than scattered across different cases in many
functions. The reason for passing the @now instance variable becomes apparent when you
consider that the behavioral objects need to work with their context, so they must also
affect the state of their associated Clock object's data. The type of the current time is a
simple data structure with fields for the current hour, minute, and second:

TimeOfDay = Struct.new(:hour, :minute, :second)

Objects are handled by reference rather than by copy, so the behavioral objects modifying
the passed data object affect the state of the main clock object. Keeping to a fairly
conventional OO style:

class DisplayingTime
 def change_mode(time_of_day)
 SettingHours.new
 end
 def increment(time_of_day)
 self
 end
 def tick(time_of_day)
 if (time_of_day.second += 1) == 60
 time_of_day.second = 0
 if (time_of_day.minute += 1) == 60
 time_of_day.minute = 0
 time_of_day.hour = (time_of_day.hour + 1) % 24
 end
 end
 self
 end
end

class SettingHours
 def change_mode(time_of_day)
 SettingMinutes.new
 end
 def increment(time_of_day)
 time_of_day.hour = (time_of_day.hour + 1) % 24
 self
 end
 def tick(time_of_day)
 self
 end
end

class SettingMinutes
 def change_mode(time_of_day)
 DisplayingTime.new
 end
 def increment(time_of_day)
 time_of_day.minute = (time_of_day.minute + 1) % 60
 self
 end
 def tick(time_of_day)
 self
 end
end

96

Methods for States

The behavioral object is sometimes also known as the state object, but this name is
confusing: as you can see from the code, the state object is often stateless. In this case,
because the state object is stateless and immutable, a single instance for each concrete class
will suffice, avoiding the need for dynamic object creation. The appropriate solution in this
case is simply to use a class variable. There is a temptation to use a SINGLETON
[Gamma+1995], but this temptation should be resisted. In this case, as in many others, it
overcomplicates the design. The use of a single, shared instance for each mode is the
business of the Clock class, not the mode's, and an ordinary class variable is both simple
and sufficient.

Another temptation that would offer little in return would be to introduce a common
superclass for the DisplayingTime, SettingHours, and SettingMinutes classes. The classes
currently share the same implicit interface, but no effort is made to factor out any common
behavior. In some designs this may make sense, but there is little to be gained by adding an
extra class to the current example. The only duplicated code is the empty tick method in
both the SettingHours and the SettingMinutes classes. Such light and incidental duplication
of nothingness does not really warrant extracting a superclass.

The implementation of the state model using objects and polymorphism is elegant, albeit
longer than the explicit-conditional approach. Its broader benefits are not as easily
discernible as they would be in a more extensive state model. A relatively large community
of specific classes and methods seems to have sprung up to solve a comparatively simple
problem.

Forces
History-sensitive method behavior implies that additional object state is required to track
the current mode. This state needs to be clear and easy to manage. Handling the additional
state should also not weigh down the implementation of each method with additional
complexity.

Simple lifecycle models can be implemented in terms of flags and conditional statements in
each method; an approach whose code comprehensibility scales poorly. More sophisticated
modal behavior can be realized through object delegation, drawing on a community of
dependent classes to express the behavior, typically using OBJECTS FOR STATES
[Gamma+1995]. However, the larger the community, the more pronounced coupling and
comprehensibility problems become. If only a single method is history sensitive,
elaborating a whole class hierarchy certainly seems like overkill.

Particular method behaviors may be shared across different methods in different states: for
example, methods that do nothing or methods that trigger a particular event, such as an
exception. Avoiding duplicate code is generally considered a good — indeed, fundamental
— practice. Common behavior can be factored out into private methods and called from
the relevant case when using FLAGS FOR STATES. Alternatively, a class hierarchy, based
typically on nesting of states, allows common method implementations to be pulled up the
hierarchy. However, this does not accommodate behaviors that are common but not
related so simply, crosscutting the hierarchy.

Some developers have made the mistake of assuming that OBJECTS FOR STATES is the "one
true way" to realize state models in code. This is partly because of its inclusion in Design
Patterns [Gamma+1995] as the only object lifecycle pattern and partly because of its
branding as the STATE pattern. The pattern is powerful and certainly not trivial; applying it

97

Methods for States

uniformly to code as a cure-all for all state models is sure to complicate the source and
confuse the reader.‡

The benefit of a flag-based approach is that all the behavior is defined in a single class
rather than across many. Access to the context of the main object is also simple: ordinary
methods have such direct access, which is generally not the case for separate objects.
However, the effect on each individual method is to obfuscate rather than clarify intent.
Each history-sensitive method suffers from strong control coupling to the flag variable.

What is needed of a solution is the ability to express and select each different behavior
simply, without interference from explicit conditional statements or separation across
multiple classes.

Solution
Represent an object's mode as a simple data structure containing references to methods.
Each history-sensitive public method of the object forwards a call, along with any
arguments received, to a corresponding entry in the data structure. Each different behavior
for the object is implemented as its own private method. Each mode is associated with its
own data structure instance, which holds references to the relevant private methods.

The method references may be true direct method references, such as member function
pointers in C++, or they may take the form of the symbolic method names that are resolved
using reflection.

The data structure holding the method references can be a record-like data structure with
named fields, such as a C++ struct. Alternatively, a dictionary object can be used to look
up the private method reference corresponding to each history-sensitive public method. In
effect, this configuration emulates the normal method lookup table (vtable) mechanism,
with a little added customization, evolution, and intelligence. Where only a single public
method is history sensitive, no intermediate data structure is needed to represent the
mode: a single method reference will suffice. Global, module, or class-wide variables can
be used to hold the single instance of the data structure (or method reference) required for
each mode.

Resolution
Returning to the clock example, the forces occurring in both the C++ and Ruby designs can
be resolved conveniently and idiomatically with METHODS FOR STATES.

Methods for States in C++
In C++ the design can be modified so that each public member function forwards its call to
the relevant member function pointer in a struct indicative of the current mode:

class clock
{
public:
 void change_mode()
 {
 (this->*(behavior->change_mode))();
 }

‡ Misapplication of OBJECTS FOR STATES only presents itself as a force as a consequence of common programmer design
pattern knowledge: a few years ago, before Design Patterns became widely read as an OO design book, it would not be
considered a force; it is possible that the same may be true in the future for different reasons.

98

Methods for States

 void increment()
 {
 (this->*(behavior->increment))();
 }
 void tick()
 {
 (this->*(behavior->tick))();
 }
private:
 typedef void (clock::*function)();
 struct mode
 {
 const function change_mode, increment, tick;
 };
 static const mode displaying_time
 static const mode setting_hours;
 static const mode setting_minutes;
 const mode *behavior;
 int hour, minute, second;
 ...
};

A palette of suitable behavior is provided by private member functions:

class clock
{
 ...
private:
 ...
 template<const mode *next_mode>
 void change_to()
 {
 behavior = next_mode;
 }
 void next_hour()
 {
 hour = (hour + 1) % 24;
 }
 void next_minute()
 {
 minute = (minute + 1) % 60;
 }
 void update_time()
 {
 if(++second == 60)
 {
 second = 0;
 if(++minute == 60)
 {
 minute = 0;
 hour = (hour + 1) % 24;
 }
 }
 }
 void do_nothing()
 {
 }
};

99

Methods for States

And the rest is down to initialization, letting the data do the work:

const clock::mode clock::displaying_time =
{
 &clock::change_to<&setting_hours>, &clock::do_nothing, &clock::update_time
};
const clock::mode clock::setting_hours =
{
 &clock::change_to<&setting_minutes>, &clock::next_hour, &clock::do_nothing
};
const clock::mode clock::setting_minutes =
{
 &clock::change_to<&displaying_time>, &clock::next_minute, &clock::do_nothing
};

Methods for States in Ruby
To implement the clock example in Ruby, class variables — prefixed with @@ — and Struct
objects are used:

Mode = Struct.new(:increment, :tick)

class Clock
 @@displaying_time = Mode.new(:do_nothing, :update_time)
 @@setting_hours = Mode.new(:next_hour, :do_nothing)
 @@setting_minutes = Mode.new(:next_minute, :do_nothing)
end

Method calls are forwarded by accessing the appropriate method name from the
corresponding Struct attribute, and resolving it against the current object:

class Clock
 def initialize(hour, minute, second)
 @hour, @minute, @second = hour, minute, second
 @behavior = @@displaying_time
 end
 def change_mode
 send(@behavior.change_mode)
 end
 def increment
 send(@behavior.increment)
 end
 def tick
 send(@behavior.tick)
 end
end

A lookup table simplifies the change_mode method, so that only a single implementation is
required:

class Clock
 @@mode_changes =
 {
 @@displaying_time => @@setting_hours,

100

Methods for States

 @@setting_hours => @@setting_minutes,
 @@setting_minutes => @@displaying_time
 }
 def next_mode
 @behavior = @@mode_changes[@behavior]
 end
 def next_hour
 @hour = (@hour + 1) % 24
 end
 def next_minute
 @minute = (@minute + 1) % 60
 end
 def update_time
 if (@second += 1) == 60
 @second = 0
 if (@minute += 1) == 60
 @minute = 0
 @hour = (@hour + 1) % 24
 end
 end
 end
 def do_nothing
 end
end

Because the underlying implementation of change_mode is the same no matter what the
mode, i.e. next_mode, it need not participate in the dynamic lookup. It has therefore been
excluded for the method referencing structure.

Consequences
Using METHODS FOR STATES allows a class to express all of its different behaviors in
ordinary methods on itself. It achieves its behavior without either the control coupling and
reduced readability of large conditional statements or a large supporting cast of ancillary
classes.

Indirection, based on referencing methods as objects in their own right, is used both to
represent the state and to dispatch from a public method request to the correct underlying
method for the current mode. The overall control flow and effect is that of DOUBLE
DISPATCH (see Appendix). In terms of performance, METHODS FOR STATES requires an
additional two levels of indirection to resolve a method call.

The behavior of the class's objects is fully encapsulated within the class, the same unit of
code to which the behavior is coupled, rather than fragmented across multiple small
classes. The only additional data type required is for the data structure holding the method
references, which may be defined as a nested or module-level type, or may exist as an
associative collection, or may be nothing more than a single method reference. There is no
proliferation of classes, nested or otherwise. On the other hand, if there are many distinct
behaviors, the main class may end up far longer than was intended or is manageable — a
shopping list of different options.

Each distinct behavior is assigned its own method. This allocation of responsibility is
clearer and more cohesive than asking the reader or class author to wade through
potentially large rambling selection statements. The independence of public methods from
their runtime implementation also allows more fluidity in the modes and their transitions,
and improves opportunities for sharing of common behavior between different modes:

101

Methods for States

 switch statements are notoriously tedious and error prone for such extension —
especially in the large — leading to both bugs and duplicate code.

 Representing modes in a class hierarchy supports simple addition of new modes, but
allows convenient sharing of common implementation only between a macrostate and
its superstate. This relationship is mirrored in the class hierarchy, so method sharing
across unrelated states is inconvenient.

With METHODS FOR STATES, common behavior is capitalized on more readily than in other
designs, whether in the form of doing nothing or changing mode in a consistent fashion.
The more that event responses between different modes overlap, the more suitable this
pattern becomes.

The potential independence of public methods from the underlying private methods
means that method names cannot always be relied upon to indicate the context of calling.
The initialization of each mode's data structure instance must be read to understand what
methods are used in what modes and to what end.

Other than the one-off initialization of each mode's corresponding lookup data structure,
no additional object creation is needed to support METHODS FOR STATES. The data structure
instances can be initialized at the earliest opportunity — program startup or class load time
— and remain unchanged. Because they are immutable the sharing is intrinsically thread-
safe.

No object context needs to be passed around because ordinary methods can already see the
internal state of the object they represent the behavior of. This directness makes the
development and comprehension of each specific method behavior simpler: no additional
arguments are required for the underlying methods; no tricks with indirection or data
visibility are required to deal with whatever restrictions the language places on an object's
access to the internals of another. Although the use of closure-based objects — such as
Java's inner classes — simplify the context-access issues from one dependent object on
another, such an approach requires a great deal more object creation to work; a one off at-
startup initialization will not do the trick.

METHODS FOR STATES is most suited to languages that support simple method references
and resolution. For example, in C++ a member function pointer is resolved against an
object pointer using the ->* operator. Similarly, in C plain function pointers support the
simple implementation of this pattern in a non-object-oriented context. In Ruby a method's
symbolic name can be invoked on an object using the send method that is common to all
objects. In contrast, Java's reflection mechanism requires more gymnastics — and
correspondingly more obscurity and less convenience — to call a method on an object
given its name as a string. C# could be said to suffer a similar problem, but it also has
features that support a simple enough workaround: delegates and static methods. Instead
of expressing the behaviors as ordinary private methods, they can be expressed as private
static methods that take an additional argument to an instance of the class, effectively
emulating the this reference implicit in ordinary methods. For static methods, delegate
variables behave much as function pointers do in C, allowing a cleaner and more efficient
implementation of METHODS FOR STATES than is possible with reflection.

METHODS FOR STATES can often provide a simpler and more manageable alternative to
OBJECTS FOR STATES (see Appendix), a pattern with similar intent but markedly different
structure and options. Incorporated into existing state pattern languages [Dyson+1998,
Yacoub+2000], METHODS FOR STATES would expand the vocabulary, options, and range of
designs available to a programmer beyond the narrower set offered by an OBJECTS FOR
STATES view of state machines. Where per-mode state is needed, OBJECTS FOR STATES offers
a more cohesive design than trying to shore up METHODS FOR STATES with extra optional
variables. In languages, such as Java, that require awkward code to realize METHODS FOR

102

Methods for States

STATES, or that lead to the creation of further objects and classes, an OBJECTS FOR STATES
solution is often preferable.

METHODS FOR STATES is not a viable substitute in situations that better suit COLLECTIONS
FOR STATES (see Appendix), but it can be used as a complement. COLLECTIONS FOR STATES
groups multiple objects together according to their mode, representing the concept of the
mode extrinsically. Objects in the same mode are held in the same collection, reducing the
need for intrinsic mode representation. However, where COLLECTIONS FOR STATES is being
applied as a speed optimization, e.g. acting collectively on modal objects that already have
an internal lifecycle model, retaining METHODS OF STATES internally may still make sense.

Appendix
The following table lists thumbnails for patterns external to this paper that are related in
some way to METHODS FOR STATES. OBJECTS FOR STATES provides a common alternative to
METHODS FOR STATES, and vice-versa. Similarly FLAGS FOR STATES can be used in limited
scenarios where either METHODS FOR STATES or OBJECTS FOR STATES might be regarded as
overkill. COLLECTIONS FOR STATES is a complementary pattern: it may be applied in its own
right or in conjunction with METHODS FOR STATES, OBJECTS FOR STATES, or FLAGS FOR
STATES, but not as a substitutable alternative. DOUBLE DISPATCH describes the most
generalized form of the dispatch used in the heart of METHODS FOR STATES.

Name Problem Solution
COLLECTIONS FOR
STATES
[Henney1999]

A number of objects are
managed and held in a
collection, and operated on
according to their common
state. What is a suitable
expression of the state with
respect to each object?

Represent each state of interest
with a separate collection that
refers to all objects in that state.
State transitions become transfers
between collections.

DOUBLE DISPATCH
[Beck1997]

How can you select a method
based on the type of the target
and the type or value of one
other variable without
hardwiring the selection as a
conditional statement?

Delegate the selection of the actual
method via a helper object that
then calls back on the main object.
The type of the helper object
determines which method is
selected. The helper object is
normally the other variable in the
interaction.

FLAGS FOR STATES How can an object
significantly change its
behavior for only a couple of
methods based on only one or
two alternative internal states?

Represent the behavioral state of
the object explicitly using a flag.
In each of the history-sensitive
methods, use a conditional to
check the flag and act accordingly.

OBJECTS FOR STATES
[Gamma+1995,
Dyson+1998]

How can an object
significantly change its
behavior, depending on its
internal state, without
hardwired multi-part
conditional code?

Separate the behavior from the
main class, which holds the
context, into a separate class
hierarchy where each class
represents the behavior in a
particular state. Method calls on
the context are forwarded to the
mode object.

103

Methods for States

Acknowledgements
This paper is derived, in part, from a previously published article [Henney2002].

I would like to thank Pascal Costanza for his excellent shepherding and his patience, Jon
Jagger for his additional comments on the preconference version of the paper, and to the
participants in the writer's workshop at VikingPLoP 2002: Mikio Aoyama, Walter Cazzola,
Lars Grunske, Juha Parssinen, Michael Pont, and Kristian Elof Sørensen.

References
[Beck1997] Kent Beck, Smalltalk Best Practice Patterns, Prentice Hall, 1997.

[Dyson+1998] Paul Dyson and Bruce Anderson, "State Patterns", Pattern Languages of
Program Design 3, edited by Robert Martin, Dirk Riehle, and Frank Buschmann,
Addison-Wesley, 1998.

[Gamma+1995] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[Henney1999] Kevlin Henney, "Collections for States", Proceedings of the 4th European
Conference on Pattern Languages of Programs, 1999, http://www.curbralan.com.

[Henney2002] Kevlin Henney, "State Government", C/C++ Users Journal C++ Experts
Forum, June 2002, http://www.cuj.com/experts/2006/henney.htm.

[Yacoub+1998] Sherif M Yacoub and Hany H Ammar, "Finite State Machine Patterns",
Pattern Languages of Program Design 4, edited by Neil Harrison, Brian Foote, and Hans
Rohnert, Addison-Wesley, 2000.

105

105. Universal Enterprise Model: Business Pattern Language

Universal Enterprise Model:
Business Pattern Language

Pavel Hruby

Microsoft Business Solutions

Frydenlunds Allé 6
DK-2950 Vedbaek, Denmark

E-mail: phruby@acm.org

Abstract
Have you ever tried to describe an object model of a business system and struggled to find the right
relationships between business entities, such as customers, business partners, products, sales and
purchase orders, invoices and credit memos? Have you ever wanted to know a simple rule for
modeling the business system in a consistent manner? The Universal Enterprise Model is a pattern
language for building extensible models of business systems. The fundamental structure of the
business system is derived from the resources-events-agents (REA) pattern, which is extended by a
number of behavioral patterns, such as roles, due dates, addresses, classifications and accounts.

Context
Relationships between business partners are at the core of business. Various business software
solutions implement functionality that focuses on various aspects of relationships between business
partners, such as customers and vendors, employers and employees, service providers and service
receivers. Almost all of these relationships are in some way intended to, or directly related to
exchanges of economic resources, such as the purchase and sale of products and services,
corresponding payments. Some relationships specify commitments and constraints for the
exchanges.

Some examples of such relationships are as follows:
! Purchase order: a commitment for the vendor to deliver goods and obligation for the customer

to pay for it. In addition, a purchase order specifies payment and delivery terms, such as the
delivery date and what happens if the delivery date is not met.

! Invoice: a declaration of the claim that the buyer owes a specific amount of money to the seller.

In addition, an invoice typically specifies other properties such as payment terms.

! Employment contract: specifies details about relationship between employee and employer. In

addition, the employment contract specifies other conditions of the employment, such as
position and compensation.

! Shipment: a movement of materials between business partners, warehouse sites, or between a

warehouse site and a business partner.

! Payment: a transfer of money from one business partner to another.

106

Universal Enterprise Model: Business Pattern Language

I call the abovementioned artifacts business relationships. The term business relationship, as used
in this paper, covers relationships between parties in various scopes and at various levels of
abstraction. An example of a general scope relationship is a contract for providing a maintenance
service in a given period of time. This contract can result in more specific relationships, such as
service orders, and they result in more specific relationships, such as material movements, payments
and other business transactions.

I call the business partners participating in a business relationship parties. In keeping with the
authors of other publications [1], [3], [4], [6], [7], I use the term party to mean a business entity that
can participate in a business relationship with another party, such as a person, company, legal
entity, team, or organizational unit.

The resource is a subject of trade. I use the term resource to mean a concrete physical product,
asset, inventory, or service that has identity. For example, a product that has a serial number, or a
service that has a start time and end time.

Problem
Have you ever tried to describe an object model of a business system and struggled to find the right
structure of the model and the right relationships between business entities? Have you ever wanted
to know a simple rule for modeling the business or economic system in a consistent manner?

Forces
1. Parties have relationships between each other. We can model these relationships as associations
between the parties. However, these relationships often have specific attributes, describing details
of this relationship rather than details of one of the parties. Examples of such attributes are delivery
due, validity period, payment terms and employment position. Because of these attributes, the
relations between parties cannot be modeled as pure associations.

2. Relationships between parties involved in business are manifested in various documents, such as
purchase and sales orders, quotes, invoices, payments, and delivery receipts. These documents vary
in complexity and it is not possible to determine a complete set of business documents that fit all
situations in all businesses. However, you want to capture all these relationships in a uniform way
in the object model.

3. If a relationship exists between parties, this relationship may, under certain conditions, create or
cause the creation of other relationships between the same parties. For example, a purchase order
may result in a delivery of goods. You want to capture this fact in the object model. However,
traditional object-oriented modeling techniques do not give any hints for how to describe the fact
that one relationship between objects can imply another.

Solution
Encapsulate the relationship between parties in an entity called business relationship. The business
relationship entity is related to at least two party entities: the supplier and the consumer. Examples
of parties are customer, vendor, or employee. Each business relationship is related to one or more

107

Universal Enterprise Model: Business Pattern Language

resources. Examples of resources are an asset, a physical product, service, work, or another subject
of trade.
The conceptual structure of the business relationship pattern is illustrated in Fig.1.

Resource
Business

Relationship
Party

supplier0..*0..* 10..*

consumer10..*

Fig.1. Conceptual structure of the business relationship pattern

Known Uses
Purchase order is a business relationship that specifies a commitment for the vendor to deliver
goods and an obligation for the customer to pay for it. Purchase order is related via the
reconciliation to the business relationships shipment and payment.

Invoice is a business relationship that declares the claim that the buyer owes a specific amount of
money to the seller.

Customer phone call requesting a sales quotation is a business relationship, related to certain
resources. It is related via the reconciliation relationship to the quotation.

Resulting Context
If you are starting to look at your enterprise through the perspective of business relationships, then
you will need to decide what relationships between parties exist, and model these relationships as
entities.

 The business relationship pattern allows you to define the fundamental infrastructure of the
enterprise model, which can be extended by other patterns. See the section Related Patterns for
details. However, besides this structure, the business relationships pattern does not specify any
constraints and modeling rules. The system compliant with economic rules is described in the REA,
COMMITMENT and CLAIM patterns.

Related Patterns
The pattern BUSINESS TRANSACTIONS specifies how to record history of business
relationships. The patterns REA, COMMITMENT and CLAIM extend the BUSINESS
RELATIONSHIPS pattern with general economic rules valid for every economic system. These
patterns determine the structure and skeleton of the enterprise model.

The rest of the patterns extend the structural patterns with specific functionality and features.
Currently, in this group are DUE DATES, ROLES, ACCOUNTS, CLASSIFICATIONS, and
ADDRESSES. This is not a final list, and the pattern language can (and will) be extended by adding
more patterns to this group. The pattern map is illustrated in Fig. 2.

108

Universal Enterprise Model: Business Pattern Language

Fig. 2. Pattern Map

Credits and Sources
1. Christian Vibe Scheller of Denmark, personal communication, 1998 – 2000, Lars Hammer,
Jesper Kiehn, Henning Kjersgaard Nielsen, Erik B. Jakobsen of Microsoft Business Solutions,
personal discussion, 2000 – 2002.

2. David Hay in [6] describes the business relationships Purchase and Sale Orders, Lease, Permit
and Employment Contracts. David Hay uses the terms contract for business relationships, line item
for business relationship line and asset for the resource. The business relationship pattern, as
described in this paper, is more general than David Hay’s contact. It also covers material
movements, invoices, etc.

3. Peter Coad in [1] uses this pattern to model various business relationships, including Request for
Quote, Purchase and Sales orders, Delivery, Invoice, Service, Production Requests, Manufacturing
process. The complete list is available at http://www.oi.com/services/publications/jm_book.zip,
Peter Coad uses the terms Moment-Interval for Business relationship, Description for resource and
Party Role for party. The universal enterprise model pattern language uses this pattern as a skeleton
to bind together additional business patterns.

4. Customer Contact Pattern by Dirk Riehle is a specific instance of this pattern, in which one of the
parties is the customer. For details, see http://www.riehle.org.

Specify location
in space and time

Groups of customers
or products are treated
in the same manner

more patterns

ADDRESSESDUE DATESCLASSIFICATIONS

BUSINESS
TRANSACTIONS

RESOURCES
EVENTS AGENTS

(REA)

CONTRACTS CLAIMSACCOUNTS

Start
here

Record
history

Conform to
general
economic rules

Extract
analytical
information

Specify
future events

Capture
unbalanced
exchanges

Customer, vendor
and employee might
be the same person

Specify when
events occur

BUSINESS
RELATIONSHIPS

ROLES

109

Universal Enterprise Model: Business Pattern Language

Business Transactions

Context
Registering and analyzing history of the business relationships between business partners is an
important part of the functionality of most business software solutions. The history of business
relationships is typically related to realized or intended exchanges of economic resources, such as
purchase and sale of products and services, invoices and corresponding payments.

Problem
How do we keep track of the history of business relationships?

Forces
1. You want a system that records all relevant information about relationships between business
partners.

2. You want to model the fact that an event that affects the business relationship might imply other
events to occur. For example, shipment of goods implies payment to occur.

3. If user of the system made an error when making a record, there are often legal requirements for
correction of the error. The original (erroneous) information should often not just be deleted or
overwritten, but instead a new record that eliminates the effect of the error should be made.

Solution
Encapsulate the event that changed the relationship between parties in an entity called business
transaction. The business transaction is related to two party entities: the supplier and the consumer.
Each business transaction is related to one or more resources. Business transaction might have
additional relationships to other entities, such as to the category of party or category of resource
(see the CLASSIFICATIONS pattern for details).

The operation commit() persists the business transaction and makes is immutable, that is, no
changes in the properties and relationships are allowed after this operation has successfully finished.
If the business transaction contained erroneous information, the only way to undo the effect of this
transaction is to create and commit another transaction that eliminates the effect of the error. See
reference [5] for discussion on adjusting transactions.

The attribute when occurred denotes a time interval or point in time when the transaction occurred,
and when committed denotes the time when the transaction was registered.

The reconciliation relationship represents a cause-and-effect association between the business
transactions. For example, a quotation might be followed by an order, shipment by payment, or
payment by shipment. Please note that initiator and terminator of the reconciliation do not imply
any time order. That is, the terminator business relationship can take effect before the initiator
business relationship and vice versa.

110

Universal Enterprise Model: Business Pattern Language

The structure of the business transaction pattern is illustrated in Fig.3.

Resource

commit ()

when occurred
when committed
value

Business
Transaction

Party

supplier

0..*
1..*

10..*

consumer1

0..*

0..*
initiator

reconciliation

0..*
terminator

Fig.3. Structure of the business transaction pattern

An example of the business transaction pattern is illustrated in Fig. 4. The figure illustrates two
business transactions: invoice and payment. The parties are Customer C and Vendor V. The invoice
line specifies four pieces of Product A. The reconciliation relationship links together the payment
and the invoice.

$ 10 per 1 piece

«resource»
Product A

«party»
Customer C

«resource»
Cash

4 pcs
$ 40

«business transaction»
Invoice

reconciliation

$ 40

«business transaction»
Payment

«party»
Vendor V

initiator terminator

consumer supplier supplier consumer

Fig. 4. Example of business transactions

Known uses
Material movement. The warehouse locations are the parties, and the responsibility for the material
is the resource.

Sales order line. Sales order line is related (via sales order header) to the customer and seller. Sales
order line specifies a product or service, which are the economic resources for both parties.

Rental. The premises is the resource; yielding the right to occupy to the tenant is an outflow of
resources. Payment of rent is an inflow of resources. Rental is an example of business transaction
that occurs over an interval of time.

111

Universal Enterprise Model: Business Pattern Language

Deposits, withdrawals of cash, and interest payments are the transactions in a banking system. Bank
and customer are the parties, and responsibility for cash, and interest payments are the resources.

Resulting Context
The BUSINESS TRANSACTIONS is a special case of BUSINESS RELATIONSHIPS. It covers
those business relationships, for which all changes are recorded, especially the exchanges of
economic resources between business partners, and commitments for such exchanges.

Some business transactions last over a period of time, and recording these changes is not always
natural. Some changes, like usage of the equipment or shrinkage of the inventory, happen
continuously, and not at discrete points in time. Nevertheless, the accounting practice has standard
way of solving these issues.

Please note that a business transaction does not need to have a navigable relationship to financial
accounts. See the ACCOUNTS pattern, and the reference [6] for more information. However, many
traditional accounting systems specify an account already when the transaction is committed. See
the reference [5] for more information on this approach. Although this is commonly used in the
accounting practice, this solution has its limits for very large business information systems. Please
see the reference [8] for discussion on scalability.

Related Patterns
The patterns REA, COMMITMENTS and CLAIMS extend the BUSINESS TRANSACTIONS
pattern with general economic rules valid for every economic system. The ACCOUNTS pattern
shows how to extract analytical data from the recorded transactions.

Credits and Sources

1. Business transactions are part of the Transactions and Accounts pattern language, available at
http://c2.com/cgi-bin/wiki?TransactionsAndAccounts

2. Martin Fowler’ paper Accounting Patterns has a concept of event that is close to business
transaction. The paper is available at http://martinfowler.com/apsupp/accounting.pdf.

112

Universal Enterprise Model: Business Pattern Language

The REA (Resources Events Agents) Pattern

Context
Business is based on exchanges of economic resources. For example, a customer at a shop buys a
product. The product is the resource and the sale is the outflow of resources. The payment for the
product is an inflow or resources and the cash is the resource. If the deal is fair, both partners agree
that the value of the exchanged resources is the same. That is, the agreed value of the product is the
same as the amount of cash received in return.

For business or legal reasons, it is important to keep track of what resources have been exchanged
between business partners and when the exchange of resources occurred.

Some exchanges occur over an interval of time, for example, providing or receiving services, or
labor work. Even the sale in a shop might have a non-zero duration, if we want to keep track of
various stages of the selling process. It is not that important to distinguish whether exchange
occurred instantaneously or during an interval of time. It depends on the point of view. From this
pattern perspective it is important that the exchange occurred and that the resource changed
ownership.

Problem
How do we model exchanges of economic resources?

Forces
1. You want to model the rules that apply to all economic systems. However, most analysis patterns
and data models are often domain dependent, because they reflect experience of specific software
consultants.

2. You want to model things that are shareable and reusable across various application domains, and
where details of specific applications are ignored. You could build your object model from user
requirements, but it would be very difficult to find the right abstractions valid for all economic
systems.

3. You want to build an extendable system, which can be extended by new concepts without
changes to the foundations of the system. This is difficult, because you must sort out or generalize
the domain specific knowledge. Otherwise, your system would result in changes, instead of
extensions.

4. You want well-defined modeling rules that enable you to ensure that your model is consistent.
For example, how do you keep track of a party who gives resources away, and eventually receives
other resources in return? Other examples of consistency questions include: if company sells a
product, how does the company obtain it? Or what does a company get in return for providing a
customer with certain benefits?

113

Universal Enterprise Model: Business Pattern Language

Solution
Consider the economic activities as a sequence of exchanges of resources – the process of giving up
some resources to obtain others. The following entities model the exchanges of resources.

Economic event represents the interval in time, or a moment in time when economic exchange
occurs. Further more, economic event keeps track of the value of exchanged resources. The time
interval specifies a moment or interval in time when the exchange occurred. Some exchanges occur
instantaneously, such as sales of goods; some occur over interval of time, such as rentals or
services. Note that the change of ownership (the economic event) sometimes occurs at a different
time to that of the physical movement of goods.

The economic event represents either inflow or outflow. Inflow is an event when a party receives
ownership of resources, for example, incoming payment. Outflow is an event when a party yields
ownership of resources, for example, a shipment of goods.

Resource represents the subject of trade. Resource is something of value that is under the control of
the party.

Party represents an economic unit, or legal entity capable of exchanging economic resources with
other parties.

Duality is a special kind of reconciliation. It is a relationship between inflow economic events and
outflow economic events. When the deal is closed and fulfilled, the values of inflow and outflow
economic events are the same. It is duality’s responsibility to keep track of the balance between the
outflow and inflow. Duality is a many-to-many relationship. For example, several sales can be paid
by one check, and one sale can be paid by several installments.

The model is illustrated in Fig. 5.

supplier

consumer

Resource
time interval
value

Economic
Event

Party

1

10..*

duality

1

0..*

initiator terminator

2..*

inflow
{or}

outflow

Fig. 5. The economic event pattern as a special case of business transaction

The following three rules apply for the model. They can be used to ensure consistency of a specific
instantiation of this pattern.

1. At least one inflow and one outflow economic event exist for each resource. Conversely, each
inflow and outflow economic event must be related to a resource.
For example, goods related to the sales event must also be related to the purchase or production
event (or some other event specifying how those goods are going to be obtained).

114

Universal Enterprise Model: Business Pattern Language

2. Each outflow economic event must have a duality relationship to an inflow economic event, and
vice versa. For example, shipment to a customer (outflow) must be related to a customer payment
(inflow).

3. Each economic event must have a relationship to two parties participating in the exchange. For
example, each economic event must be related to the customer and vendor, employer and employee,
and so on.

An example of a simple system is illustrated in Fig. 6. In this example, a wholesaler buys products
from vendors and sells them onto customers. The Customer, Vendor and Wholesaler are the parties;
the Product and Cash are the resources; Goods Receipt, Payment, Shipment and Cash Receipt are
the economic events.

«resource»
Product

«economic event»
Shipment
{outflow}

«party»
Wholesaler

1..*

1

0..*

duality
«economic event»

Cash Receipt
{intflow}

1

1

«party»
Customer

1

0..*

0..* 0..* 0..*

1 1

0..*

«economic event»
Goods Receipt

{inflow}

0..*

duality
«economic event»

Payment
{outflow}

«party»
Vendor

0..*1..* 1..*

1 1

0..*

«resource»
Cash

1

1

1..*

0..*

0..*

0..*

0..*

1 1

Fig. 6. Economic events for a wholesale system

Fig. 7 illustrates and example, in which the upper part of the example from Fig. 6 is enhanced by
two economic events, Return of Goods and Cash Refund. The duality here is a ternary relationship
between these four economic events. The duality ensures that when the deal is closed, the sum of
values of the initiator events is equal to the sum of the terminator events.

115

Universal Enterprise Model: Business Pattern Language

«resource»
Product

«economic event»
Shipment

«party»
Wholesaler

1..*

1

initiator
«economic event»

Cash Receipt

11

«party»
Customer

1

0..*

0..* 0..*

1 1

terminator

«economic event»
Return terminator

«economic event»
Cash Refund

1..*

1..*

initiator

«resource»
Cash

1 1

1..*

0..*
0..*

0..* 1 1

Duality

1 1

0..*

0..*

1..*

1..*

outflow

inflow

inflow

outflow

Fig. 7. Return of goods

Known uses
Cash sale. Product and cash are the resources; delivery and payment are the economic events.

Rental. The premises is the resource; yielding the right to occupy to the tenant is an outflow of
resources. Payment of rent is an inflow of resources. Rental is an example of economic event that
occurs over an interval of time.

Employment. From employer’s perspective, an employee’s time is the inflow of resources, salary is
the outflow. Employment is another example when an economic event occurs over an interval of
time.

Resulting Context
The economic event is a special case of business transaction, see BUSINESS TRANSACTIONS
pattern. It covers those business transactions that change ownership of resources. Moreover, this
pattern defines rules valid for all economic systems. This pattern forces developer to make a
complete model of the economic exchanges, and think about non-obvious questions like “what do I
get in return for paying my taxes?” While this is often useful, sometimes the overall burden from
increased complexity overweighs the benefits of getting a complete and economically correct
model.

116

Universal Enterprise Model: Business Pattern Language

As the economic event may occur over interval of time, sometimes it is useful to model interactions
between business partners within the scope of one economic event. The LIFECYCLES1 pattern
addresses this issue.

Related Patterns
The COMMITMENTS pattern is a special kind of BUSINESS TRANSACTIONS that specifies the
economic events scheduled to occur in the future.
The CLAIMS pattern is a special kind of BUSINESS TRANSACTIONS that deals with unbalanced
exchanges of resources.

The ADDRESSES pattern specifies where the exchange occurred. The ACCOUNTS pattern
specifies how to create a report that aggregates values across sets of economic events. The
CLASSIFICATIONS pattern specifies how to handle various categories of economic events.
The DUE DATES pattern specifies the time interval in the case the economic event occurs over
interval of time.

Credits and Sources
1. Bob Haugen, e-mail discussion
2. Guido Geerts, personal communication
3. William E. McCarthy and Jesper Kiehn, teleconference
4. Henning Kjersaard Nielsen and Erik B. Jakobsen, personal discussion
5. McCarthy, W.E. 1982. “The REA Accounting Model: A Generalized Framework for Accounting
Systems in A Shared Data Environment.” The Accounting Review (July), pp. 554-578.

1 The LIFECYCLES pattern is not part of this pattern language, yet.

117

Universal Enterprise Model: Business Pattern Language

Contracts

Context
Some relationships between business partners specify promises of future exchanges of resources.
For example, a purchase order is a promise to receive goods from a vendor, and pay for the goods.
An employment contract is a promise that an employee will give his time to the employer and a
promise by the employer to provide compensation in return.

Problem
How to model promises of future exchanges of economic resources?

Forces
1. Most economic events do not occur unexpectedly. They have been agreed between business
partners beforehand. You would like to have a mechanism specifying details about the
commitments of economic events.

2. If a party commits itself to give resources away (to pay for a product or accept a purchase order),
the party would like to be informed about whether it will actually have the resources available at the
time specified by the commitment.

Solution
Consider the economic contracts between business partners as a collection of commitments to
trigger economic events in a well-defined future. The following entities model the contracts and
commitments.

Commitment entity specifies an economic event or events to occur in the future. Commitment has a
relation to Resource, and either reserves the resource for future stock outflow, or expects a resource
for future stock inflow.

Fullfillment (a special kind of reconciliation) is a one-to-many relationship between the
commitment and the economic event. One commitment can be fulfilled by several economic events.

Economic contract is a set of commitments, which specify the future inflow or outflow of
resources. At least one commitment in this set should be related to the inflow economic event, and
at least one to the outflow economic event.

Reciprocity (a special kind of reconciliation) is a many-to-many relationship between commitments.
Reciprocity guarantees that the total value of expectation claims is equal to the total value of the
reservation claims.

118

Universal Enterprise Model: Business Pattern Language

Resource

when occurred
value

Economic
Event

Party

0..*

duality

when occurred
value

Commitment

reciprocity
0..*

fulfillment

Contract

2..*

1

0..*
0..*

0..*

Contracts

 REA

consumer

supplier

0..*

consumer

supplier

0..*

0..*

0..*

0..*

0..*

0..*

supplier
{derived}

consumer
{derived}

0..*

0..*

reservation
{or}

expectation

inflow
{or}

outflow

Fig. 8. The commitments pattern as a special case of business transaction

The following rules apply for the model. They can be used to ensure consistency of a specific
instantiation of this pattern.

1. Each commitment must be related to a resource. For example, a sales order line must specify the
goods to be sold.

2. Each commitment must have two relationships to parties that agree on the future exchange of
resources. The customer and vendor, the employer and employee are the examples of parties related
in contractual relationship.

3. Each commitment must have the fulfillment relation to at least one economic event.
For example, the purchase order line specifying the goods must be related to the shipment of these
goods.

Fig. 9 illustrates an example of a sales order. Sales order is a contract composed of two
commitments. The reservation commitment is to sell 4 pieces of product A, of a value of $ 40. The
expectation commitment is to receive $ 40 compensation in cash.

119

Universal Enterprise Model: Business Pattern Language

$ 10 per 1 piece

«resource»
Product A

4 pcs
$ 40

«economic event»
Shipment

0..*

0..*
duality

$ 40

«economic event»
Cash Receipt

1

«contract»
Sales Order

1..* 1..*

0..*

«resource»
Cash

1

0..*

4 pcs
$ 40

«comitment»
Commitment to Ship 0..*

reciprocity

$ 40

«commitment»
Commitment to
Receive Cash

0..*

0..*

1..*

0..*

fullfillment fullfillment

1..*

1 1

0..* 0..*

1 1

This contract can be
read as: :

Product A, 4 pcs... $ 40
Total.......................$ 40

reservation expectation

inflowoutflow

Fig. 9. Sales order contract with commitments and economic events

Known uses
Purchase order is a contract that consists of two commitments: a commitment to receive the ordered
goods and a commitment to pay for the goods.

Employment contract represents a commitment by the employee to give his or her time to the
employer, and a commitment by the employer give compensation in kind. Employment contract is
an example of a contract when both parties agree on a stream of outflow economic events and a
stream of inflow economic events.

Resulting Context
The commitment is a special case of business transaction, see BUSINESS TRANSACTIONS
pattern. It covers those business transactions that are commitments, promises for changes in
ownership of resources. Moreover, the contract pattern defines rules valid for all economic systems.

Prognosis of future events, for example budgeting, is not covered by this pattern.

120

Universal Enterprise Model: Business Pattern Language

Sometimes, this pattern forces developer to include to the model resources that are difficult to
quantify and feel redundant. For example, the commitment to pay taxes to the government are
reservation of resources, however, resources expected to be received in return from the government
are difficult or even impossible to quantify precisely. The solution to this problem is called
IMPLEMENTATION COMPROMISE: developers develop an ideal model of the enterprise that
ensures that they have not forgot anything. Then, some contracts, resources or parties are omitted
from the model. The resulting model is sufficient for the purpose of the software solution, and
simpler than the complete model.

Related Patterns
The ADDRESSES pattern specifies at what place the commitment occurred and where the
exchange of resources is supposed to occur.
The ACCOUNTS pattern specifies how to represent unbalances between commitments and the
corresponding economic events.
The CLASSIFICATIONS pattern specifies how to handle various categories of commitments.
The DUE DATES pattern specifies when the economic event is scheduled to occur.

Credits and Sources
1. Geerts, G.; McCarthy, W.: The Ontological Foundation of REA Enterprise Information Systems,
November 1999, March 2000, and August 2000.

2. Guido Geerts, The University of Delaware, Newark; personal communication, April 2002

121

Universal Enterprise Model: Business Pattern Language

Claims

Context
When a vendor ships goods, it usually does not receive customer payments at the very same
moment. Outflow and inflow economic events usually do not occur simultaneously, and the duality
relationship between the economic events is out of balance for certain period of time. In this case, a
common practice is to send an invoice, a requirement to the business partner to settle the owed
amount.

Problem
How can we model unbalanced economic exchanges?

Forces
1. Exchange of future economic resources must be fair, that is, agreed by both parties. How can we
keep track of the fact that a party gives resources away and will eventually receive some resources
in return?

2. Both business partners might not automatically know the exact unbalanced value between the
inflow and outflow events. For example, a service contract might specify payments according to
consumption. Or a vendor sometimes adds shipping fee to the price of products, whose value might
not be known to the purchaser. You want to assure that both parties agree upon the unbalanced
value.

3. Legal reasons might require a document specifying the unbalanced value. For example, VAT
(value added tax) in Denmark is calculated as a percentage from the invoiced amount.

4. You want your model to be consistent from economic viewpoint. You could model the claim as a
basic business relationship following the Fig.1, but you want your model give answers to questions
like: if a customer receives a discount for early payment, what benefits does the vendor get in
return?

Solution
Encapsulate the unbalanced value in the duality. The claim entity sums the value over one or more
dualities. For example, when a vendor ships goods and the customer has not paid yet, the vendor
can materialize a claim, that is, create an invoice. Each invoice line is related via the materialization
relationship to the shipment events that have not been fully paid, yet. When the customer eventually
pays for the goods, each invoice line will be related via settlement relationship to the payment. The
claim entity is a placeholder for additional attributes such as DUE DATE.
This pattern is illustrated in Fig. 10.

122

Universal Enterprise Model: Business Pattern Language

Claim

when occured
value

«economic event»
Inflow

settlement
1..*

duality
when occured
value

«economic event»
Outflow

materialization
1..*

11

1..*1..*

initiator terminator

Fig. 10. The claims pattern

Related Patterns
The CLAIMS extends the REA pattern, as CLAIMS is applicable together with the duality
relationship. Claim is usually contains due date, see the DUE DATES pattern.

Known uses
Invoice is a claim: pays us the money for the goods or services we provided to you.

Library’s late notice that is sent out to you is a claim: bring back those books you owe us!

Credits and Sources
1. Bob Haugen, Logistical Software, communication via e-mail, November 2001- April 2002.

2. Guido Geerts, The University of Delaware, Newark; personal communication, April 2002

3. Daniel May, The University of Southern Denmark, personal communication, summer 2002.

123

Universal Enterprise Model: Business Pattern Language

Roles

Context
Sometimes, an employee of the company can also be a customer. For example, a bank clerk opens a
bank account, or a nurse at the hospital becomes a patient. A vendor can become a customer, if he
buys the company’s product, and employees can become vendors, if the employer refunds them
their purchases.

Similarly, a specific product can be considered as a raw material or finished goods. Or, the same
working hour can be seen as an employee’s time, or a consultancy hour sold to the customer.
Although the resource is the same, when related to different business relationships, some of its
properties will differ, for example, the unit price.

Problem
How can we model situations in which the same physical entity participates in different types of
business relationships?

Forces
1. You used the business relationship pattern and your data model contains various kinds of
business relationships, such as purchase orders, sales orders and employment contracts. A possible
solution could be to replace all these kinds of business relationships by a “universal” business
relationship entity, but this would not adequately capture the problem domain. For example, it is not
very useful to have a single data entity representing both the sales order and the employment
contract, because they have significantly different attributes.

2. The same party can be related to different business relationships, for example, to purchase and
sales order. However, the party has different properties when participating in different business
relationships. For example, the default ship-to-address is relevant on a party related to the sales
order, but not on the party related to the employment contract.

3. As a result of the second force, you could model customers, vendors and employees as parties in
your model. However, you want to capture the information that all these three parties can be, in the
real world, the same physical entity.

Solution
Split the party entity into the real party and the set of party roles. Split the resource entity into the
real resource and the set of resource roles. The solution is illustrated in Fig. 11.

The real party and the real resource represent the physical objects participating in the business
relationship.

124

Universal Enterprise Model: Business Pattern Language

The party role and the resource role are a way that the real party and the real resource can
participate in a business relationship. Each real party and real resource have at least one role.

.

Business
Relationship

The Real Party

role-specific attributes

Party Role1 1..* 1..*1

The Real
Resource

role-specific attributes

Recource Role1 1..*

1..*

1

I.e. customer,
vendor, employee

I.e. raw material,
finished goods

Fig. 11. The role pattern

Some might argue that the real party and resource have attributes common to all their roles.
However, conceptually more correct would be to consider the common role attributes in the
implementation of the role entity, for example, moving common attributes to the role superclass.
Various implementation approaches to roles are discussed in [5].

Known uses
1. Specific product can have the roles of a material used in work, or finished goods sold to the
customer. These two roles have different attributes: the product as material might be used together
with mounting fittings. The same product as a goods sold is used without the fittings. Moreover, the
unit price for the same product is different if used as a material or if sold directly. Source: Country
Union of Danish Electricians (ELFO).

2. A person can play a role of a customer, vendor and employee.

Resulting Context
The roles pattern adds flexibility and extensibility to the model and prevents from duplicated
information. However, this is not always the desired behavior. For example, in a hospital
information system a user requirement was to physically separate the patient data and the employee
data, even if they represent the same person (source: Ralph Johnson, personal communication).

Credits and Sources
1. Martin Fowler’s paper “Dealing with roles” focuses on implementation issues of the roles. For
details see http://martinfowler.com/apsupp/roles.pdf

2. Dirk Riehle’s paper Role Object describes a generalization of the role concept for any
component (a particular key abstraction). For details see www.riehle.org.

125

Universal Enterprise Model: Business Pattern Language

Accounts

Also known as balances

Context
The BUSINESS TRANSACTIONS pattern describes how to keep track of and registers business
relationships, economic events, and commitments. However, merely keeping track of these entities
is usually not the main interest of an enterprise’s decision makers. Decision makers are mostly
interested in reports, the aggregated data that summarize registered entities, and provide the
information about the state of the enterprise.

Problem
How can we model the aggregated values across sets of business transactions?

Forces
1. The business transaction pattern allows for tracking of business transactions and their values.
However, users of enterprise planning systems would like to get information about aggregated
values from the sets of business transactions, economic events and commitments.

2. You could manually write an algorithm that aggregates the values from business transactions, for
example, in the form of SQL statements. However, you would like to know a rule, valid for all
economic systems, that would automatically provide for aggregated values across sets of business
transactions, events, and commitments available in the system.

Solution
If a party or resource is related to at least two business transaction entities, then the party or
resource has a property called account. The account summarizes the values of all related instances
of one business transaction and subtracts them from a sum of the values of all related instances of
the other business transaction. The solution is illustrated in Fig. 12.

value

Business
TransactionResource or

Party

1 2..*

SUM (value) - SUM (value) + initial value
business business
transaction transaction

Account

Fig. 12. The accounts pattern

The following figure shows an example of the system with four business transactions: the purchase
order, receipt, sales order and shipment. The resource goods has three accounts. The account goods

126

Universal Enterprise Model: Business Pattern Language

on stock is a sum of all goods receipts minus all shipments. The account goods on order (goods to
be received) is a sum of all purchase order lines minus sum of all the receipts related to purchase
order lines. The account goods to ship is a sum of all sales order lines minus the sum of all the
shipments related to sales order lines.

quantity

«economic event»
Shipment

quantity

«economic event»
Goods Receipt

quantity

«commitment»
Sales Order Line

quantity

«commitment»
Purchase Order

Line

«account»
Goods on Order

«account»
Goods on Stock

«account»
Goods to Ship

«resource»
Goods

fulfillment

fulfillment

reservation

outflow

inflow

expectation

Fig. 13. Examples of accounts on resource

Please note this solution does not describe all accounts that exist in the accounting practice.

Known uses
Accounts receivable. For example, the customer balance is an account. It is a sum of all sales orders
minus sum of all customer payments.

Accounts payable. For example, vendor balance is an account. It is a sum of all purchase orders
minus the sum of all payments to the vendor.

Assets. For example, cash is an account on the company itself. It is a sum of all cash receipts minus
sum of all cash disbursements.

Resulting Context
If the business transaction, in addition to its value property, specifies additional information,
attributes and properties, the account pattern can be extended to provide selective sums, and
aggregate balances for certain values of these additional attributes. For example, if a payment
contains due date, see the DUE DATES pattern, the customer account can be refined to reflect all
expected payments that are over due and the expected payments that are not over due.

127

Universal Enterprise Model: Business Pattern Language

Due Dates
Also known as Deadline

Context
Commitments are promises of the future economic events. Sometimes it is useful to specify when,
at what time, the future economic events shall occur. Starting date, last payment date and renewal
date are examples of due dates.

Problem
How can we model when should future economic events occur?

Forces
1. Dates and time intervals are attributes of business relationship, business transaction, economic
event, commitment and claim. You could add the date-time attribute to all of them, but you want to
have a uniform behavior for all these entities in your model.

2. Some future events can be recurrent. Examples of recurrent events are periodic shipments, or
meetings that occur every week. There might be complicated rules specifying the recurrence.

3. You want to specify what happens when due date expires.

Solution
Encapsulate the attributes necessary to setup the due date in the Due Date entity. The time interval
for due date is specified, for example, by Start date and Duration. The has expired attribute
specifies whether the due date has passed. Examples of recurrence rules are “every day”, “every
week”, “first Monday in a month”, etc. Examples of reminder rule are “on due date”, “15 minutes
before start”, “one day later”, etc. The TYPE OBJECT often extends this pattern by providing for
due date type that encapsulates a list of various rule types that might be set by the due date. The
structure of the Due Date pattern is in Fig. 14.

Business
Relationship

Start Date
Duration
Has Expired
Recurrence
Range of recurrence
Reminder

Due Date

Recurrence Rule
Reminder Rule

Due Date
Type

Reminder
«create»

Commitment,
Claim
Economic Event

«is a type of»

Fig. 14. The due date pattern

128

Universal Enterprise Model: Business Pattern Language

Known uses
Registration deadline for a conference is an example of a due date.
Payment schedule, or recurrent meeting in Microsoft Outlook and other personal information
managers are examples of a recurrent due date.

Resulting Context
The due date defines the necessary attributes, behavior and rules relevant for setting up the due
dates. But what actually happens when due date expires? This information has to be somehow
forwarded to the rest of the system or users. The NOTIFICATIONS2 pattern solves the user
notification.

Related Patterns
TYPE OBJECT by Ralph Johnson et al. provides for flexibility by listing applicable recurrence and
reminder rules in a Due date type entity.
CALENDARS3 of a party or resource provides an aggregated view over all due dates of all business
relationships related to this party or resource.

2 The NOTIFICATIONS pattern is not part of this pattern language, yet.
3The CALENDARS pattern is not part of this pattern language, yet.

129

Universal Enterprise Model: Business Pattern Language

Addresses

Context
Parties and resources are usually located in a certain places in the real world. For example, the ship-
to address specifies the location of the customer within the scope of the shipment event. However,
the physical address is not the only way to contact a party. Phone number, e-mail and URL are
examples of communication addresses. These addresses can change in time, for example, a person
at the office can be contacted by direct phone number, but during meetings can be contacted by
phone via the receptionist. Some communication addresses are public and accessible by any party,
whilst others are available only to a restricted set of parties. Resources have communication
addresses as well. For example, a product is placed in a certain warehouse location, and its
description can be found through its URL.

Problem
How can we contact a party or locate a resource?

Forces
1. You want a uniform mechanism of establishing communication with a party or locating a
resource. You can decorate the party or resource object with attributes such as e-mail, url, but this
solution does not provide any information regarding when each is address valid.

2. You want to capture the fact that some communication mechanisms are restricted to a certain set
of parties and not available to everybody.

3. You want to specify communication addresses for a party, such as ship-to address and bill-to
address, but these addresses are often specific to the business relationship, rather than to the party.

Solution
Encapsulate the functionality about how to locate a resource or party in the address entity. The
address is an abstract concept for the communication address and the geographical address.
Examples of communication addresses are the phone number, e-mail and URL. Examples of
geographical addresses are the postal address and geographical coordinates. The business
relationship specifies the validity time interval of the address. The business relationship also
specifies what parties the address is available to. The solution is illustrated in Fig. 15.

130

Universal Enterprise Model: Business Pattern Language

Address

validity time interval

Business
Relationship

Communication
Address

Geographical
Address

Phone Number E-mail URL

10..*

1

Postal Address

0..1

0..*

1..*

Party

Time rules, such as
Every Tuesday 6am-3pm

Resource

1..*

0

caller

target

1..*1

Fig. 15. Addresses

Known uses
A sales order must have a sell-to, bill-to, and ship-to address. These can all be postal addresses, as it
may be necessary to send information material such as a confirmation to the customer. However,
depending on the company and the customer these addresses could also be electronic addresses.

Within Human Resources department of a company, all addresses of employees must be stored.
These addresses must be both postal addresses and phone numbers. The employee’s phone numbers
and physical locations during working hours and outside working hours are different.

Resulting Context
This pattern specifies that parties and resources are not directly related to their addresses, they are
related via the business relationship entity. This is a consequence of keeping track of valid
addresses over time, and focusing on the communication aspect of the address. In simple cases, this
extra complexity would not pay off the benefits of using this pattern, and the address will be related
directly to the party or resource.

Related Patterns
The CLASSIFICATIONS pattern can be used to specify a group of the caller parties. For example,
in the postal address, which is public, the caller is usually the “any” party category. For e-mail
address or direct phone number, which might be restricted, the caller might be a category “trusted
party”, which would imply that only parties with the “trusted party” classification might be related
to (that is, to know about) this e-mail address or phone number.

131

Universal Enterprise Model: Business Pattern Language

Credits and Sources
1. The paper “How Do I Find You? (Let Me Count The Ways.)” by Terry Moriarty and Dwight
Seeley describes the main ideas of this pattern. For details see www.inastrol.com

2. The address pattern is a part of IBM SanFrancisco framework, for details, see:
http://www.ibm.com/software/ad/sanfrancisco

132

Universal Enterprise Model: Business Pattern Language

Classifications

Context
Sometimes, a company partitions its customers into various categories, for example, high-volume
customers and small-yield customers. Sometimes, there is a hierarchy of categories. For example,
the furniture products can be classified into the categories office and home. The home category has
subcategories, such as sofas, chairs, tables, and beds. The sofas category has subcategories leather
sofas, cloth sofas and sleeping sofas. Sometimes, the classified object can belong to several
categories; for example, a specific sofa can be both sleeping sofa and leather sofa.

Problem
How can we model categories of products or parties in a uniform way?

Forces
1. You want to make a uniform model for, for example, event categories, party categories, product
categories and business relationship categories.

2. It should be possible to categorize different business relationships, resources or parties using the
same classification hierarchy.

3. When an object changes its category, it still belongs to the same class. That is, it still has the
same attributes, properties and methods. It might change the values of the attributes, but, for
example, does not get a new attribute when it changes its category. Note: the TYPE OBJECT
should be used if this force is not applicable.

4. The entity typically does not change its category when its attributes change. For example, let’s
suppose that the payment entity belongs to different priority categories. If due date of the payment
is over, the payment entity still belongs to its original priority category. Note: use the
LIFECYCLES pattern if this force is not applicable.

Solution
The business relationship, economic event, commitment, contract, claim, resource and party can be
related to the category entity. The category entity can belong to a hierarchy of category entities, that
is, a category is related to a supercategory and subcategories. In general, the relationships between
them are many-to-many. The business relationship, resource or party can belong to several
categories. The category can belong to several supercategories and might have several
subcategories. Solution is illustrated in Fig. 16.

133

Universal Enterprise Model: Business Pattern Language

Business Relationship,
Resource or Party

Category

0..*

0..*

supercategory

subcategory
category 0..*

0..*

Fig. 16. The classifications pattern

Known uses
Subject is the classification of information resources into categories such as Business & Economy,
Computers & Internet, Entertainment, Recreation & Sports, etc.

Skill (qualification) is a classification that assigns employee to certain skill groups. Skill is an
example of a classification in which party can be assigned to more than one category.

 VAT (value added tax) group is a classification of the product into the VAT groups.

Resulting Context
The business relationship, resource or party can be assigned into several categories simultaneously.
The consequence of using this pattern is that the classified object does not change when its category
changes. For example, if a product changes its VAT group, it is still the same product. On the
contrary, we might consider a “party” object, categorize it into a “customer” or “employee”
categories. Application of this pattern would imply that the attributes and methods are the same
both for “customer” and “employee”. If it is not the case, the TYPE OBJECT pattern should be
applied instead of classification in this particular situation.

Related Patterns
The LIFECYCLES can be used to categorize the objects as well. For example, imagine that we
create the following categories for the order: quotation, accepted, shipped, paid. We could use the
classification pattern. However, it would be impossible to specify the rules like: the quotation is
first accepted, then shipped and then paid; or the rules like: If the order is in the category “paid”, it
is not allowed to change the category to “quotation”. In this case, the LIFECYCLES should be
used, instead of CLASSIFICATIONS.

TYPE OBJECT can be used to categorize the objects as well. For example, imagine that we create
the following categories for the sales order: quotation, accepted order, shipment, and payment. If
the sales order in these four categories has different attributes and behavior, for example, the
shipment specifies the products but not prices, and payment specifies the prices but not products,
then TYPE OBJECT should be used. That is, the quotation, accepted order, shipment, payment
should be different types, and not categories of the same type.

134

Universal Enterprise Model: Business Pattern Language

Credits and Sources
The classification pattern is a part of IBM SanFrancisco framework, for details, see:
http://www.ibm.com/software/ad/sanfrancisco
.

Acknowledgements for the whole Pattern Language

 I would like to thank to Daniel May of Maersk Mc-Kinley Institute, University of Southern
Denmark, Odense, Denmark, for shepherding this paper, and for his useful suggestions and
comments. I do, of course, take full responsibility for any omission or errors.

I would like to thank to Jesper Kiehn, Microsoft Business Solutions, Copenhagen, Denmark, for
fruitful discussions, valuable comments, observations and ideas.

135

Universal Enterprise Model: Business Pattern Language

References
[1] Coad, P., Lefebre, E., DeLuca, J.: Java Modeling in Color with UML, Prentice Hall PTR, 1999.
[2] David, J. S.: Three events that defined an REA methodology for systems analysis, design and
implementation
[3] Ericsson, H., Penker, M.: Business Modeling with UML, John Wiley & Sons, 2000.
[4] Fowler, M.: Analysis Patterns, Addison Wesley Longmann, 1997.
[5] Fowler, M.: Analysis patterns (articles on the web), http://martinfowler.com/articles.html#
[6] Guido L. Geerts and William E. McCarthy: The Ontological foundation of REA Enterprise
Information Systems, 1999-2000.
[7] Hay, D.: Data Model Patterns, Conventions of Thought, Dorset House Publishing, 1996.
[8] Hollander, A., Denna, E.L., Cherrington, J.O.: Accounting Information Technology and
Business Solutions, Irwin McGraw-Hill, 2000.
[9] Riehle, D.: Association object patterns, http://www.riehle.org/practical-
matters/patterns/business/association-objects/index.html
[10] Riehle, D.: Role Object. http://www.riehle.org/computer-science-research/1997/plop-1997-
role-object.html
[11] Silverston, L., Inmon, W. H., Graziano, K,: The data model resource book, John Wiley &
Sons, Inc. 1977.
[12] William E. McCarthy: The REA Accounting model: A generalized framework for accounting
systems in a shared data environment. The accounting review (July) pp. 554-578, 1982.

137

137. A First Approach to Design Web Sites by Using Patterns

A First Approach To Design Web Sites By Using Patterns

Francisco Montero, María Lozano, Pascual González, Isidro Ramosτ

Copyright © 2002, Francisco Montero, María Lozano, Pascual González, Isidro Ramos. Permission
is granted to copy for the VikingPLoP Conference. All other rights reserved.

LoUISE Research Group
Escuela Politécnica Superior de Albacete

Universidad de Castilla–La Mancha
02071 – Albacete – Spain

{fmontero, mlozano, pgonzalez}@info-
ab.uclm.es

τDpto. de Sistemas Informáticos y
Computación

Universidad Politécnica de Valencia
Camino de Vera s/n

E-46071 Valencia - Spain
iramos@dsic.upv.es

Abstract. This paper presents a first approach of a web design pattern language. Its
main goal is to gather the experience on web design and provides a communicative
tool than can be used by every stakeholder in a project. The pattern language
distinguishes between three design levels: the web site, a web page and the
ornamentation level. The recurring principle through the pattern language is
supporting users to achieve usability improvement.

Introduction
The World Wide Web has rapidly become the dominant Internet tool, combining hypertext
and multimedia to provide a network of multidisciplinary resources. It is important to make
sure that every part of a Web site is useful. A user will come to a site expecting to be able
to perform a particular task, or read a particular piece of information. When we are
designing a Web site we want to make sure that the user can find that resource quickly and
easily. If they can't find the information quickly then they may leave our site, and proceed
to another site where they can find the resource. The Web is a new medium and requires a
new approach [Nielsen 99].
[Shneiderman 98] commented that “It will take a decade until sufficient experience,
experimentation, and hypothesis testing clarify issues” and warned that meanwhile “the
paucity of empirical data to validate or sharpen insight mean that some guidelines are
misleading”. Nevertheless, many sets of web design guidelines have been published. There
are many [Guidelines] that can be used for improving the designing of our Web sites. Most
of these recommendations for Web site designers are however not based on research but on
intuition. They are based in the experience of the designer. Traditionally, interface design
experiences are gathered with guidelines but patterns can be used too. The concept of a
pattern language has been developed by Christopher Alexander and his colleagues in
architecture and urban design [Alexander 77, 79]. In brief, a pattern language is a network
of patterns of varying scales; each pattern is embodied as a concrete prototype, and is
related to larger scale patterns, which it supports, and to smaller scale patterns which
support it. The goal of a pattern language is to capture patterns in their contexts, and to
provide a mechanism for understanding the non-local consequences of design decisions
[Erickson 97].

138

A First Approach to Design Web Sites by Using Patterns

A Pattern Language for web design
A pattern language has to have a structure of hierarchical network. So, an essential
component in the definition of a pattern is the relationships with others patterns. In the
diagram of the proposed pattern language (see Figure 1), arrows between patterns
introduce these relationships. The pattern language distinguishes between three levels,
these levels are inspired by Christopher Alexander’s pattern. His pattern language
describes a highly structured collection of patterns, intended as a practical guide for
architectural designers. This idea is extrapolated to web site designing by introducing
patterns related with web sites, web-pages and ornamentation details.

Figure 1. Proposed pattern language to design web sites

In the following sections of this paper, each level starts with a brief summary, which
introduces the patterns described in the section. The patterns in the entire collection are
depicted graphically in Figure 1 and summarised at the end of this paper in the Summary
section.

How could I use this collection?
The algorithm that describes how this pattern language can be used is the following:
1. Read the resumed list of patterns.
2. Scan down the list, and find the pattern, which best describes the overall scope of the

project or the problem that you want to solve.
3. Read the starting pattern. Tick all of the low order patterns and ignore all the high order

patterns.
4. Turn to each pattern and now tick only relevant low order patterns, if they exist else 6.
5. Keep going like this, until you have ticked all the patterns you want for your project.
6. Adjust the sequence by adding your own material where you haven’t found a

corresponding pattern.
7. Change any pattern where you have a personal version, which is more relevant.

139

A First Approach to Design Web Sites by Using Patterns

Web Site Level
This section introduces design patterns related with Web site design. These patterns are
associated with common features that can be found on many Web sites and are
extrapolated from another different context. The user requires know where he/she is
(Welcome) and where he/she can go (Indication). The user wants to visit the Web site in a
suitable way (Polyglot, Ready, Similarity).

Welcome
Motivation:
When a user arrives at a Web site, like he/she arrives at a city, town or any important
building needs to know where he/she is, what can he do there, and what he need for
visiting that place.
Problem:
How does the user know where he/she is?
Forces:

• Users need know where they are
• User wants to know where they can go next
• A complex Web site can be very disorienting for users
• Users who are familiar with the structure and content of a Web site should can

jump straight to the space where they want to go
Solution:
Provide a reception place where user access conditions can be evaluated. From this
welcome point, user will be able to enter to Homepage and to another Indications.
User’s information, such as language or monitor size should be gathered to the provision
of Web site’s services to user (Ready). In its defect, the user should be informed about
the best conditions for the visiting Web site or these conditions should be offered directly
(Polyglot). User can find information about content (About this) and owner (Contact us)
of the Web site in this page. Welcome and Homepage is the same one in many
occasions.
Consequences:
Provide improvements on the navigation, functionality and feedback
Examples &
implementation
details:

http://www.alanismorissette.com These web sites, and many others on
the Web, have got a initial page where users are received. These pages
have as main features their low-load time (Busy), offer the possibility
to customise the language or browser properties, and provide
information on who, what, when and where the user can find on the
web site. Ex.: http://www.crescere.co.uk/, http://www.graffiti.ie/

140

A First Approach to Design Web Sites by Using Patterns

Indication (aka. Index)
Motivation:
A Web site is a navigational space where users want to achieve goals, such as finding
information or buying a product. In a similar way, as occurs in supermarkets, museums or
important buildings users need to know where they can go and what they can do once
they get there.
Problem:
How does the user know where he can go and what will he/she find there?
Forces:

• The user should know what places are available
• Doing actions accidentally may be disoriented
• Putting together a collection of objects may take time and mental effort
• The links on Web site should be organised well enough so that the user can find

what’s needed
Solution:
Web site musts provide the needs mechanisms (meaningful links) that allow any user to
move from one place to another places. User can be disoriented and should receive
feedback information about his/her Location and has the possibility of coming back
(Second chance) to a safe place (Homepage). Important links should be placed high on
the page and descriptive link labels should be used (Polite) and if you use frames you
should title each frame to facilitate frame identification and navigation.
Consequences:
Provide improvements on the functionality and navigation
Examples &
Implementation
details:

http://www.fourthcube.com, http://www.amazon.com These pages,
and others like them provide navigation information by menus,
breadcrumbs, buttons or simply links. The situation or appearance of
these elements of navigation information can be very varied (left, top,
right, etc.). Different kinds of navigation tools can be seen in the
following figures:

141

A First Approach to Design Web Sites by Using Patterns

Polyglot
Motivation:
“The power of the Web is in its universality. Access by everyone regardless of disability
is an essential aspect” (Tim Berners-Lee. Director of the W3C). Many factors should be
considered: hardware, software, aesthetic, etc.
Problem:
How can the user do a useful use of the Web site and access information at your own
pace?
Forces:

• The user wants easy access to information
• The user is principally doing something else, and this shouldn’t interfere with it
• The user has little or no incentive to spend time learning technical details
• The user wants full access to everything at once, even if the Web site is complex

Solution:
Speak user’s language is “design for all”[Schneiderman 98] [Constantine 99]. Kids,
older or disabled people can visit our Web site and universal design techniques can be
applied in the design of Web site and his services. These people must know if they are
Ready. Monitor size, user’s screen resolution, connection speed and download time
should be considered when you design a Web site, but font sizes and familiar fonts too
(Danger). Information should be provided of a suitable manner by considering several
kinds of peoples and technical features and by using Polite language.
Consequences:
Provide improvements on the functionality, language and consistency
Examples &
Implementation
details:

http://europa.eu.int, http://wap.uclm.es these pages has several links or
buttons associated with different ways of visualisation. Basically the
user can select between several languages or levels.

Since many people prefer to read printed text many web sites provide
printed version of articles or papers (Print).

It’s important to keep in mind that even if you specify a particular font
in your HTML code, it can’t display on your viewer’s display unless
the font exists on your viewer’s hard drive. For this reason, it’s best to
use common fonts such as Arial®, Times New Roman® and
Courier™ New. Is important to provide a text equivalent for every
non-text element (via ALT, LONGDESC or in element content). This
includes: images, graphical representations of text, image map
regions, animations, applets and programmatic objects, ascii art,
frames scripts, images or videos. For data tables, identify row and
column headers.

142

A First Approach to Design Web Sites by Using Patterns

Similarity
Motivation:
When an user is navigating across the Web site must know if he/she is still there or not.
The Web site can be very complex and many links can be external to Web site.
Problem:
How does the user know that is visiting the same Web site?
Forces:

• Users need know where they are
• A complex Web site can be very disorienting for users
• Doing actions accidentally may be disoriented

Solution:
Web site should be designed by using the same criteria: colours, fonts, navigation
location and layout. Use a single style sheet for all the pages on your site. One of the
main benefits of style sheets is to ensure visual continuity as the user navigates your site,
but documents should be organized so they may be read without style sheets (Polyglot).
The user always must be informed by using a suitable way (Polite) where he/she is
(Location) and where he can go (Indication). Offering undo/redo mechanisms is
advisable (Second chance), so as avoiding to use disoriented components (Danger).
Consequences:
Provide improvements on the navigation, consistency and feedback
Examples &
Implementation
details:

http://www.ibm.com The implementation of this pattern can be done
by using style sheets. Style sheets are a way to separate style from
content in Web pages. In an ideal world, you would put all your
content (e.g. text and graphics) in one place, and define how that
content is laid out (the style) in another. Straight HTML mixes style
with content. Style sheets allow you to modify the default attributes of
many standard HTML tags. You can create a style sheet in a separate
file and then link one or more web pages to it - this is called linking,
amazingly enough. Or, you can embed style definitions directly into
the <head> section of individual web pages, using the <style> tag - we
humans call this embedding. Ex. http://www.plop.dk/VikingPLoP/

143

A First Approach to Design Web Sites by Using Patterns

Ready
Motivation:
You can use everything to design your Web site, but the user who wants to visit your web
will have to have installed the needed plug-ins, and you should remember that you should
speak your language (Polyglot).
Problem:
How does the user know that he can visit the web site without problems?
Forces:

• The user wants easy access to information
• A complex Web site can be very disorienting for users
• The user wants to have control over the actions
• The user doesn’t want to be interrupted by collateral aspects related with design

Solution:
Provide tools or needed information to visit the web site of suitable manner. Web site
must detect if the user has everything needed and provide links to download places where
he will get needed plug-ins. The user does not need to know technical aspects (Polite).
Ensure that pages are usable when scripts, applets, or other programmatic objects are
turned off or not supported. If this is not possible, provide information on an alternative
accessible page (Polyglot).
Consequences:
Provide improvements on the functionality, control and navigation
Examples &
Implementation
details:

http://www.mercksharpdohme.com/, http://www.hp.com There are
many web sites where plug-ins are required, or minimum monitor
resolution is needed (Danger). Frames are not supported in other
situations. The user needs know that he needs.

For best viewing of this site, I recommend a minimum of 640 x 480 monitor
resolution and 16 bit High Colour. Shockwave plug-ins is required. And for
those who hate frames, sorry guys! this site relies heavily on frames. If you
find any part of this site is not working let me know!

144

A First Approach to Design Web Sites by Using Patterns

Web Page Level
This section introduces design patterns related with Web page design. They are habitual
elements and considered features when we are designing Web sites. In these hierarchical
structure a Homepage is necessary. In some occasions, the user needs provide information
then he/she must fill a form (Form) and always the user wants to have the control (Busy,
Second Chance) and to visit web sites to his/her own pace (Polite, Danger).

Homepage
Motivation:
A Web site can be achieved by random way, but always must have a point of reference.
When an user arrives at a Web site, like he/she arrives at a city, town or any important
building needs to know where he/she is, what he can do there, and what he need for
visiting that Web site. Home Page is an essential component of a Web site. On it
questions such as: who?, what?, when? and where? Should have answer.
Problem:
How does the user know where the user is?
Forces:

• Users need know where they are
• User wants to know where they can go next
• A complex Web site can be very disorienting for users
• Users who are familiar with the structure and content of a Web site should can

jump straight to the space where they want to go
Solution:
Provide a starting page where the user feels like at home. Homepage is a place where the
user can go back if he is disoriented. Its layout puts important information at top
(Novelty), includes logos (Tagline), search approaches (Search) and information contact
(Subscription, Contact us, About this).
Consequences:
Provide improvements on the functionality, control and navigation
Examples &
Implementation
details:

http://www.apple.com, http://www.ieee.org Any Web site has a
homepage. It is a specific page that introduces distinctive features.
The most critical role of the homepage is to communicate what the
company is, the value the site offers over the competition and the
physical world, and the products or services offered. The challenge is
to design a homepage that allows access to all important features
without cramming them onto the page itself, too often overwhelming
new users. References to homepage should be included in every pages
of the web site (Similarity).

145

A First Approach to Design Web Sites by Using Patterns

Polite
Motivation:
For many years, technical communications have stressed the need to use language that’s
meaningful to readers. That this would be helpful to people seem intuitively obvious.
However a difficulty in accomplishing this may be less obvious: people differ widely in
terms they choose to describe particular concepts [Evans 98].
Problem:
How can the user access the content of the Web page in a simple and proper way?
Forces:

• Users can be slowed when they must ponder the difference between similar link
labels

• There may times when no terms are meaningful to all users of a Web site
Solution:
Use the clearest and simplest language appropriate for a site’s content. Create
documents that validate to published formal grammars. Associate labels explicitly with
their controls (Indication). Express only one idea in each sentence (Tagline). Long,
complicated sentences often mean that you aren't clear about what you want to say.
Because asking users seems to be an especially effective way to choose option names, use
cards sorting, participatory design, or other methods that involve users whenever
possible.
Consequences:
Provide improvements on the functionality, feedback, language and consistency
Examples &
Implementation
details:

http://www.rae.es, http://ox.ac.uk Languages often have alternative
expressions for the same thing ('car' and 'auto'), and a given word can
carry different senses ('river bank' vs. 'savings bank') or function as
different parts of speech ('to steal'--verb; 'a steal'--noun). Because
languages naturally adapt to their situations of use and also reflect the
social identities of their speakers, linguistic variation is inevitable and
natural. Some words can create problems for you, especially, when
you use them without thinking about their true meaning. The way we
think and the words we use determine our reactions to life.
Hyperlinks from each chunk should clearly state where it leads when
clicked. Links should include a clear, easy-to-ready explanation.
Avoid puns and wordplay. Make sure the link it of sufficient length
for the reader to click — avoid small one-word links as these will
frustrate tired surfers or those with poor eyesight. Aim to assist your
readers.
On the Web, underlining should only be used to indicate that a
particular piece of text is also a link. I’ve seen a lot of Web pages use
underlining for emphasis, which confuses viewers when they click on
the underlined text and nothing happens. For this reason, instead of
using underscores for emphasis, it’s best to use bold type and/or
italics.

146

A First Approach to Design Web Sites by Using Patterns

Busy
Motivation:
Web sites are places where users can download information, images, files or applications,
but this downloading can take a lot of time, create significant delays or be accomplished
in different ways.
Problem:
How does the user know when his/her operations have finished or the finished state of
them?
Forces:

• The user wants to know how long they have to wait for the process to end
• The user wants to know how fast the progress is being made, especially if the

speed varies
• Sometimes its impossible to tell how long the process is going to take

Solution:
Provide feedback of the user action (sendings, loadings, downloadings, etc.) Images, files
and any element that the user can download should have got information about size, so
users can know how long have to wait for the download process. Images and text should
be downloaded on-demand (Size).
Consequences:
Provide improvements on the functionality, feedback and error prevention
Examples &
Implementation
details:

http://www.google.com, http://www.acrobat.com Many Web pages
needs load a plug-ing to get a correct visualisation, a progress bar is
used to provide such information. Sometimes a task running within a
program might take a while to complete. A user-friendly program
provides some indication to the user about how long the task might
take and how much work has already been done. If you don't know or
don't want to indicate how complete the task is, you can use a cursor
or an animated image to indicate that some work is occurring. If, on
the other hand, you want to convey how complete the task is, then you
can use a progress bar like this one (http://java.sun.com):

Sometimes, you can't immediately determine the length of a long-
running task. You can show this uncertainty by putting the progress
bar in indeterminate mode. In this mode, the progress bar displays
animation to indicate that work is occurring. As soon as the program
determines the length of the task, you should switch the progress bar
back into its default, determinate mode. In the Java look and feel,
indeterminate progress bars look like this:

147

A First Approach to Design Web Sites by Using Patterns

Second Chance
Motivation:
When the user is navigating on the Web site, he wants to feel the control of his/her
operations. He needs know that any operation can be cancelled and that he can return to a
previous state.
Problem:
How can the user be sure of his actions?
Forces:

• Doing actions accidentally may be disoriented
• The user wants security and error prevent
• The user wants to explore and not to learn
• The user is in a hurry

Solution:
Provide elements for undo/redo, backing and clearing. These mechanisms in a Web
environment consist of providing links to previous page, previous location or Homepage.
In Form is necessary to provide two buttons: “submit” and “reset”.
Consequences:
Provide improvements on the control, functionality and error prevention
Examples &
Implementation
details:

http://www.iomega.com, http://www.acrobat.com. The pages that
implements this pattern has got links or buttons that provide undo
command. So links to previous sections (page, up, back) or homepage
are usual in any page of a web site. Reset form button in Forms (The
form) is other example of using this pattern. Browsers provide this
functionality too by using back button.

148

A First Approach to Design Web Sites by Using Patterns

Form
Motivation:
The user has to provide information, usually short answers to questions
Problem:
How can the user provide information to the web site owner?
Forces:

• The user needs to know what kind of information to provide
• Users generally do not enjoy supplying information this way
• It should be clear what is required, and what is optional
• The user is in a hurry

Solution:
Provide appropriate “blanks” to be filled in, which clearly and correctly indicate what
information should be provided [Tidwell 98]. Search, Contact Us and Subscription are
examples of forms. In occasions, a form fills a complete page. The user needs know if
his/her submit was correctly processed (Busy).
Consequences:
Provide improvements on the functionality
Examples &
Implementation
details:

http://www.iomega.com, http://www.iberia.es These pages and other
pages where the user can provide information implements this pattern.
An HTML form is a section of a document containing normal content,
markup, special elements called controls (checkboxes, radio buttons,
menus, etc.), and labels on those controls. Users generally "complete"
a form by modifying its controls (entering text, selecting menu items,
etc.), before submitting the form to an agent for processing (e.g., to a
Web server, to a mail server, etc.)

149

A First Approach to Design Web Sites by Using Patterns

Danger
Motivation:
There is a plethora of plug-ins for sound, animation and all kinds of things. But you can't
assume that anyone is going to have them, or can use them with their particular computer
set-up.
Problem:
How can the user visit a web site without getting confused, being interrupted or being
disoriented?
Forces:

• Users generally have not got the plug-in that he/she needs
• It should be clear what is required to visit the Web site
• Users that can visit Web site is unknown
• Everybody is disability in one way or another

Solution:
Be careful with using disoriented components. For example, you can use readable font
size, consider monitor size, use well-designed headings, limit number of frames, limit use
of animated gifs, flash, applets, music, rollovers, reduce user’s workload, not use blink or
marquee elements, limit maximum page size (Size, Colour). Use style sheets to control
layout and presentation.
Consequences:
Provide improvements on visual clarity, control, functionality and navigation.
Examples &
Implementation
details:

The fundamental design of the Web is based on having the page as the
atomic unit of information, and the notion of the page permeates all
aspects of the Web [Nielsen, 00].
http://www.garbage.com, http://www.biblioteca.uclm.es are bad
examples, antipatterns in this respect. Frames pose many problems,
for instance, navigation does not work with frames since the unit of
navigation is different from the unit of view. Frames sites are either
hard or impossible for search engines to index. If you use frames,
people will have a hard time finding your Web site. Frames cause
printing issues on older browsers, which tend to print the frame
clicked in last, or if not default to top-left, which is generally not the
frame you want to print.
The BLINK and MARQUEE elements are not defined in any W3C
specification and should not be used".
Internet is a great search engine, and Macromedia Flash is a great
visual impact tool but search engines cannot read the text within a
Flash ‘Movie’ or within any other image files like GIF’s or JPEG’s.

150

A First Approach to Design Web Sites by Using Patterns

Ornamentation Level
This section introduces decoration features of a Web site. These features provide
improvements on general usability of any Web site. They are related with using of Colour,
Size, security (Secret) and providing location references (Location, Contact us) and
information (Subscription, Recognize, Novelty).

Tag Line
Motivation: When you are designing a web site you should provide information about
the purpose of it.
Problem: How can the user know the purpose of the web site?
Forces:

• Users are in a hurry
• Users don’t read web pages, they have a look at pages

Solution: Include a tagline that explicitly summarise what the site or company does. Its
should be brief, simple and to the point. Include a short description of the site in the
window.
Consequences: Provide improvements on visual clarity, functionality and feedback
Examples &
Implementation
details:

http://www.coolhomepages.com, http://www.bbva.es These pages has
images or taglines that implements this pattern. A tagline is a short
phrase that communicates the "who" and "why' of your Web site.
The following elements create effective taglines:
subject + audience + organization.

Print
Motivation: Most people read online text differently from how they read printed texts
rather than reading word by word, most people quickly scan blocks of online text. When
reading text on pages within a Web site, most people also move quickly among pages
Problem: How can the user get a suitable print of information?
Forces:

• Readers appreciate short chunks that can be located quickly
• Most users either save documents to disk or print them out

Solution: Provide a text version of web pages directly printable, or offer a downloadable,
formatted version of the document to be printed [Lyardet 00].
Consequences: Provide improvements on functionality and control.
Examples &
Implementation
details:

http://www.borland.es, http://www.sport.es This pattern is used when
content of long documents is broken up into smaller chunks and
linked. Then providing one large page for printing, a file to download
(.pdf, .ps, .doc) or the ability to print all of a sectioned document in
one step is useful to the user.

151

A First Approach to Design Web Sites by Using Patterns

Subscription
Motivation: Users want not to visit a web site everyday, they prefer to be informed when
new products or news arrive.
Problem: How can the user be informed with meaningful information for him? How can
the user have got access to periodic information?
Forces:

• User is in a hurry
• User wants to be informed

Solution: Provide an approach to user can book on-line by providing an email. So Web
site owner can send information to registered users about Novelties. The user should be
sure that your email address is not shared with anyone (Secret).
Consequences: Provide improvements on feedback.
Examples &
Implementation
details:

http://www.prenhall.com, http://www.sun.es This pattern is
implemented by using a simple Form where user usually only have to
provide an email. In other occasions is necessary provide more
information related with preferences of the user and your profile, so is
possible provide personalised information. Unsubscribe option should
be provided too.

Contact us
Motivation: All business Web sites need to provide a clear way to contact with Web site
owner.
Problem: How can the user get additional information on products or documents?
Forces:

• People like to know with whom they are doing business
• Getting company information might be the sole reason that users come to the site
• Many users want to know how is behind the service

Solution: Provide a Form, a place or a link in the web site where the user can get
additional information about the web site owner and his poducts.
Consequences: Provide improvements on feedback.
Examples &
Implementation
details:

http://www.intel.com, http://www.lucent.com This pattern is
implemented by including a page or a section where user can find
contact information, in many occasions this information is included in
bottom of all pages of the web site. In others cases, a form is provided
to the user. This form contains features like a textarea or textfields in
order to the user can provide his email and questions. Data provided
by the user are Secrets.

152

A First Approach to Design Web Sites by Using Patterns

Search
Motivation: Search is one of the most important elements of a Homepage, and it’s
essential that users be able to find it easily and use it effortlessly.
Problem: How can the user know if a web site can provide specified information that he
wants?
Forces:

• User wants to know if the searched information is on the Web site
• User doesn’t read web site. He/she has a look at it.

Solution: Provide a search engine or overview page. Give users an input box on the
Homepage to enter search queries, instead of just giving them a link to a search page
[Nielsen 02]. Search on the homepage should search the entire site default. [see Welie’s
patterns 01]
Consequences: Provide improvements on functionality and control.
Examples &
Implementation
details:

http://www.paginasamarillas.es, http://www.microsoft.com. This
pattern is implemented by providing a search form. Search forms are
the user interface of the search engine. It can consist of a very simple
Form with just a text field and a button, it can be a page and add a lint
to it in your navigation. Advanced search capabilities can be worth
adding. An advanced search page with options for phrases, multiple
fields, special collections or zones, and date ranges allows them to
perform more precise searches.

Recognize
Motivation: When a user comes back to a Web site he needs know what places he has
visited, what documents he has downloaded and if there are modifications from last visit.
Problem: How does the user know where he/she has been?
Forces:

• User does not want to loose his time
• User wants to receive personalised information

Solution: Keep information about user actions, visited places, logins, etc, for instance by
using cookies. Since HTTP is a non-persistent protocol, it is impossible to differentiate
between visits to a web site, unless the server can somehow mark a visitor.
Consequences: Provide improvements on feedback and error prevention
Examples &
Implementation
details:

http://www.kinkos.com, http://www.americanairlines.com. This
pattern is implemented by using cookies. Web cookies are simply bits
of software placed on your computer when you browse Web sites, so
the web site will recognise the user’s computer when he comes back
to visit again. Cookies have some beneficial things. For example,
when you log on or purchase online to certain sites, did you ever
notice that when you return again you do not have to sign on the next
time? That’s because it stored your password and id on your machine
in a cookie. So user’s workload is reduced.

153

A First Approach to Design Web Sites by Using Patterns

Colour
Motivation: Many web designers overlook the importance of colour when designing a
web site. Colour should be one of your first concerns when it comes time to start your
web site design.
Problem: How can the user access to information in a suitable way?
Forces:

• Web browsers can only see 256 colours
• People reading light characters on dark backgrounds for long periods reported less

visual fatigue
Solution: Provide information by using suitable colours in fonts, backgrounds and
image. For example, the default colours for Web page links are blue for non-visited links
and purple for visited links. Ensure that foreground and background colour combinations
provide sufficient contrast when viewed by someone having colour deficits or when
viewed on a back and white screen. You should use yellow and red colours sparingly in
your Web site itself. Only use them in areas where you want the visitor to focus on. Do
not make large parts of your web site with bright colour.
Consequences: Provide improvements on feedback, functionality, consistency and visual
clarity
Examples &
Implementation
details:

http://www.biblioteca.uclm.es, http://www.trashclub.com. Initially,
one of the limiting aspects of designing for the Web can be the 216-
colour palette. The idea behind the Netscape-created colour-set was to
maintain a consistent appearance for Web pages viewed on a
Windows, Macintosh, or Unix machine. Creating a consistent Web
site, it’s best to base the site’s colours on the Websafe ones. Luckily,
most HTML editors now have that palette built in. This pattern is
implemented by choosing colour combinations where readability and
visual clarity is improved and ensuring that all information conveyed
with colour is also available without colour for example from context
or markup. Backgrounds should not detract from readability. The first
reference is an example of bad use of colour.

Location
Motivation: When a user arrives at a Web site, like he/she arrives at a city, town or any
important building needs to know where he/she is.
Problem: How does the user know where he/she is?
Forces:

• Users need know where they are
• A complex Web site can be very disorienting for users

Solution: Provide feedback information about location of the user in the web site.
Consequences: Provide improvements on navigation, consistency and feedback
Examples &
Implementation
details:

http://java.sun.com, http://www.acrobat.com This pattern is
implemented by placing references in all web pages of the web site:
using titles and breadcrumbs. Usually complex Web site includes a
sitemap.

154

A First Approach to Design Web Sites by Using Patterns

Novelty
Motivation: Users want to know if there are new features in the Web site. Users admit
suggestions and want to know offers and promotions.
Problem: How can the user know novelties and latest news or suggestions of a web site?
Forces: User doesn’t read web site. He/she has a look at it
Users are in a hurry
Solution: Provide novelties of the web site in a clear and intuitive manner where users
will have rapid access to new services offered by web site
Consequences: Provide improvements on functionality and navigation
Examples &
Implementation
details:

http://www.microsoft.com, http://www.terra.es This pattern is
implemented by placing latest news or suggestions in an outstanding
place in the Homepage.

Size
Motivation: Design for the WWW is a balancing act between the graphics “wow” and
the real time “now”. The more graphically intense a site the longer it can take to
download.
Problem: How can the user access to information in a suitable way?
Forces:

• With a 28.8k connection, your computer can receive, on average, 2K per second.
No one wants to wait 30 seconds just to see your site logo

• Developing fixed-size Web pages is a fundamentally flawed practice
Solution: Provide information by using suitable sizes in images, fonts, and pages.
Animations, images, long files should be provided if the user really wants it (on-demand).
Page length, scrolling vs. paging needs, font size are important aspects.
Consequences: Provide improvements on control, consistency and visual clarity
Examples &
Implementation
details:

http://www.number-10.gov.uk, http://www.tagheuer.com This pattern
is implemented when thumbnails are used, when width and height
attributes of the tag are used, using standard fonts, or when
large volume of information is broken into chunks and written in
several pages avoiding scrolling. Organize documents so they may be
read without style sheets is useful.

About this
Motivation: All business Web sites need to provide a clear way to find information about
the company no matter how big or small the company is
Problem: How does the user know which is the purpose of the site?
Forces:

• People like to know with whom they are doing business
• Getting company information might be the sole reason that users come to the site
• Many users want to know who is behind the service

Solution: Provide a place or a link where the user can get information about the web
site’s content.
Consequences: Provide improvements on functionality and feedback.
Examples &
Implementation
details:

http://www.sunspot.net, http://www.ireland.com This pattern is
implemented by adding a section where information about owner of
the page can be found. Normally a link to this section is situated in the
Homepage.

155

A First Approach to Design Web Sites by Using Patterns

Secret
Motivation: If user provides private information, he/she will need to have the right to
expect confidentiality. Rapid advances in communication technology have accentuated
the need for security in the Internet.
Problem: How can the user be sure that information which he provides is protected?
Forces:

• Users want to security
• Users do not need to know technical aspects

Solution: Provide security needed mechanisms (access and privacy) and inform to the
user of security conditions and terms of use. Users should be registered (Subscription)
and so access to private sections on the Web site is allowed, but only a login and
password is not sufficient sometimes [Yoder98].
Consequences: Provide improvements on feedback and control
Examples &
Implementation
details:

http://www.bankofamerica.com, http://www.cdnow.com This pattern
is implemented with login form where we’ll ask the user for their
username and password by using php or asp. But unless your form is
located on a secure server, the information is transmitted in clear text,
and encryption won’t occur until the php script runs.
Include links where users can read web site Privacy Policy Statement |
Terms of Use

156

A First Approach to Design Web Sites by Using Patterns

Summary
The following tables summarise the patterns in this pattern catalogue for reference
purposes. These patterns could be integrated on a methodology like a checklist to develop
user interfaces like IDEAS [Lozano 01]. There are patterns of requirements, like these, that
can be used in beginning of an usability-based iterative life cycle. So patterns can be used
to improve a participatory design, evaluate web site under usability criteria and facilitate
communication between stakeholders involved in Web site developing.

Problem Solution Pattern name

How does the user know
where he is?

Supply a reception place where
conditions of user access to web site
can be evaluated

Welcome

How does the user know
where he can go and what
he will find there?

Provide meaningful links to the
different pages of the web sites Indication

How can the user visit the
web site at his own pace?

Provide information of a suitable way
by taking into account users Polyglot

How does the user know
that he is in the same web
site?

Provide an uniform aspect of the web
site (colours, sizes, distribution, etc.) Similarity

How does the user know
that he can visit the web
site without problems?

Provide tools or information needed
to visit the web site of suitable
manner

Ready

Problem Solution Pattern name
How does the user know
where he is?

Provide a reference point of the web
site Homepage

How can the user access
the content of the Web
page in a simple and proper
way?

Provide information by using a simple
language and jargon is avoided Polite

How does the user know
when his operations have
finished or the finished
state of them?

Provide feedback of the user action
(sending, loadings, downloading, etc.) Busy

How can the user be sure
of his actions?

Provide elements for undo/redo,
backing and clearing Second chance

How can the user provide
information to the web site
owner?

Provide appropriate “blanks” to be
filled in, which clearly and correctly
indicate what information should be
provided

Form

How can the user visit a
web site without getting
confused, being interrupted
or being disoriented?

Be careful with using disoriented
components (frames, animated gifs,
floating, windows, banners, applets,
flash, etc.)

Danger!

157

A First Approach to Design Web Sites by Using Patterns

Problem Solution Pattern name
How can the user know the
purpose of the web site is?

Provide a slogan or image that
identifies the web site and its purpose Tag Line

How can the user get a
suitable print of
information?

Provide information on several ways
and formats and give the possibility of
printing or downloading wide
documents

Print

How can the user be
informed with meaningful
information for him?

Provide a Form where the user can get
information that he wants
automatically

Subscription

How can the user request
for additional information
about the content of the
web site?

Provide a Form, a place or a link in
the web site where the user can get
additional information about the web
site owner and his products

Contact us

How can the user know if a
web site can provide the
information he wants?

Provide a search engine or overview
page Search

How does the user know
where he/she has been?

Keep information about user actions,
visited places, logins, etc. Recognize

How can the user access to
information web site in a
suitable way?

Provide information by using suitable
colours in fonts, backgrounds and
image.

Colour

How can the user access to
information web site in a
suitable way?

Provide information by using suitable
sizes in images, fonts, and pages Size

How can the user be sure
that information that he
provides is protected?

Provide security mechanisms (access
and privacy) needed to protect user
data and the web site and inform to
the user of security conditions

Secret

How can the user know
novelties and latest news of
a web site?

Provide suggestions and news of the
web site in a clear and intuitive
manner

Novelty

How can the user know
where he is, or what is the
section that he is visiting?

Provide feedback information about
location of the user in the web site Location

How can the user get
additional information
about web site owner?

Include a link to an “About Us”
section About this

Acknowledgements
We would like to thank our shepherd Serge Demeyer for his valuable suggestions and
comments on this paper. This work is supported in part by the Spanish CICYT TIC 2000-
1673-C06-06 and CICYT TIC 2000-1106-C02-02 grants.

158

A First Approach to Design Web Sites by Using Patterns

References
[Alexander 77] Christopher Alexander. “A Pattern Language”, Oxford University

Press, 1977.
[Alexander 79] Christopher Alexander. “The Timeless Way of Building”, Oxford

University Press, 1979.
[Constantine 01] Constantine Stephanidis, Anthony Savidis. “Universal Access in the

Information Society: Methods, Tools and Interaction Technologies.”
Springer-Verlang. 2001.

[Erickson 97] Thomas Erickson, “Supporting Interdisciplinary Design: Towards
Pattern Languages for Workplaces”. 1997.
http://www.pliant.org/personal/Tom_Erickson/Patterns.Chapter.html

[Evans 98] Mary Evans. “Web Design: An Empiricist’s Guide”. University of
Whasington, Seatle, Washington. 1998.

[Lozano 01] María Lozano, Isidro Ramos, Pascual González. “User interface
Specification and Modeling in an Object Oriented Environment for
Automatic Software Development”. IEEE 34th International Conference
on TOOLS USA. 2001.

[Lyardet 00] Fernando Lyardet, Gustavo Rossi. Web Usability Patterns.2000.
[Meszaros &
Doble 94]

Gerard Meszaros, Jim Doble, “A Pattern Language for Pattern
Writing”, in Martin, Riehle, Buschmann, Pattern Languages of Program
Design 3. Reading, Mass: Addison-Wesley, 1994.

[Nielsen 00] Jakob Nielsen, “Designing Web Usability: The Practice of Simplicity”.
New Riders Publishing. 2000.

[Nielsen 02] Jakob Nielsen, Marie Tahir. “Homepage Usability: 50 Websites
deconstructed ”. New Riders. 2002.

[Shneiderman
98]

Ben Shneiderman. “Designing the User Interface: Strategies for
Effective Human-Computer Interaction”. Addison Wesley. 1998.

[Tidwell 98] Jenifer Tidwell. “Common Ground: A Pattern Language for Human-
Computer Interaction”. http://www.mit.edu/~jtidwell/. 1998/99

[Welie 01] Martijn van Welie. Interaction design patterns. http://www.welie.com/.
2001.

[Yoder 98] Joseph Yoder, Jeffrey Barcalow. “Arquitectural Patterns for Enabling
Application Security”. PloP’97 D-4 book. 1998.

[Guidelines] Yale C/AIM WWW Style Manual
http://info.med.yale.edu
Apple’s Web Design Guide
http://applenet.apple.com
IBM Web Design Guidelines
http://www.ibm.com/IBM/HCI/guidelines

159

159. Using Watchdog Timers to Improve the Reliability of Single-Processor

Embedded Systems: Seven new Patterns and a Case Study

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

Using watchdog timers to improve the reliability of single-processor
embedded systems: Seven new patterns and a case study

Michael J. Pont1 and Royan H.L. Ong
Control & Instrumentation Research Group, Department of Engineering,
University of Leicester, University Road, LEICESTER LE1 7RH, UK.

Background

We have recently described a “language” consisting of more than seventy patterns, which will
be referred to here as the “PTTES Collection” (see Appendix 1). This language is intended to
support the development of reliable embedded systems: the particular focus of the collection is
on systems with a time triggered, co-operatively scheduled (TTCS) system architecture.

In the PTTES Collection, the pattern HARDWARE WATCHDOG was presented: this pattern was
intended to describe how to use watchdog timers (such as the ubiquitous ‘1232’ chip) in any
embedded application. At the time the PTTES Collection was assembled, HARDWARE

WATCHDOG was viewed as a very basic pattern, and it was presented in an introductory part of
the book. However, in recent months (as we have helped other people use the PTTES
Collection in a number of projects), it has become clear that the range of ways in which
watchdog timers can be used in TTCS applications was not adequately described in the
original, rather superficial, pattern. We therefore began work on a new version.

The patterns in this paper

The seven patterns described in this paper, together, form a replacement for HARDWARE

WATCHDOG. In this new collection, WATCHDOG RECOVERY is the entry point. This pattern
describes, in general terms, how to use a watchdog with TTCS applications: it also provides
links to the various other patterns in this paper.

More specific applications for watchdog timers are detailed in SCHEDULER WATCHDOG (which
describes how you can detect the failure of the scheduler in your system), and PROGRAM-FLOW

WATCHDOG (which describes how to detect program-flow errors).

Using SCHEDULER WATCHDOG and / or PROGRAM-FLOW WATCHDOG allows you to detect
certain important types of error: the “recovery” patterns may then prove helpful. The first such
pattern (RESET RECOVERY) is also the simplest: this describes how and when to use a simple
system reset to recover from some forms of error. The second recovery pattern is Fail-Silent
Recovery: this describes how and when to shut down your system in the event of a serious
error. The third recovery pattern is Limp-Home Recovery: this describes mechanisms that will
let your system “limp home” - in the event of an error - by running a simple version of the
original algorithm.

1 To whom correspondence should be addressed: M.Pont@le.ac.uk.

160

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

Finally, we have met many developers (some with considerable experience) who believe that
general-purpose watchdog timers can form the basis of techniques for detecting oscillator
failure. One reason for including OSCILLATOR WATCHDOG in this paper is to help dispel this
(sometimes dangerous) myth.

Case study

A short case study is presented at the end of the paper. This employs an example (an
automotive cruise-control system) to illustrate how many of the patterns presented in this
paper can be used in a realistic embedded application.

Acknowledgements

We are very grateful to Bob Hanmer (our Shepherd at VikingPLoP), who provided numerous
useful suggestions during the evolution of this paper prior to the conference. We are also
grateful to the members of our workshop (Mikio Aoyama, Walter Cazzola, Lars Grunske,
Kevlin Henney, Juha Pärssinen, Kristian Elof Sørensen), who provided further suggestions for
improving this paper at the conference itself.

Responsibility for all remaining bugs and errors rests with the authors.

161

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

WATCHDOG RECOVERY

Context

• You are developing a single-processor embedded application using a member of the 8051
family of microcontrollers (or similar hardware).

• You are programming in C (or a similar language).

• The application has a time-triggered architecture, constructed using a scheduler (e.g. CO-
OPERATIVE SCHEDULER [Pont, 2001, page 254]).

Problem

How can you make best use of a watchdog timer in your TTCS application?

Background

Suppose there is a hungry dog guarding a house (Figure 1), and someone wishes to break in .
If, during the burglary, an accomplice repeatedly throws the guard dog small pieces of meat,
then the animal will be so busy concentrating on the food that he will ignore his guard duties,
and will not bark. However, if the accomplice run out of meat or forgets to feed the dog for
some other reason, the animal will start barking, thereby alerting the neighbours, property
occupants or police.

Figure 1: The origins of the ‘watchdog’ analogy. See text for details.

This type of canine behaviour is mirrored (to an extent) in computerised “watchdog timers”
used in microcontroller-based systems. More specifically, the watchdog timers used to
implement WATCHDOG RECOVERY will - usually - have the following two features:

• The timer must be refreshed at regular, well-defined, intervals.

If the timer is not refreshed at the required time it will overflow, an process which will
usually cause the associated microcontroller to be reset.

• When starting up, the microcontroller can determine the cause of the reset.

That is, it can determine if it has been started ‘normally’, or re-started as a result of a
watchdog overflow. This means that, in the latter case, the programmer can ensure that the
system will try to handle the error that caused the watchdog overflow.

162

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

As we will see, the features of watchdog hardware are a good match for the needs of TTCS
systems, and - with a little care - a watchdog timer can form the basis of a simple but effective
way of improving your system’s ability to handle a range of different faults.

Solution

Understanding the basic operation of watchdog timer hardware is not difficult. However,
making good use of this hardware in a TTCS application requires some care. As we will see in
this section, there are three main issues which need to be considered:

• Choice of hardware;

• The watchdog-induced reset;

• The recovery process.

We begin by considering the choice of hardware.

Choice of hardware

We have seen in many previous cases (in Pont, 2001) that, where available, the use of on-chip
components is to be preferred to the use of equivalent off-chip components. Specifically, on-
chip components tend to offer the following benefits:

• Reduced hardware complexity, which tends to result in increased system reliability.

• Reduced application cost.

• Reduced application size.

These factors also apply when selecting a watchdog timer. In addition, when implementing
WATCHDOG RECOVERY, it is usually important that the system is able to determine - as it
begins operation - whether it was reset as a result of normal power cycling, or because of a
watchdog timeout. In most cases, only on-chip watchdogs allow you to determine the
cause of the reset in a simple and reliable manner.

With appropriate on-chip hardware, determining the cause of a reset is usually straightforward:
we give an example at the end of this pattern to illustrate this.

The watchdog-induced reset

We consider time-based error detection, handling program-flow errors, and other - more
general - uses for watchdog resets in this section.

(a) Time-based error detection

A key requirement in applications using a co-operative scheduler is that, for all tasks, under all
circumstances, the following condition must be adhered to:

<TaskDuration TickInterval

163

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

Where: TaskDuration is the task duration, and TickInterval is the system ‘tick interval’.

The pattern SCHEDULER WATCHDOG [this paper] describes techniques that will help you to
meet this condition.

(b) Responding to program-flow errors

Timer-based error detection requires the watchdog timer to do two things:

1. Detect time-related errors;

2. Cause a system reset (and, thereby, invoke an error-recovery process).

Time-based error detection is not the only possibility. When the system uses a watchdog
timer, we can use this timer to force a system reset at any time, through the use of an endless
loop:

// One way of forcing a watchdog-induced reset
while(1)
 ;

Use of a watchdog in this way is particularly appropriate in situations where you have detected
an error, and the nature of this error means that you cannot be sure what state the system is
currently in.

One form of error that gives rise to such concerns is the program-flow error, which can occur
as a result of electromagnetic interference. When such errors occur the program flow may be
diverted to a “random” address in code memory. By the time you manage to detect that such a
random jump has taken place, it is generally impossible to predict what damage has been done,
and you therefore cannot be sure that, if you call an error-handling function, it will operate as
intended.

In these circumstance, we can use the watchdog timer to perform a system reset, after which
we call the error handler. In doing this, we assume that the system is more likely to operate
correctly after it is reset, and that the error-handling function will therefore work more
effectively when called in this way.

This technique for dealing with program-flow errors is discussed in detail in PROGRAM-FLOW

WATCHDOG [this paper].

(c) Other uses for watchdog-induced resets

If your system uses watchdog-induced resets to handle program-flow errors, and / or it uses
timer-based error detection techniques, then it can make sense to also use watchdog-induced
resets to handle other errors. Doing this means that you can integrate some or all of your
error-handling mechanisms in a single place (usually in some form of system initialisation
function). This can - in many systems - provide a very “clean” and approach to error handling
that is easy to understand (and maintain).

164

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

Note that this combined approach is only appropriate where the recovery behaviour you will
implement is the same for the different errors you are trying to detect: an examination of the
possible error-recovery mechanisms (which are summarised in the next section) may help you
to decide if this is the case for your system.

Here are some suggestions for the types of errors that can be effectively handled in this way:

• Failure of on-chip hardware (e.g. analogue-to-digital converters, ports).

• Failure of external actuators (e.g. DC motors in an industrial robot; stepper motors in a
printer).

• Failure of external sensors (e.g. ultraviolet sensor in an art gallery; vibration sensor in an
automotive system).

• Temporary reduction is power-supply voltage.

We illustrate the use of this approach to error handling in the case study at the end of this
paper.

Recovery behaviour

Before we decide whether we need to carry out recovery behaviour, we assume that the
system has been reset. If the reset was “normal” we simply start the scheduler and run the
standard system configuration.

If, instead, the cause of the reset was a watchdog overflow, then there are three main options:

• We can simply continue as if the processor had undergone an “ordinary” reset. This option
is discussed in the pattern RESET RECOVERY [this paper].

• We can try to “freeze” the system in the reset state. This option is discussed in the pattern
FAIL-SILENT RECOVERY [this paper].

• We can try to have the system run a different algorithm (typically, a very simple version of
the original algorithm, often without using the scheduler). This option is discussed in the
pattern LIMP-HOME RECOVERY [this paper].

Hardware resource implications

The main resource implication is that a suitable watchdog timer is required.

165

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

Reliability and safety implications

We consider a number of key features in this section.

Risk assessment

In safety-related or safety-critical systems, this pattern should not be implemented before a
complete risk-assessment study has been conducted (by suitably-qualified individuals).

Successful use of this pattern requires a full understanding of the errors that are likely to be
detected by your error-detection strategies (and those that will be missed), plus an equal
understanding of the recovery strategy that you have chosen to implement. Without a
complete investigation of these issues, you cannot be sure that implementation of the pattern
you will increase (rather than decrease) the reliability of your application.

The limitations of single-processor designs

It is important to appreciate that there is a limit to the extent to which reliability of a single-
processor embedded system can be improved using a watchdog timer.

For example, LIMP-HOME RECOVERY is the most sophisticated recovery strategy considered in
this paper. If implemented with due care, it can prove very effective. However, it relies for its
operation on the fact that - even in the presence of an error - the processor itself (and key
support circuitry, such as the oscillator, power supply, etc) still continues to function. If the
processor or oscillator suffer physical damage, or power is removed, LIMP-HOME RECOVERY

cannot help your system to recover.

In the event of physical damage to your “main” processor (or its support hardware), you may
need to have some means of engaging another processor to take over the required
computational task. One way to perform this type of activity is to use WATCHDOG SLAVE2.

Time, time, time …

Suppose that the braking system in an automotive application uses a 500 ms watchdog and the
vehicle encounters a problem when it is travelling at 70 miles per hour (110 km per hour). In
these circumstances, the vehicle and its passengers will have travelled some 15 metres / 16
yards - right into the car in front - before the vehicle even begins to switch to a “limp-home”
braking system.

In some circumstances, the programmer can reduce the delays involved with watchdog-
induced resets, and thereby improve the system reliability. For example, many systems force a
watchdog reset using code like this:

// One way of forcing a watchdog-induced reset
while(1)

 ;

2 WATCHDOG SLAVE is a based on the “shared-clock scheduler” architecture (see Pont, 2001, Part F). The

pattern is still under development, and details will be released at a future PLoP conference.

166

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

Some hardware allows you to adjust the watchdog delay while the watchdog is active. This
can be a useful means of reducing the delays involved in the watchdog-induced reset. For
example, using the Infineon C515C, the watchdog reload register can be changed at any time,
thereby altering the overflow period. This allows the programmer to do the following:

// Set up the watchdog for “normal” use
// - overflow period = ~39 ms
WDTREL = 0x00;

...

// Adjust watchdog timer for faster reset
// - overflow set to ~300 µs
WDTREL = 0x7F;

// Now force watchdog-induced reset
while(1)
 ;

On-chip watchdogs and ‘idle’ mode

In most applications based on CO-OPERATIVE SCHEDULER [Pont, 2001, page 254], the
microcontroller enters ‘idle’ mode between scheduler ticks, after executing the Dispatcher
function.

You need to be aware that - when entering idle mode - some microcontrollers disable the (on-
chip) watchdog timer. If this happens, then none of your watchdog-based error-handling
mechanisms will operate correctly.

If your chosen microcontroller disables the watchdog timer in idle mode, it may be necessary
to avoid using this mode. Please note that the scheduler will still operate correctly in these
circumstances; however, the power consumption of your system will increase.

Portability

This pattern does not rely (in any way) on features which are unique to the 8051 family: it can
be applied in systems based on any microcontroller (e.g. PIC, AVR, HC08, C16x, ARM, etc).

Overall strengths and weaknesses

☺ Watchdogs can provide a ‘last resort’ form of error recovery. If you think of the use of
watchdogs in terms of ‘if all else fails, then we’ll let the watchdog reset the system’, you
are taking a realistic view of the capabilities of this approach.

L Use of this technique usually requires an on-chip watchdog.

L Used without due care at the design phase and / or adequate testing, watchdogs can
reduce the system reliability dramatically. In particular, in the presence of sustained faults,
badly-designed watchdog “recovery” mechanisms can cause your system to repeatedly
reset itself. This can be very dangerous.

L Watchdogs with long timeout periods are unsuitable for many applications.

167

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

Related patterns and alternative solutions

We consider a number of related patterns and alternative solutions in this section.

Related pattern: SCHEDULER WATCHDOG [this paper]

This pattern describes how you can you use a watchdog timer to ensure that the scheduler in
your TTCS application is operating correctly.

Related pattern: PROGRAM-FLOW WATCHDOG [this paper]

This pattern provides a description of a popular technique for dealing with program-flow
errors in embedded systems: such errors are often thought to arise from electromagnetic
interference.

Related pattern: OSCILLATOR WATCHDOG [this paper]

This pattern describes how to deal with oscillator failures in a single-processor embedded
system.

Related pattern: RESET RECOVERY [this paper]

This pattern describes a very simple recovery strategy that can be used after a watchdog-
induced reset.

Related pattern: FAIL-SILENT RECOVERY [this paper]

This pattern describes how to shut down your system after a watchdog-induced reset.

Related pattern: LIMP-HOME RECOVERY [this paper]

This pattern describes how you can re-start your system (and run a different - usually very
simple - algorithm), after a watchdog-induced reset.

Other simple watchdog solutions

Bruce Powel Douglass has described an alternative watchdog pattern (WATCHDOG [Douglass,
1999, p.646]): note that this pattern is not tailored for use with TTCS applications.

A software watchdog?

In certain restricted circumstances, a software watchdog may also be useful. This can be
created from two components:

• A Timer ISR;

• A refresh function.

Essentially, we set a timer to overflow in (say) 60 ms. Under normal circumstances, this timer
will never overflow, because we will call the “refresh” function regularly, and - thereby -
restart the timer. If, however, the program is ‘jammed’, the refresh function will not be called.
When the timer overflows, the ISR will be called: this can be used to implement an
‘appropriate’ error recovery strategy.

168

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

The main advantage of a software watchdogs is that different forms of error recovery (not
necessarily involving a complete chip reset) are possible.

The main concern with this approach is that some errors (for example, those induced by EMI)
may disrupt the “software” timer as well as the main application code: hardware watchdogs
appear to be more robust in these circumstances.

Note that some hardware provides a way of obtaining a combination of “software” and
“hardware” watchdogs. Specifically, the DS87C520 (and similar family members) allow the
programmer to invoke an interrupt service routine (ISR) a short time before the chip
undergoes a full reset. This provides a mechanism for trying to deal with the source of the
error in an ISR and - if unsuccessful - allowing a full reset to take place.

When one processor is not enough

As noted in “solution”, there is a limit to the extent to which reliability of a single-processor
embedded system can be improved using any form of watchdog timer.

Using a shared-clock scheduler (see Pont, 2001, Part F) can sometimes be a useful alternative
to the techniques discussed in this pattern.

Other patterns

Some alternative patterns for fault tolerance and error recovery which may be of interest were
presented recently by Saridakis (2002).

Example: Automotive cruise control.

Use of WATCHDOG RECOVERY is illustrated in the case study at the end of this paper.

Example: Determining the cause of a watchdog reset

As noted in “Solution”, most implementations of WATCHDOG RECOVERY rely on an ability to
determine the cause of a system reset. Fortunately, this is usually easy to do. For example, in
the Infineon C515C, the WDTS flag (bit 6 in the register IP0) is set if the reset was caused by
a watchdog timer overflow. Having determined the status of this bit, it should be cleared in
software:

// Determine if reset was caused by watchdog overflow (C515C)
if (IP0 & 0x40)
 {
 // WDTS flag is set - reset *was* caused by watchdog
 Watchdog_reset_G = 1;

 // Clear the IP0 flag
 IP0 &= 0xBF;
 }
else
 {
 Watchdog_reset_G = 0;
 }

169

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

SCHEDULER WATCHDOG

Context

• You are developing a single-processor embedded application using a member of the 8051
family of microcontrollers (or similar hardware).

• You are programming in C (or a similar language).

• The application has a time-triggered architecture, constructed using a scheduler (e.g. CO-
OPERATIVE SCHEDULER [Pont, 2001, page 254]).

Problem

How can you detect that the scheduler in your TTCS application has stopped operating
correctly?

Background

General background

SCHEDULER WATCHDOG can be seen as an implementation of the more general pattern
WATCHDOG RECOVERY [this paper]: please refer to WATCHDOG RECOVERY for background
information that will assist in the understanding of the present pattern.

Features of co-operative schedulers

As we discussed in CO-OPERATIVE SCHEDULER [Pont, 2001, page 254], a key requirement in
applications using a (co-operative) scheduler is that, for all tasks, under all circumstances, the
following condition must be adhered to:

<TaskDuration TickInterval - Eq. 1

Where: TaskDuration is the task duration, and TickInterval is the system ‘tick interval’.

Simply satisfying Equation 1 is not sufficient to guarantee the integrity of the scheduling, since
we also need to take into account the CPU overheads imposed by the running of the scheduler
itself. We can represent this as follows:

Tick
Scheduler

Task Interval
CPU

Duration ×





 −<

100
1

- Eq. 2

Where: SchedulerCPU is the percentage of the available CPU time consumed by the scheduler

itself.

170

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

Equation 2 will be applicable where (only) one task is scheduled to execute at any tick
interval. If this condition is not satisfied, then we also need to take into account the duration
of all tasks that are scheduled to run in the same tick interval. Thus - at every tick interval -
we need to ensure that:

Tick
SchedulerN

i iTask Interval
CPU

Duration ×





 −<∑ = 100
1

1

- Eq. 3

Where: ∑ =

N

i iTaskDuration
1

is the sum of the duration of all the tasks scheduled to run at a

particular tick interval.

We have previously discussed (Pont, 2001) a number of techniques3 which can help you meet
the condition summarised in Equation 3.

In many systems, the designers apply SCHEDULER WATCHDOG in order to develop a final safety
net for their system.

Solution

We will start by considering time-based error detection techniques.

Time-based error detection

It is possible to use a watchdog timer to test the condition summarised in Equation 3 (in
Background), as follows:

• Set the watchdog timer to overflow at a period greater than the tick interval.

• Create a task that will update the watchdog timer shortly before it overflows.

• Start the watchdog.

Under normal circumstances, the watchdog timer will never overflow, and your system will
operate as normal. However, if the duration of a task (or the duration of a sequence of tasks,
scheduled to execute in the same tick interval) cause the scheduling to be significantly
disrupted, the watchdog timer will reset the system.

Selecting the overflow period

Selecting the watchdog overflow period requires some care, since the choice of the overflow
period will depend on the system characteristics.

(a) Systems with ‘hard’ timing constraints

For systems with “hard” timing constraints for one or more tasks, it is usually appropriate to
set the watchdog overflow period to a value slightly greater than the tick interval (e.g. 1.1 ms
overflow in a system with 1 ms ticks). In this way, you will very rapidly detect scheduling
problems.

3 A summary of these techniques is given in “Related patterns and alternative solutions”.

171

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

Please note that to do this, the watchdog timer will usually need to be driven by a crystal
oscillator (or the timing will not be sufficiently accurate). In addition, the watchdog timer will
need to give you enough control over the timer settings, so that the required overflow period
can be set.

(b) Systems with ‘soft’ timing constraints

The ‘hard timing’ approach is very effective, but before deciding on this option, you should
bear in mind the fact that many (‘soft’) TTCS systems continue to operate safely and
effectively, even if - at times - the duration of the task(s) that are scheduled to run at a
particular time exceeds the tick interval.

To give a simple example, a scheduler with a 1 ms tick interval can - without problems -
schedule a single task with a duration of 10 ms that is called every 20 ms.

Of course, if the same system is also trying to schedule a task of duration 0.1 ms every 5 ms,
then the 0.1 ms task will sometimes be blocked. Often careful design will avoid this blockage
but - even if it occurs - it still may not matter because, although the 0.1 ms will not always run
on time, it will always run (that is, it will run 200 times every second, as required).

For some tasks - with soft deadlines - this type of behaviour may be acceptable. If it is, then it
is appropriate to use a watchdog timer with a longer time-out period.

Typically, this will be done as follows:

• Set the watchdog to overflow after a period of around 100 ms.

• Feed the watchdog every millisecond, using an appropriate task.

• Only if the scheduling is blocked for more than 100 ms will the system be reset.

Recovery strategies

In the event that the watchdog timer has overflowed, we know that something has disrupted
the scheduling.

A range of suitable recovery strategies are discussed in RESET RECOVERY [this paper], FAIL-
SILENT RECOVERY [this paper] and LIMP-HOME RECOVERY [this paper].

Hardware resource implications

Using SCHEDULER WATCHDOG requires an appropriate watchdog timer: please see WATCHDOG

RECOVERY [this paper] for details.

172

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

Reliability and safety implications

In safety-related or safety-critical systems, this pattern should not be implemented before a
complete risk-assessment study has been conducted (by suitably-qualified individuals).

Successful use of this pattern requires a full understanding of the errors that are likely to be
detected by your error-detection strategies (and those that will be missed), plus an equal
understanding of the recovery strategy that you have chosen to implement. Without a
complete investigation of these issues, you cannot be sure that implementation of the pattern
you will increase (rather than decrease) the reliability of your application.

Please see WATCHDOG RECOVERY [this paper] for further discussion of the reliability and
safety implications associated with watchdog timers.

Portability

The approach to error detection a recovery described in SCHEDULER WATCHDOG is not in any
way specific to the 8051 microcontroller family: it can be used with any device.

Overall strengths and weaknesses

☺ SCHEDULER WATCHDOG provides a useful “safety net” in the event that problems in the
system disrupt the scheduling.

L Use of this technique usually requires an on-chip watchdog.

L Used without due care at the design phase and / or adequate testing, watchdogs can
reduce the system reliability dramatically. In particular, in the presence of sustained faults,
badly-designed watchdog “recovery” mechanisms can cause your system to repeatedly
reset itself. This can be very dangerous.

L Watchdogs with long timeout periods are unsuitable for many applications.

Related patterns and alternative solutions

Please refer to WATCHDOG RECOVERY [this paper] for references to other, general, watchdog
patterns.

In this section, some patterns directly related to SCHEDULER WATCHDOG are mentioned.

Other mechanisms for detecting (or avoiding) time-based errors

As noted in “Solution” there are a number of other patterns in the PTTES Collection that can
help you satisfy the time constraints described in Equation 1, Equation 2 and Equation 3. For
example:

• The processor patterns (STANDARD 8051, SMALL 8051, EXTENDED 8051) allow selection of
a processor with performance levels appropriate for the application.

• The oscillator patterns (CRYSTAL OSCILLATOR and CERAMIC RESONATOR) allow an
appropriate choice of oscillator type, and oscillator frequency to be made, taking into

173

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

account system performance (and, hence, task duration), power-supply requirements, and
other relevant factors.

• The various Shared-Clock schedulers (SCC SCHEDULER, SCI SCHEDULER (DATA), SCI
SCHEDULER (TICK), SCU SCHEDULER (LOCAL), SCU SCHEDULER (RS-232), SCU
SCHEDULER (RS-485)) describe how to schedule tasks on multiple processors, which still
maintaining a time-triggered system architecture. Using one of these schedulers as a
foundation, the pattern LONG TASK describes how to migrate longer tasks onto another
processor without compromising the basic time-triggered architecture.

• LOOP TIMEOUT and HARDWARE TIMEOUT describe the design of timeout mechanisms which
may be used to ensure that tasks complete within their allotted time.

• MULTI-STAGE TASK discusses how to split up a long, infrequently-triggered task into a
short task, which will be called more frequently. PC LINK (RS232) and LCD CHARACTER

PANEL both implement this architecture.

• HYBRID SCHEDULER describes a scheduler that has most of the desirable features of the
(pure) co-operative scheduler, but allows a single long (pre-emptible) task to be executed.

Before implementing SCHEDULER WATCHDOG, you should consider whether these patterns
meet the needs of your application.

Example: Automotive cruise control.

Use of SCHEDULER WATCHDOG is illustrated in the case study at the end of this paper.

Example: A library for the watchdog timer on the Infineon C515C

A simple code “library” supporting the use of the watchdog timer on the Infineon C515C is
presented in Listing 1, Listing 2 and Listing 3.

/*--*-

 WATCHDOG_C515C_Init()

 This function sets up the watchdog timer.

-*--*/
void WATCHDOG_C515C_Init(void)
 {
 // Watchdog timer prescaler (1/16) enabled
 // Watchdog timer reload value is 0x6B
 // Oscillator is 10 MHz -> watchdog period is ~103 ms
 WDTREL = 0xEB;

 // Start watchdog timer
 WDT = 1;
 SWDT = 1;
 }

Listing 1: Part of a small “watchdog” library for the Infineon C515C.

174

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

/*--*-

 WATCHDOG_C515C_Refresh()

 Feed the internal C515C watchdog.

-*--*/
void WATCHDOG_C515C_Refresh(void)
 {
 WDT = 1;
 SWDT = 1;
 }

Listing 2: Part of a small “watchdog” library for the Infineon C515C.

/*--*-

 WATCHDOG_C515C_Cause_of_Reset()

 Returns 1 if last reset was caused by watchdog (and clears flag)
 Returns 0 if last reset was "normal".

-*--*/
int WATCHDOG_C515C_Cause_of_Reset(void)
 {
 // Determine if reset was caused by watchdog overflow (C515C)
 if (IP0 & 0x40)
 {
 // Clear the IP0 flag
 IP0 &= 0xBF;

 return 1;
 }

 return 0;
 }

Listing 3: Part of a small “watchdog” library for the Infineon C515C.

175

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

PROGRAM-FLOW WATCHDOG

Context

• You are developing a single-processor embedded application using a member of the 8051
family of microcontrollers (or similar hardware).

• You are programming in C (or a similar language).

• The application has a time-triggered architecture, constructed using a scheduler (e.g. CO-
OPERATIVE SCHEDULER [Pont, 2001, page 254]).

Problem

How can you recover from program-flow errors in an embedded processor?

Background

This pattern is concerned with reducing the impact of ‘program flow’ errors on embedded
applications. Such errors can occur as a result of electromagnetic interference.

Arguably, the most serious form of program-flow error in an embedded microcontroller is
corruption of the program counter (PC), also known as the instruction pointer4. Since the PC
of the 8051 is a 16-bit wide register, we make the reasonable assumption that – in response to
PC corruption – the PC may take on any value in the range 0 to 65535. In these
circumstances, the 8051 processor will fetch and execute the next instruction from the code
memory location pointed to by the corrupted PC register. This code memory location may
contain:

• program code,

• data constants, or,

• “nothing” (that is, it is unprogrammed, and contains neither code nor meaningful data).

We discuss each of these possibilities in the sections that follow.

Vectoring to program-code locations

Clearly, corruption of the instruction pointer that causes the program flow to be diverted to a
“random” address is likely to cause severe side effects. However, the precise impact of such
diversions can be very difficult to predict.

4 The PC is only one of many registers in an embedded processor and there is no evidence to suggest that

this particular register is any more or less susceptible to EMI than the others. However, the impact of
corruption to the PC is arguably the most serious result of EMI, as it can result in disruption to the
program flow.

176

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

A particular problem arises because in the 8051 (and many other processors), more than half of
the instructions are “multibyte instructions”, such as “POP” and “ACALL” that occupy two or
three memory locations, respectively. PC corruption may cause the program flow to be
diverted to any of these locations.

To illustrate the nature of the resulting “multibyte instruction trap” (MIT), consider the
assembly code shown below:

0100 759850 MOV 98H,#050H
0103 438920 ORL 89H,#020H
0106 758DFD MOV 8DH,#0FDH

If the PC is corrupted and takes on the value 0x0101, then the code above will be interpreted
as follows:

0101 98 SUBB A,R0
0102 5043 JNC #43H
0104 8920 MOV 20H,R1
0106 758DFD MOV 8DH,#0FDH

In this example, the first three instructions of the original program code have been
misinterpreted while the rest remain unchanged. Of course, the number of instructions that will
be misinterpreted depends on the instruction sequence, the corrupted PC value and the state of
the processor at the time of PC corruption. In short, the precise impact is impossible to
predict in most practical situations.

Vectoring to data locations

The problems with misinterpretation of instructions also apply to data values stored in the code
area since, to the processor, data constants - such as digital filter coefficients stored in the code
area - are indistinguishable from program code.

Again, the results of this are - again - very difficult to predict.

Vectoring to unprogrammed memory locations

Unprogrammed memory locations will usually (by default) have the contents 0xFF, which
corresponds to the “MOV R7,A” in the 8051 instruction set (“Copy the contents of the
accumulator to register R7”).

In many applications, the program code will occupy the lower code memory addresses, and the
remainder of the memory will be unprogrammed. In these circumstances the processor will
execute “MOV R7,A” instructions until the PC reaches the end of the physical code memory.
The processor will then continue executing program code at location 0x0000. This can have
an impact similar to a processor reset5.

5 It is important to appreciate that this is NOT the same as a processor reset. For example, when the

processor is reset, register values take on well-defined values: this has important implications for several
aspects of system behaviour, such as initial port settings.

177

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

In other applications there may be unprogrammed “gaps” in the memory maps, followed by
constant data or program code. Execution of this code (or data, treated as code) is likely to
have less predictable side effects, as we discussed earlier.

Solution

The technique we discuss here has previously been described and assessed in a number of
studies (Campbell, 1995; Campbell, 1988; Niaussat, 1998; Ong and Pont, 2001; Ong et al.,
2001; Ong and Pont, 2002).

An overview of the approach

The most straightforward implementation of PROGRAM-FLOW WATCHDOG involves two
stages:

• We fill unused locations at the end of the program code memory with single-byte “No
Operation” (NOP), or equivalent, instructions.

• We place a “PC Error Handler” (PCEH) at the end of code memory to deal with the error6.

The operation of Program-Flow Watchdogs may be easily predicted. When an PC error
occurs and the PC points to a memory location within the Program-Flow Watchdog
area, the processor will repeatedly execute NOP instructions until the PC points to the start of
the PCEH. The error handler will then carry out its intended recovery function.

Dealing with errors

Here, we will assume that the PCEH will consist mainly of a loop:

// Force watchdog timeout
while(1)
 ;

This means that, as discussed in WATCHDOG RECOVERY [this paper] the watchdog timer will
force a clean system reset.

Please note that, as also discussed in WATCHDOG RECOVERY, we may be able to reduce the
time taken to reset the processor by adapting the watchdog timing. For example:

// Set up the watchdog for “normal” use
// - overflow period = ~39 ms
WDTREL = 0x00;

...

// Adjust watchdog timer for faster reset
// - overflow set to ~300 µs
WDTREL = 0x7F;

// Now force watchdog-induced reset
while(1)

6 Note that, except in the event of PC corruption, the PCEH is unreachable.

178

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

 ;

After the watchdog-induced reset, we need to implement a suitable recovery strategy. A range
of different options are discussed in RESET RECOVERY [this paper], FAIL-SILENT RECOVERY

[this paper] and LIMP-HOME RECOVERY [this paper].

Hardware resource implications

As noted above, PROGRAM-FLOW WATCHDOG can only be guaranteed to work where the
corrupted PC points to an “empty” memory location. Maximum effectiveness will therefore be
obtained with comparatively small programs (a few kilobytes of code memory), and larger
areas of empty memory.

If devices with less than 64kB of code memory are used, a problem known as “memory
aliasing” can occur (see Figure 2).

Code

0kB 2kB 64kB0xA552

64kB physical code memory – no memory aliasing

Code Code Code Code

16kB physical code memory – memory overlap 4 times due to aliasing

0kB 2kB 64kB

0x6552

16kB 18kB 32kB 34kB 48kB 50kB

0xE5520xA5520x2552

Aliased section

Figure 2: Problems caused by memory aliasing. See text for details.

Figure 2 shows a 2kB program on microcontrollers with 16kB and 64kB of physical code
memory. In this example, the PC is addressing location 0xA552 on the 64kB device. In the
16kB device, the lack of the upper two address lines means that addresses 0x2552,
0x6552, 0xA552 and 0xE552 will all address the same physical code location.

Memory aliasing has an important impact on the effectiveness of Program-Flow Watchdog.
For example, suppose your program code is 2 kB in size:

• If you use a 64 kB code memory to store your program, you are likely to trap (on average)
62/64 * 100% (= 96.9%) of program-flow errors.

• If you use a 4 kB code memory to store your program, you are likely to trap (on average)
2/4
* 100% (= 50%) of program-flow errors.

179

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

The implications are clear. If you want to increase the chances of detecting program-flow
errors using this approach, you need to use the maximum amount of (code) memory that is
supported by your processor. In the case of the 8051 family, this generally means selecting a
device with 64 kB of memory. Clearly, this choice will have cost implications.

Reliability and safety implications

Use of PROGRAM-FLOW WATCHDOG may help to improve reliability of your system in the
presence of program-flow errors (which may, in turn, result from EMI).

Under normal conditions, neither the filling of unused memory locations with NOP
instructions, nor the addition of an error handler will have any impact on your program.

Please note, however, that - if a watchdog timer is used as part of your error-recovery strategy
- you need to ensure that you have a full understanding of the implications this can have for the
reliability of your system. Please see WATCHDOG RECOVERY [this paper] for further details.

Portability

The technique used in this pattern is applicable with any microcontroller family (however, the
particular instructions used for the “NOP” behaviour will - obviously - need to match the
hardware).

Overall strengths and weaknesses

☺ A low-cost technique that can be effective in the presence of program-flow errors.

L For maximum effectiveness, a significant amount of “empty” code memory is required.

Related patterns and alternative solutions

We consider a number of alternative solutions and related patterns in this section.

Speeding up the response

We stated in “Solution” that the most straightforward implementation of PROGRAM-FLOW

WATCHDOG involves two stages:

• We fill unused locations at the end of the program code memory with single-byte “No
Operation” (NOP), or equivalent, instructions.

• Second, a small amount of program code, in the form of an “PC Error Handler” (PCEH), is
placed at the end of code memory to deal with the error.

Suppose that we implement this solution, and that our microcontroller therefore has a large
amount of ROM, filled with NOP instructions. Further suppose that a program-flow error
throws the PC to the start of this NOP area. It may then take an appreciable period of time for
the processor to reach the error handler. In addition, the time taken to recover from an error is
highly variable (since it depends on the value of the corrupted PC).

180

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

An alternative is to fill the memory not with “NOP” instructions but with “jump” instructions.
In effect, we want to fill each location with “Jump to address X” instructions, and then place
the error handler at address X.

In practice, such a jump instruction will occupy more than one byte, but this problem is not
insurmountable. In the 8051, the simplest implementation is to fill the empty memory with
“long jump” instructions (0x02). As a result (almost) every time the PC lands in this area, the
processor will execute the instruction: “Jump to 0x0202”. The error handler will then be
located at address 0x0202.

We give an example of this process below.

The recovery operation

A range of suitable recovery strategies are discussed in RESET RECOVERY [this paper], FAIL-
SILENT RECOVERY [this paper] and LIMP-HOME RECOVERY [this paper].

Hardware-based alternatives

To deal with EMI-related problems, hardware solutions, including device shielding, wiring
screening and input/output filtering are widely used. However, hardware solutions are
expensive, can suffer physical damage, and – in applications such as Hall-effect sensors – can
interfere with normal device operation.

Despite this, in most cases, it does not make sense to abandon hardware protection completely.
Software-based techniques can be effective as an adjunct to hardware-based techniques.

Example: Automotive cruise control.

Use of PROGRAM-FLOW WATCHDOG is illustrated in the case study at the end of this paper.

Example: Implementing Program-Flow Watchdog (NOP fill)

We summarise how to implement a basic PROGRAM-FLOW WATCHDOG on the 8051
microcontroller, using the Keil compiler, below:

1. Compile and link the program, as normal, with an error handler.

2. From the .M51 file, determine the length of the error function (e.g. 45 bytes, 0x2D bytes).

3. Determine the size of the code memory you will use (e.g. 0x2000 = 8K); ideally, this will be
64 kbytes.

4. Subtract the size of the error function from the code-memory size (e.g. 0x2000 - 0x2D =
0x1FD3)

5. Use the compiler / linker options to move the error handler to this location.

6. EITHER: Use your device programmer to fill the memory with NOP instructions.
OR: Use the .M51 file to determine the required size, and use the startup.A51 file to set the
values to “NOP”.

7. Re-compile and link the code, and program the chip.

181

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

Example: Implementing Program-Flow Watchdog (Jump version)

We summarise how to implement a “jump” version of PROGRAM-FLOW WATCHDOG on the
8051 microcontroller, using the Keil compiler, below:

1. Write the program (including error handler).

2. Use the compiler / linker options to move the error handler to location 0x0202.

3. Use your programmer to fill the memory with 0x02 instructions - or use the .M51 file
(again) to determine the required size, and use the startup.A51 file to set the values to
“0x02”.

4. Compile and link the code, and program the chip.

182

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

RESET RECOVERY

Context

• You are developing a single-processor embedded application using a member of the 8051
family of microcontrollers (or similar hardware).

• You are programming in C (or a similar language).

• The application has a time-triggered architecture, constructed using a scheduler (e.g. CO-
OPERATIVE SCHEDULER [Pont, 2001, page 254]).

and:

• You are using techniques described in WATCHDOG RECOVERY [this paper] - or similar
approaches - in order to improve the fault-tolerance of your system.

• A watchdog-induced reset has occurred.

Problem

How can you ensure that your processor re-starts safely after a watchdog-induced reset?

Background

Please see WATCHDOG RECOVERY [this paper] for background information on watchdog
timers.

Solution

As we discussed in WATCHDOG RECOVERY, all of the error-recovery strategies discussed in
this paper begin with a system reset, which has been caused by the overflow of a watchdog
timer.

What are we trying to achieve?

Using RESET RECOVERY we assume that the best way to deal with an error (the presence of
which is indicated by a watchdog-induced reset) is to re-start the system, in its normal
configuration.

Implementation

RESET RECOVERY is very to easy to implement. We require a basic watchdog timer, such as
the common “1232” external device, available from various manufacturers (we show how to
use this device in an example below).

Using such a device, the cause of a system reset cannot be easily determined. However, this
does not present a problem when implementing RESET RECOVERY. After any reset, we simply
start (or re-start) the scheduler and try to carry out the normal system operations.

183

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

Hardware resource implications

As noted in “Solution”, it is not necessary to distinguish between a ‘normal’ system reset, and
a reset caused by a watchdog overflow when implementing RESET RECOVERY. One
consequence of this is that any type of watchdog hardware (internal or external) can be used.

Reliability and safety implications

In safety-related or safety-critical systems, this pattern should not be implemented before a
complete risk-assessment study has been conducted (by suitably-qualified individuals).

Successful use of this pattern requires a full understanding of the errors that are likely to be
detected by your error-detection strategies (and those that will be missed), plus an equal
understanding of the recovery strategy that you have chosen to implement. Without a
complete investigation of these issues, you cannot be sure that implementation of the pattern
you will increase (rather than decrease) the reliability of your application. Please see
WATCHDOG RECOVERY [this paper] for further discussion of the reliability and safety
implications associated with watchdog timers.

The particular problem with RESET RECOVERY is that, if the error that gave rise to the
watchdog reset is permanent (or long-lived), then you are likely to lose control of your system
as it enters an endless loop (reset, watchdog overflow, reset, watchdog overflow, …).

This lack of control can have disastrous consequences in many systems.

Portability

This approach can be used with any processor or microcontroller.

Overall strengths and weaknesses

☺ Very easy to implement.

L MUST BE HANDLED WITH EXTREME CARE (see “Reliability and safety issues”).

Related patterns and alternative solutions

Two alternative recovery strategies are discussed in FAIL-SILENT RECOVERY [this paper] and
LIMP-HOME RECOVERY [this paper].

Example: A library for the ‘1232’ external watchdog timer

In this example we present a very simple library which will allow the use of an external ‘1232’
watchdog chip.

The use of the 1232 is very straightforward:

• We wire up the watchdog to the microcontroller reset pin, as illustrated in Figure 3.

184

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

• We choose from one of three (nominal) possible timeout periods, and connect the TD pin
on the 1232 to select an appropriate period (see Table 1).

• We pulse the /ST0 line on the 1232 regularly, with a pulse interval less than the timeout
period.

Vcc

P 0.7 (AD7) 32

P 0.6 (AD6) 33

P 0.5 (AD5) 34

P 0.4 (AD4) 35

P 0.3 (AD3) 36

P 0.2 (AD2) 37

P 0.1 (AD1) 38

P 0.0 (AD0) 39

8
7
6
5
4
3
2
1

P 2.7 (A15) 28

P 2.6 (A14) 27

P 2.5 (A13) 26

P 2.4 (A12) 25

P 2.3 (A11) 24

P 2.2 (A10) 23

P 2.1 (A9) 22

P 2.0 (A8) 21

/ PSEN

ALE (/ PROG)

29

30

31

XTL1
19

XTL218

RST

40

VCC

VSS

‘8
05

2’

Vcc (+5V)

Cxtal

Cxtal

20

P 3.7 (/ RD)
P 3.6 (/ WR)
P 3.5 (T1)
P 3.4 (T0)
P 3.3 (/ INT1)
P 3.2 (/ INT 0)
P 3.1 (TXD)
P 3.0 (RXD)

/ EA

17
16
15
14
13
12
11
10

9

P 1.7
P 1.6

P 1.5
P 1.4)
P 1.3
P 1.2

P 1.1 (T2EX)
P 1.0 (T2)

5

8

RSTGND

TD

TOL

Vcc

/STO

/PBRST

Figure 3: Simple demonstration circuit for 1232 watchdog.

Minimum timeout Typical timeout Maximum timeout
TD to GND 62.5 ms 150 ms 250 ms
TD floating 250 ms 600 ms 1000 ms
TD to Vcc 500 ms 1200 ms 2000 ms

Table 1: Timings for the ubiquitous ‘1232; watchdog.

The key part of a suitable code library is given in Listing 4.

/*--*-

 Dog_1232.C

 --

 Watchdog timer library for external 1232 WD.

-*--*/

#include "Dog_1232.h"

// ------ Port pins --

// Connect 1232 (pin /ST) to the WATCHDOG_pin
sbit WATCHDOG_pin = P1^0;

185

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

// ------ Private variables --

// Current state of the watchdog pin
static bit WATCHDOG_state_G = 0;

/*--*-

 WATCHDOG_Feed()

 'Feed' the external 1232-type watchdog chip.

-*--*/
void WATCHDOG_Feed(void)
 {
 // Change the state of the watchdog pin
 if (WATCHDOG_state_G == 1)
 {
 WATCHDOG_state_G = 0;
 WATCHDOG_pin = 0;
 }
 else
 {
 WATCHDOG_state_G = 1;
 WATCHDOG_pin = 1;
 }
 }

/*--*-
 ---- END OF FILE ---
-*--*/

Listing 4: Part of a central heating demo using ‘Super Loop’ and ‘Hardware Watchdog’.

As noted above, most TTCS applications will use this library by feeding the watchdog at the
start of the dispatcher function, as follows:

/*--*-

 SCH_Dispatch_Tasks()

 This is the 'dispatcher' function. When a task (function)
 is due to run, SCH_Dispatch_Tasks() will run it.
 This function must be called (repeatedly) from the main loop.

-*--*/
void SCH_Dispatch_Tasks(void)
 {
 tByte Index;

 // Feed the watchdog here
 WATCHDOG_Feed();

 // Dispatches (runs) the next task (if one is ready)
 for (Index = 0; Index < SCH_MAX_TASKS; Index++)
 {
 ...

186

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

FAIL-SILENT RECOVERY

Context

• You are developing a single-processor embedded application using a member of the 8051
family of microcontrollers (or similar hardware).

• You are programming in C (or a similar language).

• The application has a time-triggered architecture, constructed using a scheduler (e.g. CO-
OPERATIVE SCHEDULER [Pont, 2001, page 254]).

and:

• You are using techniques described in WATCHDOG RECOVERY [this paper] - or similar
approaches - to improve the fault-tolerance of your system.

• A watchdog-induced reset has occurred.

and:

• Simply re-starting the system in the event of an error (as discussed in RESET RECOVERY

[this paper]) is not an appropriate response, since there is a significant risk that the error is
either “permanent”, or that it will re-occur. This could leave your system stuck, out of
control, in an endless “reset, watchdog overflow, reset, watchdog overflow, …” loop.

Problem

How can you ensure that your processor re-starts safely after a watchdog-induced reset?

Background

Please see WATCHDOG RECOVERY [this paper] for background information on watchdog
timers.

Solution

When using Fail-Silent Watchdog, our aim is to shut the system down after a watchdog-
induced reset. This type of response is referred to as “fail silent” behaviour because the
processor becomes “silent” in the event of an error7.

As indicated in “Context”, we assume that simply re-starting the system in the event of an error
(as discussed in RESET RECOVERY [this paper]) is not an appropriate response, since there is a
significant risk that the error is either “permanent”, or that it will re-occur. We also assume

7 This type of behaviour is often contrasted with what is known as “babbling idiot” failure (particularly in

multi-processor systems), where a damaged or faulty processor remains active (and continues to interfere
with the rest of the system, particularly by transmitting “noise” to other nodes). For example, use of RESET

RECOVERY in the presence of sustained faults can give rise to such a “babbling idiot”.

187

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

that “freezing” the system is a known (safe) state in the event of an error will increase (rather
than decrease) the reliability of our system.

Software architecture

FAIL-SILENT RECOVERY is implemented after every “Normal” reset as follows:

• The scheduler is started and program execution is normal.

By contrast, after a watchdog-induced reset, FAIL-SILENT RECOVERY will typically be
implemented as follows:

• Any necessary port pins will be set to appropriate levels (for example, levels which will shut
down any attached machinery).

• Where required, an error port will be set to report the cause of the error,

• All interrupts will be disabled, and,

• The system will be stopped, either by entering an endless loop or (preferably) by entering
power-down or idle mode.

This effectively freezes the processor, in a known - safe - state.

Please note that power-down or idle mode is used because, in the event that the problems were
caused by EMI or ESD, this is thought likely to make the system more robust in the event of
another interference burst.

Hardware resource implications

The main resource implication is that a suitable watchdog timer is required.

Reliability and safety implications

In safety-related or safety-critical systems, this pattern should not be implemented before a
complete risk-assessment study has been conducted (by suitably-qualified individuals).

Successful use of this pattern requires a full understanding of the errors that are likely to be
detected by your error-detection strategies (and those that will be missed), plus an equal
understanding of the recovery strategy that you have chosen to implement. Without a
complete investigation of these issues, you cannot be sure that implementation of the pattern
you will increase (rather than decrease) the reliability of your application.

Please see WATCHDOG RECOVERY [this paper] for further discussion of the reliability and
safety implications associated with watchdog timers.

188

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

Portability

The main constraint on portability is that the watchdog timer used to implement this pattern
must allow the programmer to determine the cause of a reset.

Overall strengths and weaknesses

☺ If implemented in appropriate circumstances and with care, this pattern can help to
improve the reliability of your system.

L Increases the system complexity.

Related patterns and alternative solutions

Two alternative recovery strategies are discussed in RESET RECOVERY [this paper] and LIMP-
HOME RECOVERY [this paper].

Example: Automotive cruise control.

Use of FAIL-SILENT RECOVERY is illustrated in the case study at the end of this paper.

Example: Fail-Silent behaviour in the Airbus A310

In the A310 Airbus, the slat and flap control computers form an ‘intelligent’ actuator sub-
system. If an error is detected during landing, the wings are set to a safe state and then the
actuator sub-system shuts itself down (Burns and Wellings, 1997, p.102).

Please note that the mechanisms underlying this “fail silent” behaviour are unknown: they may
not be the same as the techniques described in this paper.

Example: Fail-Silent behaviour in a steer-by-wire application

Suppose that an automotive steer-by-wire system has been created that runs a single task,
every 10 ms. We will assume that the system is being monitored to check for task over-runs
(see SCHEDULER WATCHDOG [this paper]). We will also assume that the system has been well
designed, and has appropriate timeout code, etc, implemented.

Further suppose that a passenger car using this system is being driven on a motorway, and that
an error is detected, resulting in a watchdog reset. What recovery behaviour should be
implemented?

We could simply re-start the scheduler and “hope for the best”. However, this form of “reset
recovery” is probably not appropriate. In this case, if we simply perform a reset, we may leave
the driver without control of their vehicle (see RESET RECOVERY [this paper]).

Instead, we could implement a fail-silent strategy. In this case, we would simply aim to bring
the vehicle, slowly, to a halt. To warn other road vehicles that there was a problem, we could
choose to flash all the lights on the vehicle on an off (continuously), and to pulse the horn.
This strategy (which may - in fact - be far from silent) is not ideal, because there can be no
guarantee that the driver and passengers (or other road vehicles) will survive the incident.
However, it the event of a very serious system failure, it may be all that we can do.

189

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

LIMP-HOME RECOVERY

Context

• You are developing a single-processor embedded application using a member of the 8051
family of microcontrollers (or similar hardware).

• You are programming in C (or a similar language).

• The application has a time-triggered architecture, constructed using a scheduler (e.g. CO-
OPERATIVE SCHEDULER [Pont, 2001, page 254]).

and:

• You are using techniques described in WATCHDOG RECOVERY [this paper] - or similar
approaches - to improve the fault-tolerance of your system.

• A watchdog-induced reset has occurred.

and:

• Simply re-starting the system in the event of an error (as discussed in RESET RECOVERY

[this paper]) is not an appropriate response, since there is a significant risk that the error is
either “permanent”, or that it will re-occur. This could leave your system stuck, out of
control, in an endless “reset, watchdog overflow, reset, watchdog overflow, …” loop.

• “Freezing” the system in a known state in the event of an error (as discussed in FAIL-SILENT

RECOVERY [this paper]) is not appropriate behaviour, as it is likely to decrease (rather than
increase) the reliability of our system. For example, completely shutting down a piece of
essential medical equipment is something we would wish to do only as a last resort.
Similarly, shutting down an aircraft control system during takeoff is (highly) undesirable.

Problem

How can you ensure that your processor re-starts safely after a watchdog-induced reset?

Background

Please see WATCHDOG RECOVERY [this paper] for background information on watchdog
timers.

Solution

As we discussed in WATCHDOG RECOVERY, all of the error-recovery strategies presented in
this paper begin with a system reset, which has been caused by the overflow of a watchdog
timer.

What are we trying to achieve?

In using LIMP-HOME RECOVERY, we make four assumptions about our system:

• A watchdog-induced reset indicates that a significant error has occurred.

190

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

• Although a full (normal) re-start is considered too risky, it may still be possible to let the
system “limp home” by running a simple version of the original algorithm.

Overall, in using this pattern, we are looking for ways of ensuring that the system continues to
function - even in a very limited way - in the event of an error.

Software architecture

LIMP-HOME RECOVERY is implemented after ever “Normal” reset as follows:

• The scheduler is started and program execution is normal.

By contrast, after a watchdog-induced reset, LIMP-HOME RECOVERY will typically be
implemented as follows:

• The scheduler will not be started.

• A simple version of the original algorithm will be executed.

Hardware resource implications

At the processor level, the main resource implication is that a suitable watchdog timer is
required.

However (rather more substantial) hardware costs may also arise if “backup” hardware (such
as sensors or actuators) is required in the limp-home system.

Reliability and safety implications

In safety-related or safety-critical systems, this pattern should not be implemented before a
complete risk-assessment study has been conducted (by suitably-qualified individuals).

Successful use of this pattern requires a full understanding of the errors that are likely to be
detected by your error-detection strategies (and those that will be missed), plus an equal
understanding of the recovery strategy that you have chosen to implement. Without a
complete investigation of these issues, you cannot be sure that implementation of the pattern
you will increase (rather than decrease) the reliability of your application.

Please see WATCHDOG RECOVERY [this paper] for further discussion of the reliability and
safety implications associated with watchdog timers.

Portability

The main constraint on portability is that the watchdog timer used to implement this pattern
must allow the programmer to determine the cause of a reset.

191

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

Overall strengths and weaknesses

☺ If implemented in appropriate circumstances and with care, this pattern can help to
improve the reliability of your system.

L Increases the system complexity.

Related patterns and alternative solutions

Two alternative recovery strategies are discussed in RESET RECOVERY [this paper] and FAIL-
SILENT RECOVERY [this paper].

Some alternative patterns for fault tolerance and error recovery which may be of interested
were presented recently by Saridakis (2002).

Example: Limp-home behaviour in a steer-by-wire application

In FAIL-SILENT RECOVERY [this paper], we considered one possible recovery strategy in a
steer-by-sire application.

As an alternative to the approach discussed in the previous example, we may wish to consider
a limp-home control strategy. In this case, a suitable strategy might involve a code structure
like this:

while(1)
 {
 Update_basic_steering_control();
 Software_delay_10ms();
 }

This is a basic software architecture (based on SUPER LOOP [Pont, 2001, p.162]).

In creating this version, we have avoided use of the scheduler code. We might also wish to use
a different (simpler) control algorithm at the heart of this system. For example, the main
control algorithm may use measurements of the current speed, in order to ensure a smooth
response even when the vehicle is moving rapidly. We could omit this feature in the “limp
home” version.

Of course, simply using a different software implementation may still not be enough. For
example, in our steer-by-wire application, we may have a position sensor (attached to the
steering column) and an appropriate form of DC motor (attached to the steering rack). Both
the sensor and the actuator would then be linked to the processor.

When designing the limp-home controller, we would like to have an additional sensor and
actuator, which are - as far as possible - independent of the components used in the main
(scheduled) system. This option makes sense because it is likely to maximise the chances that
the Slave node will operate correctly when it takes over (for example, it could have been a
failure of the DC motor that made it necessary to shut down the original processing).

192

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

This approach has two main implications:

1. The hardware must ‘fail silently’: for example, if we did add a backup motor to the steering
rack, this would be little use if the main motor ‘seized’ when the scheduler task was shut
down.

Note that there may be costs associated with obtaining this behaviour. For example, we
may need to add some kind of clutch assembly to the motor output, to ensure that it could
be disconnected in the event of a motor jam. However, such a decision would need to be
made only after a full risk assessment. For example, it would not make sense to add a
clutch unit if a failure of this unit (leading to a loss of control of steering) was more likely
than a motor seizure.

2. The cost of hardware duplication can be significant, and will often be considerably higher
than the cost of a duplicated processor: this may make this approach economically
unfeasible.

When costs are too high, sometimes a compromise can prove effective. For example, in the
steering system, we might consider adding a second set of windings to the motor for use by
the Slave (rather than adding a complete new motor assembly). Again, such a decision
should be made only after a full risk assessment.

193

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

OSCILLATOR WATCHDOG

Context

• You are developing a single-processor embedded application a member of the 8051 family
of microcontrollers (or similar hardware).

• You are designing an appropriate hardware foundation for your application.

Problem

How do you detect the failure of the oscillator in your embedded application (and what should
you do in these circumstances)?

Background

What is a watchdog timer

To understand this pattern, you’ll need to understand what a watchdog timer is: WATCHDOG

RECOVERY [this paper] provides the necessary background.

If we have watchdog timers, why do we need oscillator watchdogs?

People sometimes assume that watchdog timer is a good way of detecting oscillator failure.
However, a few moments thought quickly reveals that this is very rarely the case.

When the oscillator fails, the associated microcontroller will stop. Even if (by using a
watchdog timer, or some other technique) you detect that the oscillator has failed, you
cannot execute any code to deal with the situation.

In these circumstances, you may be able to improve the reliability of your system by using an
oscillator watchdog.

Solution

Software-based techniques can be used to solve many problems in embedded applications
which are traditionally handled by adding hardware: for example, switch debouncing can be
carried out using external hardware components or through software (see SWITCH INTERFACE

(SOFTWARE) [Pont, 2001, page 399]). In general, where it is possible to use software, this
results in a more flexible and lower-cost solution.

In some cases, software is not an option and hardware is required: dealing with oscillator
failure is such a case. Specifically, to implement Oscillator Watchdog, you need to select a
microcontroller with on-chip ‘oscillator watchdog’ hardware.

194

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

Oscillator-watchdog hardware is not part of the 8051 core, and implementations vary slightly.
However, the behaviour is always the same: if an oscillator failure is detected, the
microcontroller is forced into a reset state: this means that port pins take on their reset
values.

The state of the port pins can be crucial, since it means that the developer has a better chance
of ensuring that hardware devices controlled by the processor (for example, dangerous
machinery) will be shut down if the processor’s oscillator fails. Please note that - as discussed
in PORT I/O [Pont, 2001, page 174] - the port reset values must be taken into account when
making use of an oscillator watchdog: failure to do so will render the use of such a watchdog
meaningless.

In most cases, the microcontroller will be held in a reset state “for ever”. However, most
oscillator watchdogs will continue to monitor the clock input to the chip: if the main oscillator
is restored, the system will leave reset and will begin operating again.

Hardware resource implications

Use of an oscillator watchdog requires no hardware resources (apart, of course, from the
watchdog hardware itself).

Reliability and safety implications

Quartz-based oscillators

As discussed in CRYSTAL OSCILLATOR [Pont, 2001, page 54], quartz crystals form the basis of
almost all stable oscillator circuits. A common source of failure for such components is
physical damage (for example, through sustained vibration or from a sudden sharp impact).
Use of OSCILLATOR WATCHDOG can be particularly effective in systems employing crystal
oscillators where physical damage can occur.

In addition to their fragility, crystal oscillators also have one other feature: they can take a
comparatively long time to start up (up to around 10 ms). Until this oscillator starts, most
8051 devices are “in limbo: they cannot enter their normal reset state - and the ports will be at
an undefined value. 10 ms may seem a long period of time if high-power machinery is
connected to a port pin.

Use of an oscillator watchdog can assist in these circumstances too. In order to drive the
processor into a reset state, the oscillator watchdog needs to contain its own oscillator. This
will usually be a low-frequency (and low stability) RC oscillator. Under normal circumstances,
the “watchdog” behaviour will be invoked if the frequency of the main oscillator is lower than
that of the RC device.

RC oscillators usually have a very rapid start time. As a result, when an oscillator watchdog is
available, the RC oscillator will start first and will (with many microcontrollers) very rapidly
detect that the main oscillator is not operating. The oscillator watchdog will then force the

195

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

system into a reset state. The system will only leave this state when the main oscillator has
become active.

The impact of such an oscillator can be very significant. For example, the time to reach a reset
state in a standard 8051 can be around 10 ms. Using an Infineon C515C, with oscillator
watchdog, the maximum time to reach reset state becomes 34 µs. This is a very significant
speed improvement (approximately 300x faster).

The limitations of single-processor designs

Use of an oscillator watchdog will simply leave your system “frozen”, albeit in a well-defined
state. This is much better than leaving the system in an indeterminate state. However, it may
not be enough.

For example, suppose your system is controlling the brakes or steering in a moving vehicle. In
these circumstances “freezing” the system may be highly undesirable. Instead, you may wish to
switch in a ‘backup’ microcontroller, in order to try and return control of the vehicle to the
driver. WATCHDOG SLAVE8 describes one way in which you can achieve this.

Portability

Oscillator Watchdog hardware is available in only a comparatively small number of
microcontrollers. Assuming the presence of such hardware will restrict the portability of your
design.

Overall strengths and weaknesses

☺ Can improve reliability in situations where oscillator failure occurs (for example, due to
system vibration).

L Can only be used where processors have appropriate hardware support.

Related patterns and alternative solutions

Please see “Reliability and Safety Implications” for information about WATCHDOG SLAVE.

Example: Automotive cruise control.

Use of OSCILLATOR WATCHDOG is illustrated in the case study at the end of this paper.

Example: The Philips P87LPC760 family

The Philips P87LPC760 family of (8051) microcontrollers have on-chip oscillator watchdogs.
Please refer to the data sheets for these devices for further details.

Example: The Infineon C868 family

The Infineon C868 (8051) microcontrollers have on-chip oscillator watchdogs. Please refer to
the data sheets for these devices for further details.

8 WATCHDOG SLAVE is a based on the “shared-clock scheduler” architecture (see Pont, 2001, Part F). The

pattern is still under development, and details will be released at a future PLoP conference.

196

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

CASE STUDY:
Implementing an automotive cruise-control system

We consider the use of many of the patterns presented in this paper in an automotive cruise-
control system (CCS)9. The CCS will (it is assumed) be required to take over the task of
maintaining the vehicle at a constant speed even while negotiating a varying terrain involving,
for example, hills or corners in the road.

The CCS will be implemented using a single Infineon C515C microcontroller (an example of
an EXTENDED 8051 [Pont, 2001, p.46]).

To operate the CCS, the driver will do the following:

• Enter the required speed on a rotary speed-control dial10. This will be read, via a
potentiometer and analogue-to-digital converter: see ONE-SHOT ADC [Pont, 2001, p.757].

• Press a “cruise” switch: see SWITCH INTERFACE (SOFTWARE) [Pont, 2001, p.399].

The CCS will stop cruising “on demand” (and return control to the driver), if:

• The driver presses the cruise switch again, or,

• The driver touches the brake pedal (which is also assumed to have a switch attached).

While cruising, the CCS will then repeatedly perform the following tasks:

• It will check the status of the brake pedal and the cruise switch, to ensure that the driver
wishes to keep cruising: if not, it will return control to the driver.

• It will check for system errors (see below): if an error is detected, it will “fail silently” and
return control to the driver.

• It will read the desired cruise speed (entered by the driver).

• It will measure the current vehicle speed by counting pulses from magnetic sensors attached
to two wheels (see HARDWARE PULSE COUNT [Pont, 2001, p.728]).

• It will use PID CONTROLLER [Pont, 2001, p.861] to determine the required throttle setting.

• It will use an appropriate hardware interface to control the throttle (possibly using
HARDWARE PWM [Pont, 2001, p.808] and MOSFET DRIVER [Pont, 2001, p.139]).

The error-handling functions will use many of the patterns presented in this paper:

• WATCHDOG RECOVERY [this paper] will provide the basic framework for the error handling.

• SCHEDULER WATCHDOG [this paper] will provide a means of detecting scheduling errors.

• PROGRAM-FLOW WATCHDOG [this paper] may be appropriate here. Program-flow errors
can occur as a result of electromagnetic interference, and the typical passenger car contains
numerous electromechanical devices such as contact breakers, alternators, relays and

9 This application is builds on the simple PID-based CCS described in PID CONTROLLER [Pont, 2001, p.861].
10 Note that the driver is assumed to be able to alter the cruise speed while cruising, by means of this dial.

197

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

ignition coils that are excellent sources of high-energy, wideband, electromagnetic noise
that is capable of corrupting electronic circuits.

• OSCILLATOR WATCHDOG [this paper] will provide a means of dealing with oscillator
failures.

• We need to ensure that the speed sensors, throttle actuator, speed-control dial, cruise
switch and brake switch all operate correctly while cruising. If any of these devices fail
then, using the approach discussed in WATCHDOG RECOVERY [this paper], we will force a
watchdog reset.

There are various checks we can perform. For example: (1) the speed sensors can be tested
by looking for sudden (impossibly rapid) changes in speed, and checking that neither sensor
reads zero while cruising. (2) The throttle actuators can be checked by including a sensor
to detect that the throttle setting actually changes on demand. (3) The speed-control dial
can employ a dual-gang potentiometer to provide two measures of the desired speed: if they
don’t agree, or are out of range, we assume there is an error. (4) The switches can be
“doubled up”, so that both a “normally open” and “normally closed” switch is used in each
case: see SWITCH INTERFACE (SOFTWARE) [Pont, 2001, p.399] for further details.

• In terms of recovery behaviour, we assume that the driver is able to take over control of the
vehicle in the event of an error. This means that neither RESET RECOVERY [this paper] nor
LIMP-HOME RECOVERY [this paper] will be appropriate in this system and that, instead
FAIL-SILENT RECOVERY [this paper] will be used.

The basic system architecture will be based on CO-OPERATIVE SCHEDULER [Pont, 2001,
p.255]: the core of the resulting main function is shown in Listing 5.

void main(void)
 {
 // Determine cause of system reset
 // (*** IF RESET CAUSED BY WATCHDOG, THEN FAIL SILENTLY HERE ***)
 CCS_Check_Cause_Of_Reset();

 // Set up the scheduler
 SCH_Init_T2();

 // Prepare the CCS
 CCS_Init();

 // Add the tasks - TIMING IS IN TICKS (10 ms tick interval)
 SCH_Add_Task(CCS_Read_Cruise_and_Brake_Switches, 1, 2);
 SCH_Add_Task(CCS_Get_Required_Speed, 2, 10);
 SCH_Add_Task(CCS_Calculate_Current_Speed, 3, 10);
 SCH_Add_Task(CCS_Compute_and_Apply_Throttle, 4, 10);

 SCH_Start();

 while(1)
 {
 SCH_Dispatch_Tasks();
 }
 }

Listing 5: The function main() for the CCS demo.

198

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

At the start of the program, the function CCS_Check_Cause_Of_Reset() is called: this
function is key to the watchdog-based error handling. A possible implementation of this
function (assuming the use of Infineon C515C hardware and the Keil compiler) is given in
Listing 6.

void CCS_Check_Cause_Of_Reset(void)
 {
 // Determine if reset was caused by watchdog overflow (C515C)
 if (IP0 & 0x40)
 {
 // WDTS flag is set - reset *was* caused by watchdog
 Watchdog_reset_G = 1;

 // We shut the system down here - fail silently

 // Try to tell the driver
 CCS_Beep()

 // Disable any / all interrupts
 EA = 0;

 // Enter power-down mode
 PCON |= 0x02;
 PCON |= 0x40;

 // Safety net - just in case we are thrown out of power-down
 // (Should NEVER be needed)
 while (1);
 }

 // --
 // If we get this far, then this was a “normal” reset
 // - carry on and start the scheduler, etc.
 // --
 }

Listing 6: A function for handling watchdog-related errors in the CCS system. See text for details.

199

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

References and further reading

Burns, A. and Wellings, A. (1997) “Real-time systems and programming languages”,
Addison-Wesley.

Campbell, D. (1995) “Designing for Electromagnetic compatibility with Single-Chip
Microcontrollers”, Motorola Application Note AN1263.

Campbell, D. (1998) “Defensive Software Programming with Embedded Microcontrollers”,
IEE Colloquium on Electromagnetic Compatibility of Software, Birmingham, UK, Nov
1998 (Conference code 98/471).

Douglass, B.P. (1999) “Doing hard time: Developing real-time system with UML, objects,
frameworks, and patterns”, Addison-Wesley. ISBN: 0-201-498375.

Niaussat, A. (1998) “Software techniques for improving ST6 EMC performance”, ST
Application Note AN1015/0398.

Ong, H.L.R and Pont, M.J. (2001) “Empirical comparison of software-based error detection
and correction techniques for embedded systems”, Proceedings of the 9th International
Symposium on Hardware / Software Codesign, April 25-27 2001, Copenhagen,
Denmark. Pp.230-235. Published by ACM Press, New York. ISBN: 1-58113-364-2.

Ong, H.L.R and Pont, M.J. (2002) “The impact of instruction pointer corruption on program
flow: a computational modelling study”, Microprocessors and Microsystems, 25: 409-
419.

Ong, H.L.R, Pont, M.J. and Peasgood, W. (2001) “Do software-based techniques increase
the reliability of embedded applications in the presence of EMI?” Microprocessors and
Microsystems, 24: 481-491.

Pont, M.J. (2001) “Patterns for time-triggered embedded systems: Building reliable
applications with the 8051 family of microcontrollers”, Addison-Wesley / ACM Press.
ISBN: 0-201-331381.

Pont, M.J. (2002) “Embedded C”, Addison-Wesley. ISBN: 0-201-79523X.

Saridakis, T. (2002) “A system of patterns for fault tolerance”, paper presented at EuroPloP
2002, July 2002, Germany.

200

Using Watchdog Timers to Improve the Reliability of Single-Processor ...

COPYRIGHT © 2002 MICHAEL J. PONT AND H.L. ROYAN ONG.

Appendix:
The PTTES Collection

A complete list of the patterns in the PTTES collection is given in Table 1.

STANDARD 8051 SMALL 8051 EXTENDED 8051

CRYSTAL OSCILLATOR CERAMIC OSCILLATOR RC RESET

ROBUST RESET ON-CHIP MEMORY OFF-CHIP DATA MEMORY

OFF-CHIP CODE MEMORY NAKED LED NAKED LOAD

IC BUFFER BJT DRIVER IC DRIVER

MOSFET DRIVER SSR DRIVER (DC) EMR DRIVER

SSR DRIVER (AC) SUPER LOOP PROJECT HEADER

PORT I/O PORT HEADER HARDWARE DELAY

SOFTWARE DELAY HARDWARE WATCHDOG CO-OPERATIVE SCHEDULER

HARDWARE TIMEOUT LOOP TIMEOUT MULTI-STAGE TASK

MULTI-STATE TASK HYBRID SCHEDULER PC LINK (RS232)

SWITCH INTERFACE (SOFTWARE) SWITCH INTERFACE (HARDWARE) ON-OFF SWITCH

MULTI-STATE SWITCH KEYPAD INTERFACE MX LED DISPLAY

LCD CHARACTER PANEL I2C PERIPHERAL SPI PERIPHERAL

SCI SCHEDULER (TICK) SCI SCHEDULER (DATA) SCU SCHEDULER (LOCAL)

SCU SCHEDULER (RS-232) SCU SCHEDULER (RS-485) SCC SCHEDULER

DATA UNION LONG TASK DOMINO TASK

HARDWARE PULSE-COUNT SOFTWARE PULSE-COUNT HARDWARE PRM

SOFTWARE PRM ONE-SHOT ADC ADC PRE-AMP

SEQUENTIAL ADC A-A FILTER CURRENT SENSOR

HARDWARE PWM PWM SMOOTHER 3-LEVEL PWM

SOFTWARE PWM DAC OUTPUT DAC SMOOTHER

DAC DRIVER PID CONTROLLER 255-TICK SCHEDULER

ONE-TASK SCHEDULER ONE-YEAR SCHEDULER STABLE SCHEDULER

Table 2: The 72 patterns we have assembled in order to support the development of embedded
systems. From: Pont, M.J. (2001) “Patterns for time-triggered embedded systems”, Addison-Wesley.

201

201. Object-Oriented Remoting - Basic Infrastructure Patterns

Object-Oriented Remoting - Basic
Infrastructure Patterns

Markus Völter Michael Kircher Uwe Zdun
voelter Siemems AG New Media Lab

Ingenieurbüro für Softewaretechnologie Corporate Technology Department of Information Systems
Germany Software and System Architectures Vienna University of Economics

voelter@acm.org Germany Austria
michael.kircher@siemens.com zdun@acm.org

This pattern language describes the building blocks of typical distrib-
uted object frameworks, such as Java RMI, CORBA, .NET Remoting,
web object systems, or web services. The patterns cover the basic infra-
structure of such distributed object frameworks in a rather abstract
manner, as it can be observed by developers using a distributed object
systems for object-oriented remoting. The patterns presented in this
paper are used in almost every distributed object framework
application.

Introduction: Remoting Applications
Distributed systems are probably the most common way of building complex software systems
today. Many major systems – those that are really large, complex, and expensive – are distributed
systems. They are used for many different purposes, including the Internet, reservation systems,
in-vehicle software, telecommunication networks, air traffic control, video streaming, and many
more.

Many critical issues, such as performance, predictability, parallelism, scalability, partial failure,
etc., have to be taken into account (see [TS2002]). Three fundamentally different remoting para-
digms are used in today’s software systems: there are those systems that use the metaphor of a
remote procedure call, those that use the metaphor of posting and receiving messages, and those
that use continuous streams of data. Note that this paper looks mostly at the first of these three
different paradigms.

In remote procedure call (RPC) systems, two different roles are distinguished: clients and servers.
A server provides a (more or less well-defined) set of operations which the client can invoke.
These operations look like normal local operations: they typically have a name, parameters and
a return type, as well as a way to signal exceptions in some systems. The goal of remote procedure
call middleware is to provide clients with the illusion that a remote invocation is the same as a
local one. Here, we concentrate on object-oriented remote procedure call systems, where a server
application hosts a set of objects that provide the operations to clients as part of their public
interface.

Whichever remoting paradigm is used today in an application, the application developer should
be shielded from the details of the underlying metaphor. That is, in (OO-)RPC systems, the devel-
oper should only see a local method call, and not need to care about locating the server object,
marshalling the request, or detect certain remoting-specific error conditions. A middleware
provides a simple, high-level programming model to the developers, hiding all the nitty-gritty
details as far as possible (but no further). Middleware specifications and products are available
for all remoting paradigms.

202

Object-Oriented Remoting - Basic Infrastructure Patterns

In this paper, we will discuss a pattern language consisting of the basic infrastructure patterns
that one has to know and understand when working with (or constructing) an (OO-)RPC middle-
ware (called a “distributed object framework“).

Pattern Form
The form of our patterns is Alexandrian, without examples. That is, each pattern starts with a
name. It is followed by the context of the pattern in the language, and then three stars follow.
After that, the problem is described in bold face, and then in plain face, the problem is described
in more detail with the forces of the pattern. Then, following the word “Therefore” follows the
solution, again in bold face. A detailed solution with emphasis on the related pattern in the
language comes next (in plain face). Finally, after another three stars, the consequences of the
pattern are given.

Each pattern is illustrated with a “collaboration diagram.” As we also display containment struc-
tures in these diagrams, the illustrations are not really UML diagrams. The following example
illustration is a legend annotated with comments.

Basic Distributed Object Patterns: Overview
The reason for building or using distributed object frameworks is to allow clients to communicate
with objects on a remote server. On the server side the invoked functionality is implemented as
a REMOTE OBJECT. The client invokes an operation of a local object and expects it to be executed by
the REMOTE OBJECT. To make this happen, the invocation crosses the machine boundary, the
correct operation of the correct REMOTE OBJECT is obtained and executed, and the result of this
operation invocation is passed back across the network. These basic communication tasks
between client and REMOTE OBJECT are handled by the patterns described in this chapter.

A CLIENT PROXY is used by a client to access the REMOTE OBJECT. The CLIENT PROXY is a local object
within the client process that offers the REMOTE OBJECT’S interface. This interface is defined using
an INTERFACE DESCRIPTION.

The client can use a CLIENT REQUEST HANDLER to handle network communication. On the server
side, the remote invocations are received by a SERVER REQUEST HANDLER. It handles the message
reception and forwards invocations to the INVOKER, after the message is received completely. The
INVOKER dispatches remote invocations to the responsible REMOTE OBJECT using the received
invocation information.

Process A

Proxy

Holder
2) serialize()

Holder

Process B

M
ac

hi
ne

 B
ou

nd
ar

y
Interface Remote

Object

Sequence
number, name

and parameters
of the invoked

method

Return value

Optional machine
Boundary

(need not be
there)anObject "Virtual"

Method
Invocation

3a) create()
3b) <<invoke>>
3c) destroy()consecutive method

invocattions and their
sequencing

"Real"
method

invocation
Process

Application
Thread

Local Object

Value Type

Remote Object

203

Object-Oriented Remoting - Basic Infrastructure Patterns

On client and server side complex types are serialized and de-serialized using a MARSHALLER.

The LIFECYCLE HANDLER manages lifecycle issues of a group of REMOTE OBJECTS.

In most distributed object frameworks, these patterns are integrated with a few typical compo-
nents. A SERVER APPLICATION instantiates and controls the REMOTE OBJECTS. The FRAMEWORK
FACADE shields the distributed object framework and provides a simple API to developers using
the distributed object framework.

The COMMUNICATION FRAMEWORK implements the layer beneath the distributed object frame-
work, and it handles the low-level details of network communication. In object-oriented systems
it is usually built using a set of common patterns for concurrent and networked objects. In the
distributed object framework, the COMMUNICATION FRAMEWORK is primarily used by the REQUEST
HANDLER both on client and server side. A PROTOCOL PLUG-IN can be used by developers to
exchange or adapt the protocol implemented by the REQUEST HANDLER.

Server Application

INVOKER

REMOTE OBJECT

dis
pa

tch
es

to

Client

CLIENT PROXY

invokes

communicates with

MARSHALLER

uses uses

INTERFACE DESCRIPTION

in
st

an
tia

te
s

LIFECYCLE MANAGER

uses

im
ple

men
ts

implements

man
ag

es

delegates

lifecycle

management

REQUEST HANDLER

uses

204

Object-Oriented Remoting - Basic Infrastructure Patterns

Remote Object

You are using (or building) a distributed object framework – a framework to access objects
remotely. Clients access functionality provided by a remote SERVER APPLICATION.

M M M
In many respects, accessing an object over a network is different from accessing a local
object. Machine boundaries, process boundaries, network latency, network unreliability,
and many other distinctive properties of network environments play an important role and
need to be “managed.” How to access an object in a distant process, separated by a network?
For a remote invocation, machine boundaries and process boundaries have to be crossed. An
ordinary, local operation invocation is not sufficient, because additionally the operation invoca-
tion has to be transferred from the local process to the remote process, running within the remote
machine.

Object identities, unique in the address space of one process, are not necessarily unique across
process boundaries and machine boundaries.

Compared to local invocations, invocations across a network involve delay and unpredictable
latency. Because networks must be considered to be unreliable, clients must deal with new kinds
of errors. Also, you want to minimize the number of (slow and thus expensive) network hops.

The interface of an object that is provided remotely is different to the local interface. The local
interface can contain additional operations that should not be invoked by remote clients, but only
by local clients. Thus an interface has to be defined on which remote clients can rely.

The distributed object framework should provide solutions for these fundamental issues of
accessing objects remotely.

Therefore:

Provide a distributed object framework on the client side and server side. This framework
transfers local invocations from the client side to a REMOTE OBJECT, running within the server.
These REMOTE OBJECTS are used as the building blocks for distributed applications. Each
REMOTE OBJECT provides a well-defined interface to be accessed remotely; that is, the remote
client can address the REMOTE OBJECT across the network and invoke (some of) its operations.

The SERVER APPLICATION instantiates a REMOTE OBJECT. Then clients can access the RE-
MOTE OBJECT using the functionality provided by the distributed object framework.

M M M

The client and the REMOTE OBJECT usually reside within different processes and possibly also
within different machines. The SERVER APPLICATION manages the lifecycle of the REMOTE OBJECTS.

Process

Remote Object
ID: 4711

Server
Application

1) <<create>>

Process A

Client

M
ac

hi
ne

 B
ou

nd
ar

y

205

Object-Oriented Remoting - Basic Infrastructure Patterns

It is responsible for instantiation and destruction. The distributed object framework provides the
infrastructure to let clients access REMOTE OBJECTS.

The distributed object framework provides a REMOTE OBJECT type or interface. This is used to
distinguish REMOTE OBJECTS from other, local objects. It also provides means to access the func-
tionalities of the distributed object framework from the REMOTE OBJECT.

REMOTE OBJECTS have an unique object ID in their local address space, as well as means to
construct a global object reference. The global object reference is used to reference and subsequently
access a REMOTE OBJECT across the network.

Clients need to know the remotely accessible interface of a REMOTE OBJECT. A simple solution is
to let remote clients access any operation of the REMOTE OBJECT. But perhaps some local opera-
tions should be inaccessible for remote clients, such as operations used to access the distributed
object framework. Thus each REMOTE OBJECT type defines or declares its remotely accessible inter-
face. Often this definition or declaration is given as an INTERFACE DESCRIPTION.

The REMOTE OBJECT’S interface is also supported by the CLIENT PROXY that handles remote
communication on client side. CLIENT PROXIES communicate with an INVOKER on server side that
dispatches invocations to the addressed REMOTE OBJECT.

REMOTE OBJECTS are a solution to extend the object-oriented paradigm across process and
machine boundaries. However, accessing objects remotely always implies a set of inherent prob-
lems, such as network latency and network unreliability, that cannot be completely hidden.
Different distributed object frameworks hide these issues to a different degree. When designing
distributed object frameworks, there is always a trade-off between possible control and ease-of-
use.

206

Object-Oriented Remoting - Basic Infrastructure Patterns

Client Proxy
You want to access a REMOTE OBJECT, running in a server, from a remote client.

M M M
A primary goal of using REMOTE OBJECTS is to support a programming model for REMOTE
OBJECTS that is similar to accessing local objects. A client developer should not have to deal
with issues like access to the network, transmission of invocations, marshalling, and similar
basic remoting functionalities. Of course, some fundamental properties of remote program-
ming, such as unreliability and slowness of network calls, cannot be completely hidden.
These should be presented to clients with the proper abstractions from the exploited object-
oriented programming model.
The main purpose of distributed object frameworks is to ease development of distributed appli-
cations. Thus, developers should not necessarily leave their accustomed “way of programming.”
In the ideal case, they can simply invoke operations of the REMOTE OBJECTS just as if they were
local objects.

Of course, some issues of remote activation and remote error conditions have to be considered by
the client developer. Fundamental network properties such as network unreliability and latency
also make an invocation of remote operations different to a local invocation. In cases where the
client developer needs control over some remoting properties, appropriate APIs should be
provided and these should integrate well with the accustomed programming model. In general,
however, a remote invocation should be very similar to a local invocation. Issues of transporting
an invocation across the network, such as mapping invocations to the REMOTE OBJECT’S address
or marshalling the invocation data, should be hidden from client developers.

Therefore:

In the client application, use a CLIENT PROXY object for accessing the REMOTE OBJECT. The
CLIENT PROXY object supports the interface of the respective REMOTE OBJECT. For remote
invocations, clients only interact with the local CLIENT PROXY object. The CLIENT PROXY
primarily forwards invocations to the REMOTE OBJECT. It is responsible for the details of
accessing the REMOTE OBJECT via the distributed object framework. Only those remoting
details that cannot be handled automatically are exposed to the client developer.

To invoke an operation of a REMOTE OBJECT, the client invokes a operation of the CLI-
ENT PROXY that supports the REMOTE OBJECT’S interface. The CLIENT PROXY forwards
this invocation to the REMOTE OBJECT. It handles the details of crossing the machine
boundary and process boundary.

M M M

A CLIENT PROXY is a variant of the proxy pattern [GHJV95] which is also documented in a variant
supporting remoting [BMR+96]. CLIENT PROXIES do not access the REMOTE OBJECT directly. Instead
they call an INVOKER on the server that dispatches the request to the correct target object. Thus

Process A Process B

Client
Proxy Remote

Object
Client

M
ac

hi
ne

 B
ou

nd
ar

y

207

Object-Oriented Remoting - Basic Infrastructure Patterns

the INVOKER is responsible for transforming the remote invocation into a local invocation inside
the REMOTE OBJECT’S server process.

Developers of clients cannot assume that the REMOTE OBJECT is reachable all the time, for instance,
because of network delays, network failures, or server crashes. The CLIENT PROXY abstracts these
remoting details for clients using remoting errors.

Instantiation of REMOTE OBJECTS requires the involvement of the SERVER APPLICATION. Sometimes
client and CLIENT PROXY can also be involved, if a client-dependent instance is required. A related
issue that involves the CLIENT PROXY is distributed garbage collection. In the context of client side
failures, it has to be ensured that client-dependent instances are cleaned up, when they are not
required anymore. Leases provide a possible solution to this problem.

The CLIENT PROXY is required on client side, and thus it has to be deployed to the client somehow.
The simplest solution are CLIENT PROXIES that are hard-wired in the client code. The liability of
this simple solution is that a complete, new client has to be deployed every time some interface
or remote access operation of one REMOTE OBJECT changes. In some systems a client does not even
know before runtime to which REMOTE OBJECT it connects, and thus the CLIENT PROXY cannot be
hard-wired in the client. How to allow clients to use server objects without knowing about them
at compile time? To resolve these problems, two CLIENT PROXY variants provide a solution:

• Exchangeable client proxy: The CLIENT PROXY class can be designed to be exchangeable in the
client. Then a CLIENT PROXY class that corresponds to a specific INVOKER is delivered to the
client at runtime. This usually happens during startup of the client. Distributing the CLIENT
PROXY can be automatically handled by naming. This solution has the advantage that CLIENT
PROXIES can be exchanged transparently, but incurs the liability that it requires the CLIENT
PROXY classes to be sent (in binary form) across the network.

• Dynamic invocation interface: Alternatively, a more generic CLIENT PROXY can be used. That
means, the CLIENT PROXY does not provide the REMOTE OBJECT’S interface as its own interface,
but invocations are dynamically constructed. That means, the interface of the REMOTE OBJECT
is not known in advance (before the invocation reaches the CLIENT PROXY), and thus has to be
looked up for each invocation. Dynamic invocations on the CLIENT PROXY are very flexible
but they incur some performance overhead for lookup of the REMOTE OBJECTS interface.

For dynamic invocations, there are again two variants; either the CLIENT PROXY or the INVOKER
can lookup the interface of the REMOTE OBJECT:

• Interface repository: If the CLIENT PROXY looks up the interface dynamically, it has to query an
interface repository (a variant of the pattern INTERFACE DESCRIPTION) to retrieve the opera-
tion signature.

• Dynamic dispatch on the invoker: Alternatively, the CLIENT PROXY can send a symbolic invoca-
tion (like strings containing object ID, operation name, and arguments) across the network.
Then it is the burden of the INVOKER to dynamically look up the interface. Note that this
CLIENT PROXY variant has to deal with a special remoting error type that is raised when the
dynamic dispatch was not successful.

The CLIENT PROXY uses a MARSHALLER to marshall the invocation and to de-marshall the result
received.

CLIENT PROXY code for accessing the COMMUNICATION FRAMEWORK and invoking the MARSHALLER
can be reused to a large degree. Only interface-dependent parts are custom (for instance per
REMOTE OBJECT type). These interface-dependent parts can be generated or retrieved from the
REMOTE OBJECT’S INTERFACE DESCRIPTION automatically.

208

Object-Oriented Remoting - Basic Infrastructure Patterns

Invoker

A remote invocation reaches the server side and should be delivered to a specific REMOTE
OBJECT.

M M M
When a CLIENT PROXY forwards invocation data across the machine boundary to the server
side, somehow the targeted REMOTE OBJECT has to be reached. The simplest solution is to let
every REMOTE OBJECT be addressed over the network directly. For large numbers of REMOTE
OBJECTS this solution does not work. For one, there may be not enough network addresses
(that is: network ports) for each REMOTE OBJECT. The client developer would have to deal
with the network addresses to select for the appropriate REMOTE OBJECT, which is cumber-
some and too complex. There is no way for the SERVER APPLICATION to control the access to
its REMOTE OBJECTS (centrally). How to avoid these server side problems of invoking
REMOTE OBJECTS?
Consider a SERVER APPLICATION providing a large number of sensors as REMOTE OBJECTS to remote
clients. If each of the sensor instances would be addressed over the network directly, a first
problem might be that the possible number of sensors might exceed the number of free network
ports. Then the sensors cannot be provided anymore by directly binding the REMOTE OBJECTS to
network ports. Thus, if REMOTE OBJECTS are directly addressed over the network, scalability might
be limited, due to the number of free ports.

But even if there is only a limited number of clients, there are still other issues left open, when
directly associating REMOTE OBJECTS with network ports. Client developers would have to be
aware of (the large number of) sensor network addresses. This is a considerable complexity that
should be avoided. Instead, a client should only have to provide the necessary information
required to select the appropriate sensor’s REMOTE OBJECT, and the SERVER APPLICATION should
have to deal with finding and invoking that object.

In many application scenarios a SERVER APPLICATION requires some central control over the invo-
cation process of its REMOTE OBJECTS. Consider you want to implement some functionality that
operates for a set of REMOTE OBJECTS of a SERVER APPLICATION. Examples are logging remote invo-
cations or access control of REMOTE OBJECTS. In both cases it is required to deal with the invocation
before or after it reaches the REMOTE OBJECT. The developer of the REMOTE OBJECT should not have
to implement code for these issues; instead, these issues should be handled by the SERVER APPLI-
CATION solely.

Therefore:

Provide an INVOKER that is remotely accessed by CLIENT PROXIES. The CLIENT PROXIES send
invocations across the network, containing the actual operation invocation information and
additional contextual information. The INVOKER has to de-marshal the operation invocation
information to obtain the ID of the targeted REMOTE OBJECT and an identifier of operation
to be invoked. Then the INVOKER dispatches the invocation to the REMOTE OBJECT; that is, it
looks up the correct local object and operation implementation, corresponding to the remote
invocation, and invokes it. The INVOKER can also be used to extend or control the invocation
process.

209

Object-Oriented Remoting - Basic Infrastructure Patterns

The CLIENT PROXY sends a request to the INVOKER with invocation information for a
REMOTE OBJECT. The INVOKER dispatches the local object address and operation im-
plementation. Then it invokes the correct operation implementation for this object.

M M M

The INVOKER is part of the SERVER APPLICATION. Possibly one SERVER APPLICATION can provide
more than one INVOKER. The task of receiving messages via the network is handled by a REQUEST
HANDLER. The REQUEST HANDLER is responsible for the details of receiving remote messages, such
as threading, connection pooling, and accessing the operating system APIs. It hands over control
to the INVOKER after a message is received completely.

INVOKERS specifically handle the message dispatching task for a group of REMOTE OBJECTS. Such
a group of REMOTE OBJECTS might, for instance, consist of all REMOTE OBJECTS in a SERVER APPLICA-
TION, or of the object in a specific REMOTE OBJECT configuration groups.

To reduce the amount of memory resources needed, the server can temporarily evict REMOTE
OBJECTS instance from memory or use different pooling strategies. The INVOKER is used to imple-
ment this functionality.

Message dispatching means to de-marshal the symbolic information in the message, then to use
this information to determine the target object and operation, and finally invoke this operation.
De-marshalling is handled by a MARSHALLER.

For determining and invoking the target object and operation, different context information can
be used, such as the object ID, an operation identifier, and the REMOTE OBJECT type. Context infor-
mation of a remote invocation is implemented using invocation contexts. The invocation context at
least contains the object ID and operation to be invoked.

Determining and invoking the target object and operation can be either handled dynamically or
statically:

• Server stubs (also called skeletons) are a static dispatch mechanism. The part of the INVOKER
that is responsible for actually invoking the object is generated from the INTERFACE DESCRIP-
TION. For each REMOTE OBJECT type one server stub is generated. Thus the INVOKER „knows“
its REMOTE OBJECT types, operations, and operation signatures in advance. The INVOKER can
directly invoke the called operation, and it does not have to find the operation implementa-
tion dynamically. Of course, the corresponding CLIENT PROXY has to address the correct
INVOKER and determine the operation implementation statically. In comparison to dynamic
dispatch variants, static dispatch eliminates the performance overhead of looking up opera-
tion implementations at runtime.

• Dynamic dispatch: Consider a situation in which the REMOTE OBJECTS interfaces are not known
at compile time. Then it is not possible to generate or write (static) server stubs for the
INVOKER. Instead the INVOKER has to decide at runtime which operation of which remote
object should be invoked. To do this, first the INVOKER has to extract the object ID, operation
name, and arguments from the invocation information sent by the CLIENT PROXY. Next it has
to find the corresponding REMOTE OBJECT and operation implementation in the local process,

M
ac

hi
ne

 B
ou

nd
ar

y

Process A1

Process B

Client
Proxy

Remote
Object

Client
Invoker

Remote
ObjectRemote

ObjectRemote
ObjectRemote

Object

Process A2
Client
ProxyClient Invoker

210

Object-Oriented Remoting - Basic Infrastructure Patterns

for instance, using runtime dispatch mechanisms, such as reflection [Mae87] or dynamic
lookup in a table. Finally, the target instance and operation are invoked. This form of
dispatch is called dynamic dispatch, as the INVOKER dispatches each invocation at runtime
(for more details of this implementation variant see the pattern message redirector [GNZ01]).
Dynamic dispatch is more flexible than static dispatch but has a performance penalty. As an
invocation can possibly contain a non-existing operation or use a wrong signature, a special
remoting error has to be delivered to the CLIENT PROXY in case the invocation fails.

Note that for using an INVOKER it is necessary to create a corresponding CLIENT PROXY. The CLIENT
PROXY has to provide the invocation information required by the INVOKER. However, it is not
necessarily required that the dynamic dispatch variant of INVOKER is combined with a dynamic
invocation interface of CLIENT PROXY, or that (static) server stub requires static CLIENT PROXIES. In
existing systems, often matching variants (like server stubs together with static CLIENT PROXIES)
are used merely out of practical reasons. For instance, a code generator can directly generate
matching server stubs and static CLIENT PROXIES from an INTERFACE DESCRIPTION. Of course,
dynamic and static dispatch can also be mixed, and many existing distributed object systems
provide static and dynamic INVOKERS simultaneously.

There is a trade-off between dynamic and static dispatch variants: dynamic variants are more
flexible because they can dynamically be modified or extended with new object and operation
types. Static variants are more efficient but they usually require recompiling INVOKERS and
CLIENT PROXIES. That means new CLIENT PROXIES have to be distributed to the client side.
Deploying CLIENT PROXIES to clients can be a problem; in such cases, a (more) dynamic solution
can help to implement modifications only on server side.

An INVOKER bundles the REMOTE OBJECTS for which it dispatches messages, for instance, all
objects of a specific REMOTE OBJECT type. Using INVOKERS instead of direct network connections
to the REMOTE OBJECTS, reduces the number of required network addressable entities, and the
REQUEST HANDLER can use this information to share connections from the same client. The
INVOKER can be used to implement behavior affecting a group of REMOTE OBJECTS.

211

Object-Oriented Remoting - Basic Infrastructure Patterns

Request Handler
You are providing REMOTE OBJECTS in a SERVER APPLICATION, and INVOKERS are used for message
dispatching. A client invokes REMOTE OBJECTS using a CLIENT PROXY.

M M M
For sending invocations from the client to the server side, many tasks have to be performed on
client side: connection establishment and configuration, result handling, timeout handling,
and error detection. On server side similar tasks have to performed before the responsible
INVOKER can dispatch the respective operation to the targeted REMOTE OBJECT: the server has
to listen to the respective port, handle (socket) communication via the communication
protocol, and manage the communication resources. Especially for larger and more perfor-
mance-critical systems it is necessary to allow for global optimization and coordination of the
communication resources. That means to coordinate communication setup, resource manage-
ment, threading, and concurrency in a central fashion. If more than one INVOKER or CLIENT
PROXY is used, the request or reply has to be forwarded to the responsible INVOKER or CLIENT
PROXY.

Consider a typical scenario in the embedded systems domain: a SERVER APPLICATION manages a
large number of different types of controller objects. Each controller receives measurements from
sensor objects in clients and forwards actions to actuator objects. Consider further that TCP/IP is
used for network communication. In a naive implementation, each controller object type would
have its own INVOKER, which would also manage connections with the clients. If a client connects
to several different controller objects on the same server, an unnecessarily high number of TCP/
IP connections needs to be maintained. If the SERVER APPLICATION would use a (blocking) thread
to handle requests for each connection, a high number of threads would be necessary, impeding
server performance.

In this scenario, similar problems can occur on client side, when the CLIENT PROXY that handles
every detail of the network communication on its own. This would only work for simple, single-
threaded clients with only a few requests. In more complex clients, possibly a large number of
requests are sent simultaneously. Each CLIENT PROXY may have to handle multiple invocations at
the same time.

In general, a way to coordinate communication handling and management is required to arrange
the network traffic and resource consumption effectively. In most applications it cannot be
predicted at which time a particular REMOTE OBJECT or INVOKER (or CLIENT PROXY respectively)
has which workload. In such cases, the fair allocation of shared communication resources, as well
as quality of service (QoS) constraints, should be handled centrally. Thus the allocation of the
communication resources should not be realized by individual CLIENT PROXIES, REMOTE OBJECTS,
or INVOKERS. This is also important for reducing the number of used network connections: poten-
tially, network connections to the same client can be shared for the whole server process.

Configuration of network protocols, add-on services, and general asynchrony has to be done on
a per invocation basis. For instance, only some operations may be logged, need access control, or
need a special Quality of Service. Often client and server side have to work in sync to handle these
tasks.

Therefore:

Provide a SERVER REQUEST HANDLER together with a respective CLIENT REQUEST HANDLER. The
CLIENT REQUEST HANDLER is used for client side invocations by the CLIENT PROXIES. It is
responsible for opening and closing the network connection. It also sends the invocation
across the network, waits for results, and dispatches them to the CLIENT PROXY. Additionally,
it needs to cope with timeouts and errors on a per invocation basis. The SERVER REQUEST
HANDLER is responsible for dealing with the network communication on server side. Messages

212

Object-Oriented Remoting - Basic Infrastructure Patterns

are received via network connections (incrementally). The SERVER REQUEST HANDLER waits
until the full message has arrived, and then, if required, the message is (partially) de-
marshalled to find the responsible INVOKER. Next, the message is forwarded to this INVOKER
for further processing. Finally, the REQUEST HANDLER has to clean up the connection and other
resources it has used. The REQUEST HANDLER typically uses efficient, optimized mechanisms
of the underlying operating system. Both CLIENT and SERVER REQUEST HANDLER can use
pooling for connection handles and request threads.

Connections are handled by the REQUEST HANDLER on client and server side. These
are used by CLIENT PROXIES and INVOKERS. The REQUEST HANDLER makes effective
use of the communication resources and the operating system APIs, and it pools con-
nections handles and threads.

M M M

The primary responsiblity of a REQUEST HANDLER is to handle network communication. For this
purpose, it instantiates a connection handle per connection. The connection handle is responsible
for opening and closing the socket connection and storing the file descriptor of the conncection.

The CLIENT REQUEST HANDLER has to manage network connection on client side. It sends invoca-
tion requests and informs the client when the result arrives. For a synchronuous invocations this
simply means to return to the waiting CLIENT PROXY operation. For asynchronuous invocations
the CLIENT REQUEST HANDLER can invoke a result callback, a poll object, or use other asynchrony
strategies.

When timeouts have to be supported, the CLIENT REQUEST HANDLER informs the CLIENT PROXY of
timeouts, as it already does this for general network errors. For this purpose, the CLIENT REQUEST
HANDLER sets up a timeout event when the invocation is sent to the REMOTE OBJECT. If the reply
does not arrive within the timeout period the CLIENT PROXY is informed.

A SERVER REQUEST HANDLER generically handles the communication across the network.
INVOKERS, in contrast, are specific for a group of REMOTE OBJECTS. Therefore, SERVER REQUEST
HANDLER and INVOKERS are implemented as separated components because the SERVER REQUEST
HANDLER should handle the communication resources independently of particular INVOKERS or
REMOTE OBJECTS. Implementing both INVOKER and SERVER REQUEST HANDLER as one component
makes only sense for small SERVER APPLICATIONS or if there is just one INVOKER per SERVER
APPLICATION.

Both CLIENT and SERVER REQUEST HANDLER have to deal with network events: the CLIENT REQUEST
HANDLER has to wait for the result of its invocations, the SERVER REQUEST HANDLER has to wait for
arriving invocations. Both REQUEST HANDLERS typically use the reactor [SSRB00] pattern for
demultiplexing and dispatching events from the network. The REQUEST HANDLER receives the
events dispatched by the reactor and handles them. The same event dispatching infrastructure

Client Process Server Process

Client
Proxy

Client
Proxy

InvokerInvokerInvoker
Client
Proxy

Server Request
Handler connection

pool

thread
pool

OS APIs
M

ac
hi

ne
 B

ou
nd

ar
y

Client Request
Handler

OS APIs

connection
pool

thread
pool

213

Object-Oriented Remoting - Basic Infrastructure Patterns

usually can be used on client and server side (for more details see the description of the COMMU-
NICATION FRAMEWORK at the end of this chapter), whereas CLIENT and SERVER REQUEST HANDLER
are different implementations.

The REQUEST HANDLER can also use half-sync/half-async [SSRB00] and/or leader/followers [SSRB00]
to manage network connections and threading efficiently. The patterns CLIENT PROXY, REQUEST
HANDLER, and INVOKER together build a broker as described in [BMR+96]. REQUEST HANDLERS are
also responsible for making effective use of the operating system APIs.

For each particular connection, the REQUEST HANDLER has to instantiate a connection handle. To
optimize resource allocation for connections, the connections can be shared in a pool as well
(using the pattern pooling [KJ02]). If one particular client process sends or receives more than one
message to the SERVER APPLICATION at the same time, the network connection can be shared
among these messages.

If a client communicates with a REMOTE OBJECT in a SERVER APPLICATION, in some application
scenarios it can be expected that this client will potentially communicate again with the same
SERVER APPLICATION. Thus the connection can be held open for a certain period of time and used
in case of a continued communication. This form of continued communication is called a persis-
tent connection [FGM+99] and, if required, it is implemented by the REQUEST HANDLER. Persistent
connections eliminate the overhead of establishing and destroying connections for continuous
client requests.

The REQUEST HANDLER provides framework functionality for PROTOCOL PLUG-INS. Also other add-
on services, such as access control or logging, can be implemented by REQUEST HANDLER. Note
that many of these tasks require the CLIENT and SERVER REQUEST HANDLER to work in concert.

Although the REQUEST HANDLER is described as a single component that all invocations have to
pass, usually it is not a bottleneck because with connection pools and thread pools it is highly
concurrent. The pattern allows to effectively use the communication resources, independently of
the REMOTE OBJECT, CLIENT PROXY, or INVOKER structures. Because of this, a REQUEST HANDLER is
reusable for many different clients and SERVER APPLICATIONS. The same REQUEST HANDLER
instance is shared by multiple CLIENT PROXIES on client side and multiple INVOKERS on server side.
REQUEST HANDLERS hide connection and message handling complexity from the CLIENT PROXIES
and INVOKERS.

However, REQUEST HANDLERS impede a slight overhead. In smaller applications with only few
network connections and high performance requirements, the performance overhead may
matter. Another liability may be the memory overhead of the connection and thread pools, espe-
cially in limited computing environments such as embedded systems. Using connection and
thread pools in REQUEST HANDLERS does only make sense if the instantiation times for connection
handles and threads may have a significant performance impact in terms of response times. This
means that there should be a considerable number of messages expected to be received at the
same time. For example, simplistic clients can also handle network communication on their own
(for instance, simply with a blocking request).

214

Object-Oriented Remoting - Basic Infrastructure Patterns

Marshaller
You make REMOTE OBJECTS available to clients. The invocation data is transported over the
network. CLIENT PROXY, REQUEST HANDLER, and INVOKER handle the basic communication issues.

M M M
The data to describe operation invocations of REMOTE OBJECTS consist of the target object’s
object ID, the operation identifier, the arguments, and possibly other context information.
All this information has to be transported over the network connection. For transporting it
over the network only byte streams are suitable as a transport format.
For sending invocation data across the network there has to be some concept for transforming
invocations of remote operations into a byte stream format. There are some exceptional cases that
make this task complicated, as for instance:

• How do you handle references occurring multiple times?
• How do you handle object identity for non-remote objects?
• How do you determine wether an attribute of an operation should be transformed into a

byte stream or not (for instance, references to GUI objects or local resources will usually not
be transmitted)?

• How do you handle domain-specific or application-specific specialties of the REMOTE
OBJECTS (for example, for objects that are persistent in a database the relationships with the
database have to be handled)?

• How do you handle complex, user-defined type objects? These have references to other
instances, possibly forming a complex hierarchy of objects. Such hierarchies might even
contain multiple references to the same instance, and in such cases, logical identities have to
be preserved after the transport to the server.

Generating and interpreting a byte stream representation should not require additional program-
ming efforts per instance, but should only be defined once per type.

Sometimes even the process of generating and interpreting transport formats should be exten-
sible for developers. Additionally, sometimes the used data formats have to be extensible as well.

Therefore:

Require each type used within REMOTE OBJECT invocations to provide a way to serialize
itself into a transport format that can be transported over a network as a byte stream. The
distributed object framework provides a MARSHALLER (on client and server side) that uses
this mechanism whenever a remote invocation needs to be transported across the network.
A MARSHALLER also implements some scheme how to preserve object identities and deal
with complex data types. In many systems, developers can provide custom MARSHALLERS to
customize this scheme or to use other transport formats. The MARSHALLER also provides
operations to de-marshal a given byte stream. Make sure the CLIENT PROXY, INVOKER, and
REQUEST HANDLER invoke the respective MARSHALLER at the appropriate times.

215

Object-Oriented Remoting - Basic Infrastructure Patterns

An operation with an object as argument is invoked. The CLIENT PROXY uses the re-
sponsible MARSHALLER to serialize this object. The serialized format is transported
across the network. This format is de-serialized by the MARSHALLER on server side
and the instance of the respective type is created. Finally, the REMOTE OBJECT is in-
voked and uses this object.

M M M

A MARSHALLER converts remote invocations into byte streams in a way that is non-specific for
REMOTE OBJECT types.

Complex type object should not be referenced remotely, but marshalled by value. To transport
such a type across the network, a generic transport format is required. For this purpose, a
MARSHALLER uses the serializer pattern [RSB+98]. The serialization of a complex type can be done
in multiple ways:

• The programming language can provides a generic, built-in facility. This is often the case in
interpreted languages which can use reflection to introspect the type’s structure.

• Tools generate serialization code directly from the INTERFACE DESCRIPTION, assuming that
the structure of such types is also expressed in the INTERFACE DESCRIPTION.

• It also can be the developer’s burden to provide the serialization functionality. In this case,
the developer usually has to implement a suitable interface that declares operations for seri-
alization and de-serialization.

The concrete format of such serialized data depends on the distributed object framework used.
In principle, everything is a byte stream as soon as it is transported over the network. It is often
more convenient to use a structured format such as XML, CDR, or ASN.1 to represent complex,
structured data.

A MARSHALLER can support a hook to let developers provide a custom MARSHALLER. Reasons are
that generic marshalling may become a rather complex and performance-consuming operation,
when you need to marshal complex data structures, such as graphs. Some serialization formats
might be better than others for certain environments. Thus one generic marshalling format can
never be optimal for each data structure. You might also need to optimize data packets for
bandwidth.

A custom MARSHALLER might, for instance, transport all attributes of an object, or it might only
transport the public ones, or it might just ignore those it cannot serialize instead of throwing an
exception. As a consequence, exchanging a MARSHALLER is not necessarily transparent for the
application on top.

Server ProcessClient Process ISerializable

Marshaller

Client
Proxy

Client

1) operation(complexType)

Marshaller

aType

2) serialize()

3) serialize()

M
ac

hi
ne

 B
ou

nd
ar

y

Invoker

5) deserialize(complexObject)

4) transport remotely

serialized format

aType

Remote
Object

6) <<createInstance>>

7) <<invoke>>

216

Object-Oriented Remoting - Basic Infrastructure Patterns

Different serialization formats have their benefits and liabilities. For instance, the byte stream
format can be application-specifically optimized for efficient processing or memory or band-
width usage. But such formats are hardly human-readable, and harder to create and parse,
because standard tools are usually missing. Standard representations such as XML or CDR can
be created and parsed easily with standard tools, but may result in a less efficient (because more
or less generic) representation. This means these formats require more processing power to be
created or parsed. Some formats, especially XML, are very bloated, because they use a human-
readable, text-based representation. While there is a large set of tools to process XML, it requires
a lot of memory and significantly more network bandwidth than more condensed formats, such
as binary data. Standard representations are usually more interoperable than application-specific
formats.

217

Object-Oriented Remoting - Basic Infrastructure Patterns

Interface Description

A client invokes an operation of a REMOTE OBJECT using CLIENT PROXY and INVOKER.

M M M
When a CLIENT PROXY and an INVOKER are used together for remote communication, you
need to align the interface of CLIENT PROXY and REMOTE OBJECT. Also, you need to align
marshalling and de-marshalling. Client developers need to know the interfaces of REMOTE
OBJECTS they use.
If a CLIENT PROXY should be used as a local representative of a REMOTE OBJECT in the client process,
it exposes the interface provided by the REMOTE OBJECT. If the CLIENT PROXY is responsible for
ensuring that the interface is used correctly, the type, operation, and signature information of the
REMOTE OBJECT have to be known before a invocation is sent across the network.

On server side, the INVOKER has to dispatch the invoked operation of the REMOTE OBJECT. If the
INVOKER does not dispatch all type, operation, and signature information dynamically, it requires
these information before an invocation takes place.

Either CLIENT PROXY or INVOKER should ensure that no violation of the REMOTE OBJECT’S interfaces
occurs, or, if violations are possible, CLIENT PROXY or INVOKER have to handle them.

It should not be required that client developers or REMOTE OBJECT developers have to deal with
propagating and/or ensuring REMOTE OBJECT interfaces manually. Instead, the distributed object
framework should provide suitable means for partly automating these issues.

Therefore:

Provide an INTERFACE DESCRIPTION in which you describe the interface of a REMOTE OBJECT
type required for CLIENT PROXY and INVOKER, as well as information for marshalling and
dispatching.From the INTERFACE DESCRIPTION interface-related parts of CLIENT PROXY and
INVOKER can be derived (either with code generation or runtime configuration techniques).
The INTERFACE DESCRIPTION also documents the remoting interfaces for client developers.

Using an INTERFACE DESCRIPTION in a separate file a code generator generates code
for CLIENT PROXY and INVOKER. The CLIENT PROXY is then used by the client. It contacts
the INVOKER that dispatches the invocation to the REMOTE OBJECT. This way, details of
the distributed object framework are hidden from client and REMOTE OBJECT develop-
ers, as they only see client code, INTERFACE DESCRIPTION and REMOTE OBJECT code.

M M M

M
ac

hi
ne

 B
ou

nd
ar

y

Process A1
Client
Proxy

Remote
Object

Client
Invoker

Remote
ObjectRemote

ObjectRemote
ObjectRemote

Object

Process A2
Client
ProxyClient Invoker

Interface
Description

Code
Generator

Server Process

218

Object-Oriented Remoting - Basic Infrastructure Patterns

Usually an INTERFACE DESCRIPTION contains interface specifications including their operations
and signatures, as well as marshalling and dispatching information. The INTERFACE DESCRIPTION
itself can be given in various forms:

• Interface description language: The INTERFACE DESCRIPTION is separated from the program text,
for instance, in an additional file written by the REMOTE OBJECT developer. An interface
description language is used to provide these information. A code generator generates the
interface-related parts of CLIENT PROXY and INVOKER. That means (many) interface violations
can be automatically detected when compiling client and CLIENT PROXY.

• Interface repository: The INTERFACE DESCRIPTION is provided at runtime to remote clients
using an interface repository exposed by the SERVER APPLICATION (or by some external
interface repository). Note that an interface repository is required for implementing the
dynamic invocation interface variant of CLIENT PROXY. An interface repository is not suffi-
cient for code generation purposes solely, as code generators require the information
before runtime.

• Reflective interfaces: The INTERFACE DESCRIPTION is only provided on server side by means of
reflection [Mae87]. The dynamic dispatch variant of INVOKER is used to obtain the interface
information and handle the complete invocation process. A simplistic CLIENT PROXY only
sends symbolic invocations to the INVOKER, but does not know the actual interface of the
REMOTE OBJECT. Note that this variant requires the INVOKER to handle interface violations
and other exceptions. This variant is not suited for code generation, as the INTERFACE
DESCRIPTION is not exposed before runtime.

Note that the different variants of INTERFACE DESCRIPTION correspond to the used variants of
CLIENT PROXY and INVOKER. Static variants of CLIENT PROXY and INVOKER can exploit code gener-
ation techniques and thus primarily use separated interface descriptions in interface description
languages. Dynamic variants require INTERFACE DESCRIPTIONS either on client or on server side at
runtime, thus reflective interfaces or interface repositories are used. In many distributed object
frameworks more than one INTERFACE DESCRIPTION variant is supported, as more than one
variant of CLIENT PROXY and/or INVOKER are supported.

operation signatures offered to clients should generally be designed to stay stable. However,
changes cannot be avoided. Especially, in a distributed setting, where SERVER APPLICATION devel-
opers have no control over client code (and deployment of it), there should be some common way
to provide modified remoting interfaces to client developers. INTERFACE DESCRIPTIONS primarily
separate interfaces from implementations. Thus the software engineering principle “separation
of concerns“ is supported, as well as exchangeability of implementations. That means clients can
rely on stable interfaces, while REMOTE OBJECT implementations can be exchanged.

219

Object-Oriented Remoting - Basic Infrastructure Patterns

Lifecycle Manager

Your SERVER APPLICATION provides different kinds of REMOTE OBJECTS. Each of these objects has
a lifecycle.

M M M
A SERVER APPLICATIONS has to handle the lifecycle of its REMOTE OBJECTS. In first place, that
means to create each object when it is needed and ensure that objects are destroyed (using
their destructor) when the server (or thread) terminates. At runtime, the SERVER APPLICATION
has to control its resources. For instance, it should ensure that only those objects that are actu-
ally needed are active (in memory). All others should be either destroyed or passivated to a
database (according to the REMOTE OBJECT’S activation strategy).

Consider a web community portal with about one hundred thousand registered users. Only a
small number of these users will be active at the same time. Thus for reasons of scalability, only
those user objects that are actually needed at a certain point in time should be active objects in
memory. All other objects should be created or activated on demand, according to the activation
strategy of their REMOTE OBJECT type.

Implementing standard activation, sharing, and eviction strategies requires triggering certain
lifecycle events. A generic mechanism used for implementing these lifecycle events would also
leverage the integration of these patterns and code reuse in their implementations.

Besides standard activation, sharing, and eviction strategies, sometimes developers require
custom lifecycle strategies. Consider an application in which a REMOTE OBJECT can be paused; that
is, the messages for this object are sent to a message queue and processed later on. Some instance
has to redirect the message for certain object IDs to the message queue instead of the paused
REMOTE OBJECT.

Therefore:

Provide a LIFECYCLE MANAGER to handle the lifecycle of a set of REMOTE OBJECTS. It also
stores the current lifecycle state of each REMOTE OBJECT. The REMOTE OBJECTS implement
lifecycle operations corresponding to the possible lifecycle events. These allow the LIFE-
CYCLE MANAGER to modify the lifecycle state of an object. Different LIFECYCLE MANAGERS
can be present in the same SERVER APPLICATION, implementing different lifecycle strategies.
A custom LIFECYCLE MANAGER can extend both lifecycle states and lifecycle operations.
Before and after an invocation the INVOKER calls the LIFECYCLE MANAGER to ensure that the
invoked object is active.

The responsible LIFECYCLE MANAGER is created by the SERVER APPLICATION during
startup and it is registered with the distributed object framework using the FRAME-
WORK FACADE’S API. Before an invocation the LIFECYCLE MANAGER is informed by the
INVOKER. If the REMOTE OBJECT is not active, the LIFECYCLE MANAGER activates it. Then

Server Process
Remote
Object

Server
Application

Lifecycle
Manager

1a) <<create>>

2a) <<invoke>>

2c) activate()
Invoker

2b) invocationArrived(objID, ...)

2d) <<invoke>>

2e) invocationDone(objID, ...)
2f) deactivate()

Framework
Facade

1b) registerLifecycleManager(...)

220

Object-Oriented Remoting - Basic Infrastructure Patterns

the invocation is performed. After it returns, the LIFECYCLE MANAGER is informed
again and can deactivate the object.

M M M

The INVOKER invokes the LIFECYCLE MANAGER before and after each invocation so that the LIFE-
CYCLE MANAGER can handle the lifecycle events. Informing the LIFECYCLE MANAGER of events
in the INVOKER can be hard-coded in the INVOKER code, or it can be implemented with an invo-
cation interceptor. Often it is also necessary to let REMOTE OBJECTS invoke their associated
LIFECYCLE MANAGER to inform it about certain lifecycle events. Thus it is necessary that each
REMOTE OBJECT can obtain a reference to its LIFECYCLE MANAGER.
Note that it might be necessary to let the LIFECYCLE MANAGER work asynchronously, for
example, to scan for objects that should be deactivated because some timeout has been
reached. The LIFECYCLE MANAGER can, for instance, be informed of the timeout with a callback
operation.
The possible lifecycle events of a LIFECYCLE MANAGER are implemented as lifecycle operations
by the REMOTE OBJECTS. The REMOTE OBJECTS have to provide lifecycle operations that fit to the
LIFECYCLE MANAGER’S lifecycle strategy. The LIFECYCLE MANAGER can invoke these lifecycle
operations to change the lifecycle state of an object. Typical lifecycle states are: not existing,
inactive, virtual, and active.
Consider implementing passivation. A persistent object may have an additional lifecycles state
virtual, meaning that the REMOTE OBJECT is currently not an active instance, but its object ID still
can be passed to clients. Upon an invocation, some entity has to map the requested object ID to
the serving, virtual REMOTE OBJECT, and it has to be re-activated on demand.
The LIFECYCLE MANAGER needs to know the REMOTE OBJECTS under its control. For this purpose,
it can maintain an object map which associates object IDs with REMOTE OBJECTS, or it uses a list
of objects maintained elsewhere in the SERVER APPLICATION. The current lifecycle state is also
stored in the LIFECYCLE MANAGER’S object map.
The LIFECYCLE MANAGER can be used to implement activation, sharing, and eviction strategies.
Especially, the activation patterns can be implemented this way. Providing new, custom acti-
vation policies makes SERVER APPLICATIONS customizable in terms of performance tuning and
custom resource management.
However, a LIFECYCLE MANAGER also incurs the liability of a slight performance overhead, as
it has to be informed of every invocation and return of a message.
A LIFECYCLE MANAGER can be seen as a combination of activator [SSRB00] and evictor [Jai01].

221

Object-Oriented Remoting - Basic Infrastructure Patterns

Integrating the Patterns
There are many interactions among the patterns presented and with the patterns presented in
later chapters. Components of the environment of a distributed object framework, as well as the
use of the patterns in these components, are discussed in the remainder of this chapter. In
particular:

• A SERVER APPLICATION is a central instance that manages its REMOTE OBJECTS. Its most impor-
tant task is to bundle all the objects that belong to one application or service. During startup
the SERVER APPLICATION initializes the distributed object framework, if necessary, and
obtains references to well-known REMOTE OBJECTS, such as naming. Also, it instantiate
REMOTE OBJECTS according to their activation strategy and delegates lifecycle management of
REMOTE OBJECTS to its LIFECYCLE MANAGER.

• A FRAMEWORK FACADE shields the distributed object framework from direct access. The
distributed object framework is a complex piece of software and only parts of it are relevant
for developers of SERVER APPLICATIONS. Necessary configuration parameters are offered with
a concise interface, the FRAMEWORK FACADE.

• The COMMUNICATION FRAMEWORK implements the low-level details of network connections.
The distributed object framework patterns largely abstract these details. However, some-
times it is important to understand the COMMUNICATION FRAMEWORK elements. We explain
them with a set of common pattern for concurrent and networked objects.

• A PROTOCOL PLUG-IN is plugged into the CLIENT and SERVER REQUEST HANDLER. It substitutes
the communication protocol, used per default by the REQUEST HANDLER, if necessary. This
can be used for optimizing the network protocols used for particular applications.

Server Application
The REMOTE OBJECT pattern describes how services are offered remotely. In order to achieve this,
there are many tasks that have to be fulfilled in the server:

• The distributed object framework has to be initialized.
• Like any other object, a REMOTE OBJECT has to be instantiated. In a distributed object frame-

work there are different strategies defined when and how remotely accessible objects are
instantiated.

• When naming is used, a REMOTE OBJECT can be registered with it. To make this possible, a
global object reference to naming has to be resolved in advance.

• A set of related REMOTE OBJECTS form together one remote application. In one server process
more than one application may run.

Server Application

REMOTE OBJECT

Framework Facade

in
st

an
tia

te
s

LIFECYCLE MANAGER

Communication Framework

m
an

ag
es

registered for

extends

shields

Protocol Plug-In

REQUEST HANDLER

delegates

lifecycle

management

us
es

222

Object-Oriented Remoting - Basic Infrastructure Patterns

• An application has not only a lifetime responsibility for creating the REMOTE OBJECTS, but
also for destroying them. If the application terminates, its REMOTE OBJECTS have to be
destroyed, too.

Thus, we provide a SERVER APPLICATION whose job it is to initialize and configure the distributed
object framework. The SERVER APPLICATION uses the FRAMEWORK FACADE for this task. Moreover,
it resolves initial, pre-configured references such as naming. Then it instantiates REMOTE OBJECTS
that are static instances, or prepares for instantiating other REMOTE OBJECTS, according to their
activation strategy.

For each REMOTE OBJECT to be instantiated, the SERVER APPLICATION creates the object
according to the activation strategy, activates it in the distributed object framework,
and optionally binds it with naming.

The SERVER APPLICATION bundles REMOTE OBJECTS that conceptually belong together, and handles
all object management tasks with respect to the distributed object framework. If a lifecycle
manager is used, the SERVER APPLICATION object delegates the actual management of the REMOTE
OBJECT’S lifecycle to a LIFECYCLE MANAGER.

Framework Facade
The SERVER APPLICATION has to initialize the distributed object framework and provide access to
its COMMUNICATION FRAMEWORK. A distributed object framework is a rather complex piece of
software. It needs to coordinate several components and their interactions, all need to be initial-
ized and configured properly and consistently.

Some (simple) way for developers using the distributed object framework is required for config-
uring the COMMUNICATION FRAMEWORK and interacting with it. Developers also need a way to
resolve initial, well-known references to pseudo objects. References that must be initially resolved
include naming and other well-known REMOTE OBJECTS available in a distributed object frame-
work. These “well-known” REMOTE OBJECTS have to be configured somewhere.

As a solution, the distributed object framework provides a central FRAMEWORK FACADE. For
developers using the distributed object framework, it serves as the single access point and admin-
istration API to the distributed object framework and its services.

Server Process

Remote
ObjectServer

Application

Framework
Facade

1) <<create>>

2) activate(realObjectInstance)

Naming

3) bind(....)

223

Object-Oriented Remoting - Basic Infrastructure Patterns

A FRAMEWORK FACADE is initialized by a SERVER APPLICATION. It reads and interprets
the configuration parameters. Then it initializes the distributed object framework. It
also serves as the central place to obtain references to central services, such as naming.

The FRAMEWORK FACADE is typically a pseudo object, meaning that it behaves like any other
managed REMOTE OBJECT but it is not remotely accessible.

A FRAMEWORK FACADE is used in server and client applications. You might want to provide
different implementations, as the performance and scalability requirements for servers are
usually significantly higher than those for pure clients.

A FRAMEWORK FACADE provides a single access point (a facade [GHJV95]) to the distributed object
framework. It reduces complexity and shields the constituent parts from direct access. A central
FRAMEWORK FACADE avoids multiple initialization and configuration of the same distributed
object framework.

However, situations that require (unforeseen) access to the distributed object framework’s intri-
cacies are hard to handle, as bypassing the facade would be the only way for application
developers to deal with such situations.

Communication Framework
In this section we give a brief overview of (patterns of) the COMMUNICATION FRAMEWORK shielded
by the distributed object framework. On server side interaction with the COMMUNICATION FRAME-
WORK is especially handled by the pattern REQUEST HANDLER.

Usually a COMMUNICATION FRAMEWORK is designed using layers [BMR+96]. The lowest layer is an
adaptation layer to the operating system and network communication APIs. Using an adaptation
layer has the advantage that higher layers can abstract from platform details, and therefore use
an platform-independent interface.

The operating system APIs are (often) written in the procedural C language; thus, if the COMMU-
NICATION FRAMEWORK is written in an object-oriented language, wrapper facades [SSRB00] are used
for encapsulating the operating system’s APIs. The higher layers only access the operating
system’s APIs via the wrapper facades. Each wrapper facade consists of one or more classes that
contain forwarder operations. These forwarder operations encapsulate the C-based functions
and data within an object-oriented interface. Typical wrapper facades provide access to threading,
socket communication, I/O event handling, dynamic linking, etc.

On top of the wrapper facades the COMMUNICATION FRAMEWORK is defined. Connection establish-
ment is handled by the acceptor/connector pattern [SSRB00]. The pattern separates the connection
initialization from the use of established connections. A connection is created, when the
connector on client side connects to the acceptor on server side. On the basis of acceptor/connector,
connect strategies and concurrency strategies become exchangeable. Once a connection is estab-

Server Process

Server
Application

Framework
Facade

1) init()

Naming4) getReference("Naming")

3) initialize distributed object framework

5) ...

2) read and interpret config params

224

Object-Oriented Remoting - Basic Infrastructure Patterns

lished, further communication is done based on a connection handle, returned from successful
connection establishment.

The SERVER APPLICATION starts an event loop, and new connections are handled as events. A
reactor [SSRB00] reacts on the communication events raised on the connection handles. Its task is
to efficiently demultiplex the events and dispatch all requests to connection handler objects in the
SERVER APPLICATION.

Concurrency is dealt with using concurrency patterns [SSRB00] (see also [Lea99]). There are two
alternatives for synchronizing and scheduling concurrently invoked remote operations:

• Active object decouples the executing from the invoking thread. In the case of a distributed
object framework, the invoking thread belongs to the REQUEST HANDLER, whereas the
executing thread belongs to the INVOKER. A queue is used between those threads to
exchange requests and responses.

• A monitor object ensures that only one operation runs within an object at a time by queueing
operation executions. It applies one lock per object to synchronizes access to all operations.

The mentioned patterns are used within a half-sync/half-async architecture. The pattern decouples
asynchronous and synchronous processing by defining an asynchronous and a synchronous
service processing layer. A queue between these layers maps asynchronous invocations to
synchronous execution.

A component configurator [SSRB00] supports component configuration and dynamic reconfigura-
tion of components in an application at runtime. Typical components include reusable
implementations of common services used in distributed applications, such as naming or logging.
A component configurator uses a factory [GHJV95] to create the service objects according to config-
uration parameters.

CLIENT PROXIES, REQUEST HANDLER, and INVOKERS build together a broker, as it is documented in
[BMR+96].

Protocol Plug-in
Usually, a developer using the distributed object framework can abstract from the implementa-
tion details of the COMMUNICATION FRAMEWORK. However, there are some situations in which
these details matter and it is necessary to provide some way to influence them:

• Sometimes the same application should be able to operate with different protocols. Thus the
protocol realization should be exchangeable.

• The developer provides a custom MARSHALLER that provides an optimized serialization
mechanism. It is important to make sure that the protocol used by the COMMUNICATION
FRAMEWORK can actually transport the serialized data.

• The SERVER APPLICATION needs to fulfil varying QoS requirements. To effectively fulfil these
QoS requirements, the facilities provided by the network protocol have to be used differ-
ently and perhaps need to be optimized at a rather low level.

• You have to serve many clients. Thus it might be beneficial to optimize the protocol to open
a new connection each time a request is transported, because this reduces resource
consumption of the SERVER APPLICATION.

Other low-level aspects you might need to take care of are threading, invocation priorities, or
caching of certain data. Such issues should be handled transparently for the application logic.

PROTOCOL PLUG-INS are provided as an extension mechanism of the REQUEST HANDLER. The
PROTOCOL PLUG-INS handle the low-level networking issues in cooperation with the COMMUNICA-
TION FRAMEWORK and operating system.

225

Object-Oriented Remoting - Basic Infrastructure Patterns

The SERVER APPLICATION creates and configures the PROTOCOL PLUG-IN for the RE-
QUEST HANDLER. For an invocation, the CLIENT PROXY transports the message to this
PROTOCOL PLUG-IN. The REQUEST HANDLER then forwards the invocation to the IN-
VOKER. It may cache the connection in the PROTOCOL PLUG-IN.

Often, a PROTOCOL PLUG-IN and a custom MARSHALLER go hand in hand, because a specific
protocol requires specific marshalling or vice versa.

Although we focused on the server side, the client obviously also requires something that adapts
its CLIENT PROXY to the networking details. The protocol used by client and server must match,
obviously.

A PROTOCOL PLUG-IN offers an API to customize low-level protocol details of the COMMUNICATION
FRAMEWORK. There is no need to integrate these low-level details into the application logic. In
principal, protocols can be exchanged transparently. However, it is not always possible to plug-
in new protocols without changes in REQUEST HANDLER, INVOKER or SERVER APPLICATION. If more
than one protocol are used together, the provided APIs either can only provide a common
denominator of these protocols, or the other components have to be aware of the used protocol.

Conclusion
In this paper, we have presented a pattern language consisting of basic infrastructure pattern of
distributed object frameworks. These patterns are required for building almost any RPC-based
distributed object framework. Moreover, they have to be understood to build applications with
these frameworks as well. Note that, for more complex distributed object framework applications
many other patterns have to be applied, say, to achieve high performance, scalability, and multi-
threading.

Acknowledgements
We wish to thank our Viking Plop 2002 shepherd Kristian Elof Sørensen for his valuable
comments on this paper, as well as the participants in the Viking Plop 2002 writers workshop:
Kevlin Henney, Michael Pont, Valter Cazzalo, Mikio Aoyama, Juha Pärsinen, and Lars Grunske.

References
[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland and M. Stal, Pattern-

Oriented Software Architecture: A System of Patterns, John Wiley and Sons, 1996.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frysyk, L. Masinter, P. Leach, and T. Berners-Lee.
Hypertext transfer protocol – HTTP/1.1. RFC2616, 1999.

Server ProcessProcess B
Client Remote

Object

Client
Proxy

Invoker

4) <<invoke>>

3c) cacheConnection(con)

Server Request
Handler

3b) <<invoke>>

3a) getThread()

Server
ApplicationProtocol

Plug-In

0) create &
configure

Client Request
Handler

Protocol
Plug-In

M
ac

hi
ne

 B
ou

nd
ar

y

1) <<invoke>>

2) <<transport>>

226

Object-Oriented Remoting - Basic Infrastructure Patterns

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reus-
able Object-Oriented Software. Addison-Wesley, 1995.

[GNZ01] M. Goedicke, G. Neumann, and U. Zdun. Message Redirector. In Proceedings of
EuroPlop 2001, Irsee, Germany, July 2001.

[Jai01] P. Jain. Evictor Pattern , In Proceedings of 8th Pattern Languages of Programs Confer-
ence, Illinois, USA, Sep. 11-15, 2001

[KJ02] M. Kircher, and P. Jain. Pooling Pattern, In Proceedings of EuroPlop 2002, Irsee,
Germany, July, 2002.

[Lea99] D. Lea. Concurrent Java: Design Principles and Patterns, Second Edition, Addison-
Wesley, 1999.

[Mae87] P. Maes. Computational reflection. Technical report 87-2, Free University of Brussels,
AI Lab, 1987.

[RSB+98] Dirk Riehle, Wolf Siberski, Dirk Bäumer, Daniel Megert, and Heinz Züllighoven.
Serializer. In Pattern Languages of Program Design 3. Edited by Robert Martin, Dirk
Riehle, and Frank Buschmann. Reading, Massachusetts: Addison-Wesley, 1998.
Chapter 17, page 293-312.

[SSRB00] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Patterns for Concurrent and
Distributed Objects. Pattern-Oriented Software Architecture. John Wiley and Sons,
2000.

[TS2002] A. Tanenbaum and M. van Steen. Distributed Systems: Principles and Paradigms.
Prentice Hall, 1995.

[VSW02] M. Voelter, A. Schmid, and E. Wolff. Server Component Patterns. John Wiley and
Sons, 2002.

227

227. Design Patterns for Evolutionary Robotics

���������
	���
���������	������������
���! "�����
	�
#��$&%��
'(�#���*)+�

,�-/.#021�354768-:9;0=<?>�@�@�<BA
C*DFEFCHGJILK
MONQP DFRTSQP R�U

V"WYXQZ�[]\]^`_�acb/d"ef\]^`g�Z
hji�kml X k \!d]n l b/opac_�_ krq�l ^`scs k \jtH_�d![uav[ug�[k�w ^`\yx#\]^2W�g�br[uaz^Q_ h{k b i _�^`sz^Q| q

} _�av~ k \]d]av[q ^ w�� ^`g�[i�k \!_�� k _���XQ\]n
� XQ��Z�g�d!~ k����`�2���`�Q�`��� W k _�d k(l5�v� � k _���XQ\]n

���?�j���r�J�������B�������r�(�� +���:�:�����:¡¢¡��*�F�{ £�r�¤���r¥Q���F�§¦Q�*�� £�r��¨©�¢�Bª�����¨
¦B¡¢�©�F«r��¬­�����m®¯�!¡¢¡¢°
¬/�B�T®+�¤«��B±#®L�*¡�¡¢°²�³�����B�H���?���!±#�!�/´­�����:�?¨©�*�/���=�������]«r���r�B«r¥?¡�µ{®L�*¡�¡:�?�J±;�*�F�����­�­±=¶�«��B±#®L�*¡�¡
�!�³��«�¥B¡¢�·�³�B�!±j���?�*�:�����!�L«��J±¸���:¨©¨7�?�?�¢�����!�¯��¹;�·���]º¯»§�j���B���r���?�!�¯�J«��B±¼¶;�*�r�B�³�����B�H���¢�:�y��
���r�/�����:¡¢¡��*�F�� £�r�y���r¥Q���F�©¦?¡�«:���]±����½±;µ­�B«r¨
�·�f«��J±��B�B�������J�H���B���]±��!�­´/�����r�?¨©�*�/�F�j�*«��
¥J�y´:�*��µ¾�F�B«r¡¢¡��*�?ª:�¢�BªB¶�«r�B±(�?�fªr�­�;±(ªr�!�?�*�F«�¡Y¨©�����?�;±;�r¡��rª:�¢�]����¹;�·���]º�»{ ¿���!�=¶�ÀB�B±;���?ª
ªr�­�;±����r¡��;�����r�B�
���*¡��¢�]�
�r�����?����¹;¦Q�*���¢�!�B����«��J±����/���?�¢�����r�Á�� §���?�f��µ­�³���!¨Â�*�?ª:�¢�B�*�*�]º
Ã�´r�:¡¢�?�����r�B«r��µp���r¥Q�������!�#��Ä`�*�F�7«r�Å«�¦?¦B���/«r�F�Æ���¾«r�;���:¨©«����j���?�·�7¦?���;���]���!º�Ç{�T®¯�!´r�!�!¶
±;�!���¢ª:�?���?ªy«����*´:�r¡��;�����r�J«���µj���:¥J�r���·�#�³µ;�³���*¨È�·��«©�?�r�?°c������´­��«r¡¼¦?���;�*�!���*¶;���B«T�§���]É:�B�¢���!�
¦J�!���B«r¦B�¯�*´r�!�y¨©�r���{�*¹­¦Q�*�����*�B�*�§«��J±j�¢�/���?�Ê���¢�:�y���B«���±;�!���¢ª:�?���?ª#���B���*�r�/�����r¡�¡¢�!�Ë�¢�����*¡¢ �º
���?�
±?�*´r�!¡¢�:¦?¨©�*�/�§�r ¯«¸���­�r¡�¥J�u¹f���p���?�7 £�:��¨��r ¯«¸±?�!���¢ª:�p¦B«T�����!���Æ¡�«r�?ªr�B«rªr�¤¨©��ªr�/�
�³��ªr�?�¢ÀJ�!«��/��¡�µy���!±;�B�*�����?�#¦?���r¥B¡¢�!¨©�����*¡·«T���!±¸���j±;�]�³��ªr�?���?ªj���B�F��«©��µ;�����*¨�º

ÌÍ�m���?�·�7¦J«�¦Q�*�]¶� £�:�?��±?�!���¢ª:�Å¦B«T�����!���B�7���!ª:«r��±;���?ª��*´:�r¡��;�����r�J«���µ¾���r¥Q�����·�*�7���7¦?����°
�³�!�:���!±����B«T�Æ�*�r�?¡·±�¥J�]���:¨
��¦B«����p�� y±;�]�³��ªr�Î¦B«��³���!���Ï¡·«��Bªr�B«rªr�(£�r�p�!´r�:¡¢�;���¢�:�B«���µ
���:¥J�r���·�*�!º½���?�� £�r�?�¸¦?���]�³�!�/���!±�¦B«��³���!���J�© £�;���B�j�:�Á���?�f¦?�����B����¦?¡��!�y«r�B±8±;µ­�B«�¨©�·�*�
�� ��!´r�:¡¢�;���¢�/«��?��µ
���:¥J�r���·�*�!¶/�F«T���?�*�¯���J«����r�¸��¨©¦?¡��*¨©�*�/��«������r��«r��¦J�]�H�F�*ºY���?�§ÀB�F���+¦B«��³°
���*���f�*«r�"¥Q�#���!ª:«r��±;�]±¸«:�L«j�*�r�/���*¹­�L £�:�����?�¤���?¥B���!É/�?�!�/�L���?���*�#¦B«��³���!���J�*º

ÐfÑ?ÒÅÓQÔ§Õ¸Ö]×]Ø£Ù�ÚrØcÑ?Û�Ü{ÝQÞJÛcß2×]ØvÞQàÁÞQá�â"Ó/ÑBÛ¯â"ÞBãËÞJ×!ä

å ÞQà`×!Ó/æ¼×:Ô çè¡������� 7¦?���rª:���]���y�B«r��¥Q�*�*��¨j«r±;�(�¢�����]�F�?�?�·É:�B�!�" £�r��±;�*´:�*¡��r¦?���?ª
���:¥J�r���·�*�+ £�:�{¦?���;±;�B�������r�p¡��¢�B�¢�]�*¶`®+�?�!���#���?�¤�F«r��¬����?�����:¥J�r�{¦J�!�³ £�:��¨j�{���§¨©�r�?�r���r�B���
«��B±é®+�B�*���p���B�¾���r¥Q����±?�!���¢ª:�?�*���*«����*�?ª:�¢�?�!�*�¸���?�(���:¥J�r���¸�*�­´­�¢���r�?¨©�!�:�]ºêÌÍ�é���?�
ëTì?í �³°²î:ì?í �*¶­«��;���r¨j«T���!±"¦?���­±?�B�H���¢�:�"¡��¢�B�!��«r¦?¦J�]«����!±�«�¡�¡¼�T´r�!�¯���?�#®L�r��¡�±¼º

ÌÍ�é�?�r�;°²¨©�r�?�r���:�?���f«r�B±é���:¨©¦?¡¢�*¹Á�!�­´/�����r�?¨©�*�/�]¶L�B�ï���]�F�?�?�·É:�B�!�© £�:�"±;�]�³���?ªr���?ª
���:¥J�r�����:�/�����r¡�¡¢�!���§«�����«u´T«���¡�«r¥?¡���«T��¦?���!���*�/������¨
�:º�ð¯�r�B���·±;�*���¢�Bª¸��¹;¦Q�!����«T���¢�:�B�§ £���:¨
���?�Åñ]îrò:ì?í �*¶¯´r�*��µÅ¡��Ê����¡��p¦?���rª:���]�����B«r�y¥J�!�*�é¨j«r±;�f���8¦?���­±?�B�����?ªï���r¥Q�����
���B«T���*«��
 £�?�B�H���¢�:�é�¢�é�B�r�;°²�*�?ª:�¢�B�*�*���!±��*�­´­�����:�?¨©�*�/���y«r�B±8�³�:¡¢´:�p«m¡�«r��ª:�f«�����«uµÅ�r �±?�ÊÄ`�*���*�/�

228

Design Patterns for Evolutionary Robotics

��«r��¬;�*º����?����µ­¦?�·�*«r¡?���*�*�B«r�����{ £�:�Ë«��³�B«r��±��§���r¥Q�����F«r��¬7�·�Y«�¨
�:¥?��¡¢�+���r¥Q���Y¦Q�*�� £�r��¨
���?ª
�¢�f«
���]«�¡¼®L�r��¡�±¸�*�­´­�¢���r�B¨
�!�/�+���B�F��«r�+«r�"���j�*�#�r�+«����:�;��±;�­�:�L�!�­´/�����r�?¨©�*�/�]º

��ÖuÞJã�ÛvÓ­ÒéÔ Ã��?ª:�*�?�!�*���¢�?ªj�*�r�/�����r¡�¡¢�!���¯ £�:�{���r¥Q�����+�!«��p���r¨©�����¢¨©�]�+¥J��«j´r�!��µj�����·�F¬­µ
«��B±
�F�B«�¡�¡��*�?ª:�¢�?ª��F«r��¬Qº�ÌÍ�j�³�:¨
�+�!«r���!�!¶T�?��ªr�*�B�*�F«�¡?«�¦B¦?¡¢�·�*«r¥?¡��L«r¦?¦?���:«r�F�B�!����¹;�·�������J«T�
�*«���¥Q�¤«�¦?¦?¡����!±"���©�*�J�³�?�������B«��{«
���:¥J�r�+�*�r�/�����r¡�¡��*�L���!¡¢�·«�¥?¡�µ¸«r�B±¸���r¥B�B����¡¢µ¸¦J�!�³ £�:��¨j�
���?�§��«:�³¬`º����?���L�·�Ë�]�³¦Q�!�*��«r¡¢¡�µ
�����?�� £�:�¯���r¥Q���F�Ë¦Q�*�� £�r��¨©�¢�Bª¤���]«�¡J����¨©�§���"�*�r¨©¦?¡���¹y«��B±
�?�B�³�����B�H���?���]±¸�!�­´/�����r�?¨©�*�/�F�*º

�2�Æ�¢�B�*���]«r���¸���r¥?�J�����?�!���# £�:�©���B�F�ï�F«r��¬;�*¶Y�¢�
�J«r�
¥J�!�*��¦?���:¦J�/�³�]±m���Æ®+���¢�������:�;°
�����r¡�¡¢�!���¤«:����¡¢�­�:���*¡�µ¾�*�r�?¦?¡��!±Å¦B«��F«�¡�¡¢�!¡�¦?���;���!�����!����	¢ñrñ�
�	¢ñ�
²º�
­�B�F�Å�*�r�/�����r¡�¡¢�!����¨©��ªr�/�
��¹;�?��¥?�Ê�L¥J�!�B«u´­�¢�:�����B«T�L���Ë�?���L¦?���:ªr�F«�¨©¨©�!±
���:����«r�/µ
�� `���?�{¦?���;���]�����!�!¶r¥?�?�L�!¨
�!��ª:�!�
 £���:¨����?�
�¢�/���*�F«r�H���¢�:�p¥Q����®L�*�*�¾���?�
¦?���;���!�����!�!º#ð¯�:�:�����:¡¢¡��*�F�+���B«T����¹;�?��¥?�¢���!¨©�*��ªr�*�/�
¥J�!�B«u´­�¢�:�2�*«r�¤¥J�¯�B«��F±����§�*�?ª:�¢�B�*�*�]º2Ç{�T®m±?�{®L�Ë±;�!«r¡:®+�¢���¤���?�L���r¨©¦?¡���¹;�¢��µ§�r ?®+���¢�����?ª
�³�B�F�����:�/�����r¡�¡¢�!�����

�2ÞJÖuÚ:Ó­ärÔ çÏ�*�*�/���F«�¡¼�·�����?�#�������?�¤¦B���:¥?¡¢�!¨ ±;�]���*����¥J�]±�«�¥Q�T´r�r¶;�·��±;�]«�¡��¢�Bª
®+�¢���p�*�r¨
°
¦?¡¢�*¹;�Ê��µ:º¯ð¯�r�/�����r¡�¡¢�!���L«������!��¦J�]���·«�¡�¡¢µ¸�B«��F±y���©®+���¢���#®+�?�!�

� ���?�����r¥Q���F���*�­´­�¢���r�?¨©�!�:�+�·�+���:¨
¦B¡¢�*¹
� ���?�����r¥Q���F���B«��F±;®�«����{�·�����:¨
¦B¡¢�*¹

�é�?�*�Á«¾���:�/�����r¡�¡¢�!�7���:�B�³�·�³������ �¡��/�/�³�!¡¢µm���:�?¦?¡��!±ï¦J«��F«�¡�¡¢�!¡Ë¦?���;���!�����!�!¶�±?�!«�¡����?ª¾®+�¢���
���?�¤�*�r¨©¦?¡���¹;�Ê��µ¸�� 2���?�¤���:�/�����r¡�¡¢�!�L�·�+«�¡·���©«r�"�·���³�?�:º�
­�B�F�f���:�:�����:¡¢¡��*�F�¯¨
��ªr�/���*¹­�B�¢¥?�¢�
�*¨©�*��ªr�!�:�L¦?�?�!�?�r¨©�*�J«7«����·�³���?ª¤ £���r¨ ���?�§���/���!��«:�H�����r�¸¥J�*��®¯�!�*�j���?��¦?�­µ­���·�*«�¡J¦B«������¯��
���?�����r¥Q���]¶T���B�����:¥J�r�����r�/�����:¡¢¡��*��«r�B±����?���!�­´/�����r�?¨©�*�/�]º����?�]�³�+�!¨
�!��ª:�*�/�Y¦?���r¦Q�*�������!�
¦?¡�«uµ"«�¨j«����r�����:¡¢���������?�¤±;�]�³��ªr���� Y���:�/�����r¡�¡¢�!���Ë £�r���*�r¨©¦?¡���¹¸���r¥Q���F�*º

� ÞQÛvß�×!ØcÞJà¯Ôèç{�³���ÊÀQ���·«�¡Q�*´r�:¡¢�?�����r�j�·�Ë¬­�?�T®+�©���¤¥J��«�¥B¡¢�+�����*�r¦Q��®+�Ê���¸�!¨
�!��ª:�*�/��¦?�?�*°
�?�r¨©�*�J«¸���(�*�r¨©¦?¡���¹Æ��µ;�����*¨j�!º����?����ÃË´r�:¡¢�;���¢�:�B«���µ��+�r¥Q�������!����«�¦?¦B���/«r�F�¾���?ªrª:�!�³���
«��;���r¨j«T���¢�?ªÆ���B�f¦?���;�*�!���7�r §®+���Ê���¢�?ªm���r¥Q���j���:�:�����:¡¢¡��*�F��¥/µ�«�¦?¦?¡����?ªï«������¢ÀJ���·«�¡��*´:��°
¡¢�;���¢�:�Å���p���B�"¦?���r¥B¡¢�!¨�	 ��
²ºïç��Á«������¢ÀJ���·«�¡¯�*´r�:¡¢�?�����r���³��«r�³�F�7®+�¢���Á«p¦Q�r¦?�?¡·«T���¢�:�Å��
��«r�B±;�r¨©¡�µ¸ª:�*�?�!��«����!±��*«r�B±;�·±?«T���7���r¡��;�����r�B�+���j���?�¤ªr��´r�!��¦?���:¥?¡��*¨�ºL���B�!���¤�³�:¡¢�;���¢�:�B�
«����j�*´T«�¡��B«T���!±¼¶Y«r�B±ï«����B�¸¥Q�!�³��¦Q�*�� £�r��¨
���?ªp�!«��B±;�·±?«����!��«����j�B���!±ï«r�7¥?�·«r�#���pªr�!�;°
�*�F«T���y«��B�*® ªr�!�?�*�F«T���¢�:�Æ���m���?�¸¦J�:¦?�?¡·«T�����r�2º����?�·�¤¦B���;���]±;�?���j���¤���!¦J�]«T���]±m�?�/����¡¯«
�³���y�*�¢�!�:��¡¢µ��*«r¦B«�¥?¡����³�:¡¢�;���¢�:�����L £�:�?�B±¼º

 ?�r�©�B�����?ª(���?�·�j«�¦?¦B���/«r�F�ï���(�!´r�:¡¢´:�"���r¥Q���j���:�:�����:¡¢¡��*�F�!¶����?�� £�:¡¢¡��T®+�¢�Bª(«:�³¦Q�!�����
¨7�B�³��¥J�¤�*�r�B���·±;�*���!±"!

�$# Ñ?ä&%Á×]ÞÅãËÓ � ÞQÛ£ÝQÓ('*)7ð¯�r�J�³�·±;�*�����?�7��«r��¬"���B«��§µr�:��®L«r�:�{���?�����:¥J�r�����y¦Q�*��°
 £�:��¨�ºYÌ����¢�{¦?�­µ;�³�·�*«r¡¢¡�µj¦J�/������¥?¡¢�� £�:�����?�#���r¥Q�������j¦J�!�³ £�:��¨ ���?����«:�³¬+�fç{�������?�
���*�B���r�F��«��B±�«r�����B«����:���L�� ����B�#���:¥J�r�+�����y�����*�/�,�

� �+Øv×!à�Ó/ä]ä-�2ß�à�Ú�×!ØcÞJà.)¾Ì²�����#�B�!���]����«���µf����ÀB�B±ï«p���?�¢��«�¥B¡¢�j®�«uµp�� +�!´u«r¡¢�J«T�����?ª
¦Q�*�� £�r��¨j«��B�*�L�r `���?�{�!«��B±?��±?«����{���r¡��;���¢�:�B�*¶r¥/µ
¨©�!«:�³�?�����?ª����?�!�¢�0/�13254�6�6�«r�!���r�F±­°
���?ª����j�³�:¨©�����B�*�*�!�������¢���*���·«?ºY���?�!�����*´T«�¡��B«T���¢�:�B���³�B�r�?¡·±y¥Q�� £�?¡�¡¢µ¸«r�;���:¨j«T���]±¼¶

229

Design Patterns for Evolutionary Robotics

Evolutionary
Algorithm

Behavior
Representation

Robotics

solved
Task to beFitness

Function

Evolutionary

 ���ªr�B����ñ�!�� 4�6�����2�� 6	��4�
�1 6���
�� 2 4���������1	����2�������������� 1 ��
�6 6���6,1 4�!�"$#�������% 6&� 2(')��
�� 1 4,6
� 2+*,��4�2(
�4,6-��4�1 %*4�4�2.
0/1�)��
�4,6&!��2'�4,
3�)� 4��2
0/4��6 ��40
 1 63"�5 43�6
3����!���2�
�4��7
 16/+4&��4�6��8� 1 � 29�
6���6,1 43!:� 6-�;
���2(
�1 ��� 2<�7
 16/+4-� 2�1 43� �(�=�)�>��4 1	%*4�4 2�16/+4&
0/1�)��
�4,6&!��2'�4?"

���¢�J����«¸¡�«r��ª:�#�­�?¨7¥Q�*���� Ë�!´T«�¡��B«T���¢�:�B��®+��¡¢¡�¥Q�7���!É/�?�����]±¼º�@��!���J«�¦B�����?�����:¥J�r���
�T®+�¾���*�J�³�:���§�*«��¾¥J�
�B���!±f���¸�!´u«r¡¢�J«T�������B�����r¥Q���F�{¦Q�*�� £�r��¨j«��B�*�r¶Q�r��¦J�!���B«r¦B�
�¢�Ë�·�Y�?�!�*�!����«r��µ¤���¤¦?���T´­��±?�����?���!�­´/�����r�?¨©�*�/���:�Y���?�{���:¥J�r��®+�Ê���j��¹­���F«#�³�!�B���r�F�*º
���?�§À?���?�!���L £�?�B�������r�����r¨©¦?��¡��!�����; £�r��¨j«T�����r�¸ £���:¨ ���?�]�³�#���*�B���r�F�!¶/«r�B±"«:������ªr�B�
«©���*«�¡·«��LÀ?���?�!����´T«�¡��?�����©�]«r�F���*«��J±;��±B«T���#���r¡��;�����r�2º

�BA ÓDC�Ñ:Ý=ØvÞJÖ�â"Ó9E�ÖTÓ­ä!Ó­à`×]Ñ;×!ØcÞJà.)¤ç��p�!´r�:¡¢�;���¢�:�B«���µ"«r¡¢ª:�r���Ê���?¨ ��µ/¦B���!«�¡�¡¢µ�®¯�:��¬;�
�:�"«©���������?ª
�� ��/�B¨7¥Q�*�F�*¶;���!���*¨�¥?¡¢���?ª©«
ªr�*�B���³�����¢�BªBºYçÎ¨©�!�F�B«r�?����¨ �·���?�*�]±;�!±
���B«T�����F«��B��¡·«T���]�+���?����ª:�*�?�©���������?ª"�¢�/����«"�*�r�/�����r¡�¡��*�{�:�f���B�����r¥Q���]º����B�������:�;°
�����:¡¢¡��*�+�·�{��«��·±"���y���*¦?���!���*�/�+���?�¤���r¥Q���!í �+¥Q�*�B«u´­���r�]º¯ç§�{«����*¹;«r¨©¦?¡¢�:¶?���?�7���:�;°
�����:¡¢¡��*�Ë�!«��©¥Q�§«#�?�!�?�F«�¡?�?�*��®¯�:��¬�®+�?�*���+ªr�!�?�!�¯���;±;�� £�:�����B�§��µ/�J«�¦;������®L�*��ªr�/���!º
���?�Ë¥J�!�B«u´­�¢�:�2���*¦?���!���*�/��«������r��¨7�J����¥J�¯¦J�T®L�*�� £�?¡�¡r�*�B�r�?ª:�����{�*¹;¦?���]���2�³�:¡¢�;���¢�:�B�
�������?����«:�³¬y���j¥Q�¤�³�:¡¢´:�!±¼º

� Ü§ÝJÞQÛvß�×!ØcÞJà�Ñ;Ö�FÆÕ"Û�GQÞBÖTØ£×?C�Ò)H@������!�/���·«�¡�¡¢µ:¶r«��­µ7ª:�?�·±;�!±©���!«��F�F�©«�¡�ªr�r���¢���?¨ �*«��
¥Q�j�B���!±¼º©Ì²�¤�·���¢¨©¦Q�r����«��/�#���B«T�����B�y�³�]«��F�F�Æ«�¡�ªr�:���¢���B¨ ���#�!«�¦B«r¥?¡��
�r ¯�F«�¦?�·±;¡�µ
���!«r���F�?���?ª#¡·«���ªr����¦B«r�*�!�Ë¥/µ©�B�����?ª¤���; £�r��¨j«T�����r�y«r¥J�:�;�Ë���?���*«��J±;��±B«T���§�³�:¡¢�;���¢�:�B�
À?���?�!���!º¯ç��f�!´r�:¡¢�;���¢�:�B«���µ¸«r¡¢ª:�r���Ê���?¨ �·�{«����:¥/´­���r�B�+�F�B�r�·���¤���¢�B�*�#�Ê�§�B«r�����?�!���
¦?���r¦Q�*�������!�!º

 ���ªr�B����ñ+��¡¢¡��B�³���F«T���]���?�T®8±;�!���¢ª:�
�*�r�B���·±;�*�F«T���¢�:�B���� Q���?�]�³��«:�³¦Q�!�����Y���8IB�B�*�B�*�+�!«r�F�
�����B�*�]º

ç��*�r�B�*�*¦;���B«�¡Q¨©�­±?�*¡¼�� �«��y�!´r�r¡��;���¢�:�B«���µ����r¥Q�������!�¯��µ;�����*¨ �·���³�?�T®+�¸�¢�¸ÀBªr�?��� �;º
J �*�?�r��µ/¦Q�!�{ªr�!�?�*�F«T���!±�¥­µ¸���?�7�!´r�:¡¢�;���¢�:�B«���µ"«r¡¢ª:�r���Ê���?¨ «r���¤���F«��B��¡�«����]±"���/���"¦?�?�*�B��°
��µ/¦Q�!�!¶J���B«��§«��������]�����!±f�:�����?�¤���!«r¡2���r¥Q���]ºK@��!�³ £�:��¨j«r�B�����·�+ £�!±�¥J«r�F¬"���j���?�7�!´r�r¡��;°
�����r�B«r��µ�«�¡�ªr�r���¢���?¨�¶;���yªr��´r�#ª:�?��±?�*¡��¢�?�]�+ £�:�{�³�!¡¢�]�H���¢�:�=º+ç+ ¿���!�§«y�����y�����*�/�{�­�?¨�¥J�!����
ªr�*�B�*�F«T�����r�J�*¶J�Ê�����§��¹;¦Q�!�����!±f���B«��§���?�7¥Q�!�³��¦Q�*�� £�r��¨©�¢�Bªy¦?�?�!�?����µ­¦Q�
�!«��f¥Q���B���!±¾«r�
«
�*�r�/�����r¡�¡��*�L £�r�+¦Q�*�� £�r��¨©�¢�?ª
���?�¤±;�!�������]±y�F«r��¬Qº

Ã�´r�:¡¢�?�����r�B«r��µï¨©�����?�;±?�j�·�y¥­µ��J«T���B���p�³���;�F�B«:�������r¶L«r�B±Á�?�Åªr�J«��F«��/���!�!�©�*«r�Á¥Q�
ªr��´r�*�Æ«r�§����®+�?�����?�*���:�§�?�r��«r¦?¦?¡�µ­�¢�?ª"�*´:�r¡��;�����r�B«r��µ�¨©�����?�;±?�§����«¸ª:�¢´:�*�p¦B���:¥?¡¢�!¨

230

Design Patterns for Evolutionary Robotics

®+�¢¡�¡¼���r¨©���?¦¸®+�¢����«����?�¢��«r¥?¡¢�����r¡��;�����r�=º�»§�?¡�µj���B�?�?���?ª¤���?�#�³µ;�³���*¨ «r�B±j���!�³�����?ª7���?�
���]�³�?¡¢�����?ª7�*�r�/�����r¡�¡��*�]¶r�*«r�
���*´:�!«r¡?®+�?�����?�*�¯�r���B�������?�{±;�]�³�����]±©¥J�!�B«u´­�¢�:���·��¦?���;±;�B���]±¼º
Ì²��¨©��ªr�/��¥J�©´r�!��µ��B«r��±p����¦?���!±;�·�H��®+�?�·�F�(���r¡��;�����r�Æ®+�¢¡�¡�¥J�©ª:�*�?�!��«����!±=º¤Ã�´r�:¡¢�?�����r�;°
«���µ���µ;�����*¨j�{���*�J±p���¸¦?���;±;�B���©���r¡��;�����r�B�{���J«T�#�³�?��¦?�������7�!´r�!�f���?�j��µ;�����*¨��*�?ª:�¢�B�*�*�]º
»§´r�*�F«�¡�¡z¶J�!´r�r¡��;���¢�:�B«���µ¸¨©�����?�;±?���³�B�r�?¡·±f¦?���r¥B«r¥?¡�µ��B����¥J�
«�¦?¦?¡����!±p�¢ ����?�*�����·��«y����°
É:�B�¢���*¨©�*�/�+ £�:�+ªr�B«r��«r�:���*�!�¢�?ª©��µ­�³���!¨ ¥Q�*�B«u´­���r�]º�ç��?�r���?�!�+���?���?ª©���©�*�r�B���·±;�*�+�·�����J«T�
�¢�
�*´:�r¡��;�����r�B«r��µ����r¥Q�����·�*����µ­�³���!¨j���¢�Y�� ¿���*�
�����?�]���!����«���µ{����±?�!���¢ª:��«��³��¨7�?¡·«T���r���� ?���?�
���:¥J�r�{«��B±��¢�����!�­´/�����r�?¨©�*�/�]º¯���?�·���·�� £�?�����?�!�§±;�]���*����¥Q�!±��¢�����?�¤¦B«��³���*���B��� � !$�8�=��1 4�'
� �����='�«��B±�� / ���)� 2D��� � !$�8�=� 1 ��� 2Jº ����B«r¡¢¡�µr¶Y���¢¨©�����:�B�³�B¨
¦?�����r�ï £�:�
±;�]�³��ªr�B�¢�?ª(«��B±
«�¦?¦?¡�µ­�¢�Bªy«����*´:�r¡��;�����r�B«r��µy��µ;�����*¨È�³�?�:�?¡·±"¥Q�¤®L�*��ªr�?�]±"«rª:«r�¢�B�³������¨©�# £�r���J«��B±;®+���¢�³°
�¢�?ªy���?�¤���r¥Q���F�����:�/�����r¡�¡¢�!��±;�¢���!����¡�µr¶Q«��B±"���B�*�f�B���7«j���*���¢�]�+�� Y�¢���*�F«T���¢´:�#���*ÀB�?�!¨
�!�/���
�� ����]�����¢�?ª�«��B±����*®+���¢�����?ª©���y¦B���;±;�B�*�7«j®L�r��¬­�¢�?ª©���r¥Q���]º�ç§±;´T«��/��«rªr�]���� ����?�7�!´r�r¡��;°
�����r�B«r��µ¤«r¦?¦?���:«r�F�7�������B«T��«T ¿���*�Y�:�?�¯�!´r�:¡¢�;���¢�:�B«���µ#�³µ;�³���!¨ �B«r��¥Q�*�!����¨©¦?¡��*¨©�*�/���]±¼¶r�¢�
�*«���¦Q�����!�/���·«�¡�¡¢µ�«��;���r¨j«T�����*¡¢µy¦B���;±;�B�*�¤���:�:�����:¡¢¡��*�F�Ë £�r�����*¡·«T���!±¸��«r��¬;�L���?���r�Bªr�/�+�r�?¡�µ
´r�*��µ�¨©�¢�?�:�#�F�B«��?ª:�!�!º¤���?�
¨©«r�¢�m«r±?´u«r�/��«�ª:�!�{�� Ë���?�j«�¦?¦B���/«r�F�f�·�{���?�©¦J�r���!�:����«r¡����
���]±;�B���§�­�?¨7¥Q�*�L�� =¨j«��?°z�?�:�?�F���B���!±y�����*�r�B�³�����B���Ë���B����µ;�����*¨�¶/«r�B±©���?�§¦Q�����*�/���·«�¡Q��
���?�¤��µ;�����*¨ ���j¦?���;±;�J�����¢�B�?�T´T«T����´r�#���r¡��;�����r�J� 	 ��
2���j«©ªr��´r�!�¸¦?���r¥?¡��*¨�º
â¸Ó­ä!ß�Û£×]Øvà G å ÞJà`×]Ó:æ¼×:Ô ç{�L«¤���!���?¡¢�¯�� 2«r¦?¦?¡�µ­�¢�?ª¤���?���³�:¡¢�?�����r�j�� ¼���?�·�¯¦J«T�³���*���=¶/µr�r�
�B«u´r�
«"��µ;�����*¨È���B«��#�¢�¾���?�!�r��µ����?�:�?¡�±¾ªr�!�?�*�F«T���7���r¥Q�����*�r�/�����r¡�¡��*�F�+ £�r�����?�7�F«r��¬p«T�
�B«��B±=º	���:�Å¨©�¢ª:�/�7�?�T®L�*´r�!��ÀB�B±¼¶����B«T�7�¢���·�¤���; £�]«r���¢¥?¡��j���p�B���j���?�"�³µ;�³���*¨ ±;�?�y���
���?�����¢¨©�¤���!É/�?�����]±¼¶;®L�!«���«r�B±¸���!«r���� ����B�#���:¥J�r�����B«r��±;®�«����r¶­¦?���r¥B¡¢�!¨©���r �«:�����!�����¢�?ª
À?���?�]���¸�r���³��¨©¦?¡¢µÁ¥Q�!�*«r�B���p�� #¥B«��³���!��µÁ�·�����?�!�!ºÎÌÍ�8���?�]�³�Æ�*«r���!�!¶�µr�:�é¨
��ªr�/�¸®�«��/�
�*´r�:¡¢�?�����r�"���©��«r¬r��¦?¡·«r�*�#�¢�f«j���¢¨��?¡�«������r���� ����?�#���r¥Q���F���*�­´­�¢���r�B�*¨©�/�!¶?«r�{±;�!�������¢¥Q�!±
�¢�����B��¦J«T�³���*��� ��
­��¨7�?¡·«T���!± �Æ�:��¡·±+�?º
���:�"¨©��ªr�/�{«�¡·�³��ÀB�B±=¶;���B«������?�!���#���*�*¨j�L���
¥Q�
�?�§¦B���:ªr���!���2�����!´r�:¡¢�;���¢�:�=º2ÌÍ�7���B«����*«r���Lµr�r�
���:�?¡�±7��¹;¦Q�*���¢¨©�*�/�Y®+�¢�������?��¦B«r��«r¨
�*���!���
 £�r�����B�j�*´r�:¡¢�?�����r�B«r��µp«r¡¢ª:�r���Ê���?¨�¶=�r�#µ:�r�m���r�B¡�±Æ¡¢�­�:¬¾«T�#���?� ��
­�J«�¦?���?ªfÃ�´:�r¡��;�����r���
¦B«T�����*���=º

Ü{æ=Ñ?ÒBE�ÛcÓJÔ ç�����¹?«�¨©¦?¡��y�r +���?���B���y�� +���?���©«r¦?¦?���:«r�F�ï�!«��Å¥Q�y £�:�?�B±ï����ç§±;���·«��
���?�r¨©¦B���r�B�{¦B«�¦Q�*� ��ç{�³���ÊÀJ�*��«r¡�ÃË´r�r¡��;���¢�:�����f���?�&@Ë�/µ;�����!«�¡ �(�r��¡·±+��	¢ñ �
²º����?���*�r¨
°
¦J�:�?�*�/������ ��B������µ;�����*¨ «r��� !

�$# Ñ?ä&%Á×]ÞïãËÓ � ÞQÛ£ÝQÓ '.)§çÏ��®¯�r°z®+�?�!�*¡��!±����r¥Q�����B«:�+���j�J«u´/��ª:«��������j���?�����*�/���*�
�r �«���«����*�J«?¶;�B���¢�Bª
�:�?¡�µj £�*�]±;¥B«r�F¬y £���:¨ ��®¯�©�:�;°z¥Q�:«r��±"�³�:�B«��F�!º

� �+Øv×!à�Ó/ä]ä �2ß�à�Úr×!ØvÞQà.)����B�§ÀB���?�]���� £�:�����?�#���r¥Q���+®+�?��¡��#¨
�T´­���?ª
���+ª:�¢´:�*��«r�&!�
����������������	� ���� � �"!$#&%�#�')(+*+,.-/�0�1!324%�2�')(+*+,�576 � ¶`®+�?�*���984: � �;5 «r�B±<84= � �;5 «r���#���?����r¥Q���F�?>"«r�B±A@©¦Q�:���Ê���¢�:�y���!¡�«�����´r�+���¤���?�§�*�*�/���!�L«��Ë����¨©� � ¶;«��J±CB0:�«��B±	B0=#«r���
���B�F�Æ���B«��¤���?�j¨j«�¹­��¨7�B¨ À?���?�!���#�·�jñy«��B±Æ���?�j¡¢�T®L�!�³��À?���B�!���#���7ìED�ñ � «T�#���?�¦Q�r���/�L £�B�³���?�!�³�{«u®L«uµ© £���r¨ ���?�¤�*�*�/���!� 5 º

�BA ÓDC�Ñ:Ý=ØvÞJÖÆâ"Ó2E�ÖTÓ­ä!Ó­à`×!Ñ?×!ØvÞQà.)p���?�j���:¥J�r�¤®L«:���!É/�?��¦?¦Q�!±m®+�¢���ï«�ÀB�*¡·±(¦?����°
ª:��«r¨
¨j«r¥?¡¢�fª/«T���¾«�����«uµ � @ J ç 5 ��«r¬­�¢�?ª��¢�?¦B�;�¸ £���r¨ ���?�(�³�:�B«��F�y«r�B±8¦?����°

231

Design Patterns for Evolutionary Robotics

Evolutionary algorithm Physical World

Fitness
Algorithm

Translation

Feedback

Genotype

Evolutionary Environment

(Robot Controller)

Phenotype

 ���ªr�B��� ��!���2+
3�)��!�� 1 ��� 2�*K��%<� 2 � 2 4���������1 ��� 2������ ������� 1 ��
�6.6���6,1 4�!�"��(/+4 43�)�)����1 ��� 2(�)���
�)� �9�)��� 16/D! !�� 2 � ���8�=��1 4�6�� 4�2 4 6,1 ��� 29��6�"�� 4 254 6,1	��� 2D� 6-�)��4 1	����2+6��=��1 4�' � 2�1 �>
�� 2(')��'2� 1 4
������� 1
���2�1 ���)� � 4���6�� 1 /1� 1 �)��4 43�)�)���1��1 4�'���2�16/+4 �0����� 1	��5H/8��6���
���� % �)���='�
�" 5 4��6
3�)��!�� 2(
�4
�7
 16/+4
���2�')��'2� 1 4>
���2�1 ���)� � 4���6�� 6
�4�' ���2
 ��1 �-1 /�4 4���������1	����2������ �)� �9�)��� 16/D!���% /�43��4 � 1
� 6 �(6�4�' 1 �$���8��'�4 6 43� 4�
 1	����2B� 2�' ��4 �����?')�1
 1 ��� 2B�7
 254�%
0��2�'���'�� 1 4 6��)����1	����2+6�"�#H
�1 4��&�
6��
�
�� 4�2 1 2 �8!���4�� �7
-� 4�2 43�0� 1 ��� 2+6�� 1 /�4 ��4�6,1
���2�')��'2� 1 4 6�/ �)�8� '.��4 ����� 4�1 �$��43�6
3����!
1 /�4 1 ��6 �2"

±;�J�����?ª¸�:�;��¦?�?�§���¸���?�7��®L�y¨©�����r�F�§±?����´­�¢�?ª¸���?�
®+�?�!�*¡·�*º����?� @ J ç5�!«��p¥Q�
���!�*�r�;ÀBª:�?���!±#«T�����?�;°z����¨
�¯�����F�B«r�?ªr�Y���?���*¡��!�������r�?�·�Ë�*�r¨©¦?�;�F«T�����r���Ê��¦Q�*�� £�r��¨©�!º

� Ü§ÝJÞQÛvß�×!ØcÞJà�Ñ;Ö�FéÕ¸Û�GQÞJÖuØv×+C�Ò)#çê�³��«r�B±?«��F±��*´:�r¡��;�����r�J«���µ"«�¡�ªr�:���¢���B¨ ®�«r����¨
°
¦?¡��*¨©�!�:���!±¼¶?���B«��+���!«r���F�B�!±j���?���r�?ª:�¸���?�¤�³¦J«r�����r �¦Q�:���³��¥?¡����*�r�;ÀJªr�?�F«T���¢�:�B�¯ £�r�
���?� @ J ç¤º

�{���¢�?ª����?�!���
�*�r¨©¦Q�r�?�!�:�F�*¶�«"�*�r�/�����r¡�¡¢�!�{ £�:�#±;����´­�¢�Bª"���?�©���:¥J�r�§���T®L«r��±B�����?�j���*�/���*�
�� ����?�¤«r���!�B«7®�«r�Lª:�*�?�!��«����!±=º

â¸Ó­ÛvÑ;×]Ó(' �§Ñ;×*×]Ó/Öuà�ä:ÔÂÌÍ�¾���?�j���r�/����¹­���r ����B����¦B«r¦J�!�!¶¼¡��­�r¬f«T�
­�J«�¦Q�!±(Ã�´r�:¡¢�?�����r�=¶

­�¢¨��?¡·«T���]±-�(�r��¡�±¼º§ç�¡·�³�y¡��­�r¬f«T�§¦B«T�����*���B�§���!¡�«����]±����y��¨©¦?¡¢�!¨©�*�/�����?ª"«r�B±p«r¦?¦?¡�µ/���?ª
�*´r�:¡¢�?�����r�B«r��µï«�¡�ªr�:���¢���B¨©� � £�:�j��¹?«�¨©¦?¡�� 	 î
 5 º B�r�j«�¡¢���!���J«T����´r��«�¦B¦?���/«r�F�?�]�#���Æ���?�
�*´r�:¡¢�?�����r�B«r��µ����:¥J�r���·�*��«�¦?¦B���/«r�F�#µr�:�7¨©��ªr�/��¡��­�r¬#«T� ?�����*µ��2�rª:���{¶rÃY¹;¦Q�*���
­µ;�³���*¨j�!¶
�r���p«:�F�?�¢�B���2�!«r���?���?ª©ç�¦?¦B���/«r�F�?�]��	 ò
²¶ 	¢ñrñ,
²º

232

Design Patterns for Evolutionary Robotics

ÐfÑ?ÒÅÓQÔ � C�Ñ EËÓ('éÜ{ÝQÞJÛcß2×]ØvÞQà

å ÞQà`×!Ó/æ¼×:Ô ���r�#�B«u´:��±?�!���¢ª:�?�!±¼¶]��¨
¦B¡¢�!¨
�!�/���!±#«r�B±§���]�����!±�«��#�!´r�r¡��;���¢�:�B«���µ+���:¥J�r���·�*�
 £��«r¨
�!®¯�:��¬`¶�«:��±;�!��������¥J�]±����
���?��ç{�³���ÊÀQ���·«�¡BÃË´r�r¡��;���¢�:���r �+�]«�¡����r¥Q������¦B«T�����*���=º ���r�
�B«u´r���������!±��³�!´r�!��«r¡`±?�ÊÄ`�*���*�/��¦B«r��«r¨
�*���!���³�*�³�����?ª© £�:�����?�¤�!´r�:¡¢�;���¢�:�B«���µy«�¡�ªr�:���¢���B¨ ���
�r¦;���¢¨©� �*�#�*´:�r¡��;�����r�J«���µ
¦B���:ªr���!���*º

��ÖuÞJã�ÛvÓ­ÒéÔ ���?�*�����·���?��¦?���rª:���]���§�¢�(�*´:�r¡��;�����r�2º
­�:¡¢�;���¢�:�B���?�!´r�*��¥Q�!�*�r¨©�©¥J�*�³���!�
���B«r���F«��B±;�:¨�¶Y�*´r�!�ï���B�r�?ª:���³�!´r�!��«r¡¯±;�¢ÄQ�!���!�/�
¦B«r��«r¨©�����!�������������?ª:�7 £�r�����?���!´r�r¡��;°
�����r�B«r��µ©«�¡�ªr�:���¢���?¨5�B«u´r�{¥J�!�*�j�������!±¼ºY���?�{�*´r�:¡¢�?�����r�B«r��µ
«�¡�ªr�r���¢���?¨5 v«���¡�������ªr�*�B�*�F«T���
���r�/�����:¡¢¡��*�F�¯���B«���¨j«r¬r�!�L���?�#���r¥Q���+¦J�!�³ £�:��¨ ���?���F«r��¬Qº

�2ÞJÖuÚ:Ó­ärÔÂÌÍ�����r¨©�¸�!«r���!�!¶2���?���F�B«��B�*�y�� �ÀB�J±;�¢�BªÆ«¾�*�r�/�����r¡�¡��*�#���B«T�
¦J�!�³ £�:��¨j�#���?�
��«r��¬����§´­�¢�����J«�¡�¡¢µ �*�!���Jº����B���§�B«�¦B¦J�!�B���!��¦J�]���·«�¡�¡¢µ����¾�*«:�³�]�{®+�?�!���7���?����«:�³¬��·�§�*�r¨
°
¦?¡¢�·�*«����]±Á«r�B±Á���]É/�?�¢���!�����?�p���r¥Q���©���ï¦Q�*�� £�r��¨ «ï���!É/�?�*�J������ #«r�������r�B�!¶¯®+�B�*���"���?�
�*�­´­�¢���r�?¨©�!�:�¯���Ë�?�¢ª:�?¡�µ��?�B���!¡¢�·«�¥?¡��r¶/�r�¯®+�?�*���+���?��¥Q�*�B«u´­���r�Ë���*¦B���]�³�!�:�F«T���¢�:�
«r�B±j�*´:��°
¡¢�;���¢�:�B«���µ©«�¡�ªr�r���¢���?¨ «����{���B�F�=¶:���B«��¯�¢�¯�·�Ë´:�*��µ��?�B¡¢��¬r�!¡¢µ����B«��L«r�/µ©�F«��B±?�r¨ ¨7�;�F«T�����r�
®+�¢¡�¡����]�³�?¡¢�§���¾«¸¥J�*�³���!�#���r�/�����:¡¢¡��*�]º{ÌÍ�f���B«T�#�*«:�³�:¶J�!´r�:¡¢�;���¢�:�¾±;�­�!�§�?�r�§®L�r��¬Qº#ð¯�r¨
°
¦?�;�����?ªj¦Q�T®¯�!��¨
��ªr�/���?�r�+¥J�¤�����y�����*�/�+���y±?�
¥B���;���� £�r�F�����³�]«��F�F�¸�r ����?�#ªr�!�?�#�³¦B«:���
«��B±�¨j«uµ­¥J�#�?�¸¥J�*�³���!��¥Q�*�B«u´­���r�����*¦?���!���*�/�F«T�����r�"���{���]«r±;��¡�µ¸«u´T«���¡�«r¥?¡¢�:º�Ì²�§�*�r�?¡·±�«�¡·�³�
¥J�j«y¦B���:¥?¡¢�!¨����B«����!´r�:¡¢�;���¢�:�B«���µ�¦?���!���³�?����±?���T®+�B�{�¢�(�?�:�����7�r Ë���B���?�J���*����«r�¢�/��µ���
À?���?�]�����*´T«�¡��B«T���¢�:�B�!º

� ÞQÛvß�×!ØcÞJà¯ÔÂ»§�B��«�¦?¦?���:«:�F�¤���¤±;�!«r¡¢���?ª�®+�Ê���©���?�·�Y¦?���r¥B¡¢�!¨ê�·�����¤���B«�¦Q���*´:�r¡��;�����r�©¥­µ
 £�*�!±?�¢�?ª"µr�:�?�{¬­�?�T®+¡��!±;ª:�7«�¥Q�r�?�{���B��¦?���r¥B¡¢�!¨È���/���j���?�©�³µ;�³���*¨�¶¼���j���?�©��µ­�³���!¨��*«��
�B�³�����?����¬/�B�T®+¡¢�]±;ªr�����©ª:�?��±?�����?���*´:�r¡��;�����:«r�?��µj¦?���;�*�!���*º

­�B«�¦B�¢�?ª"�*«��¾¥J�
«�¦?¦?¡����!±����¸±;�¢ÄQ�!���!�:��¦B«������{�� Y���?����µ;�����*¨�º��§�*¦Q�*�B±?�¢�?ª"�r�f���?�
�������*�?¨j���F«��B�*�!�!¶;�*�¢���?�!�+¨
��ªr�/��¥Q�#¨©�:�³�+«r¦?¦?¡����!«�¥?¡���!

� �+Øv×!à�Ó/ä]ä��2ß�à�Úr×!ØvÞQà � C�Ñ8E�Øvà G)¸ð¯�B«r�?ªr�����B�7À?���?�!���� £�?�B�������r�(�³�"���B«��¤�³¨j«�¡�¡
�����:���]��«����#ªr��´r�!�� £�r�{¦J«������·«�¡����r¡��;���¢�:�B�*º+Ì²�����{�¢¨©¦Q�r����«r�:�{���?�7À?���?�]���{ £�?�B�������r�
ª:�¢´:�!����¥J�*�³���*���f¦B«������·«�¡����r¡��;�����r�B�7�?��ªr�?�!�
�����:���]�#���J«�� ��®¯�:�����&��¦B«r�³����«r¡¯���r¡��;°
���¢�:�B�*º

�$# Ñ?ä&% � C�Ñ E�Øcà G0) �p«r¬r�Y���?���F«r��¬§�]«r���¢�!�!¶u«��B±¤�*´r�:¡¢´:��«����:�/�����r¡�¡¢�!�¼ £�r�����?�¯�!«:�³���*�
�F«r��¬Qº �é�?��¡¢���*´:�r¡�´/���?ªp�:�ï���B����«�¨©�¸¦Q�r¦B�?¡�«������r�=¶Y¨j«r¬r�j���?�¸�F«r��¬mªr�F«r±;�B«r¡¢¡�µ
�B«r��±?�*���?�/����¡¼���B�#���:¥J�r���·��¦Q�*�� £�r��¨
���?ª
���B�¤±;�!���¢���!±¸��«:�³¬`º

�BA ÓDC�Ñ:Ý=ØvÞJÖ ��ÖTØcÒÅØ£×]Ø£ÝJÓ­ä � C�Ñ8E�Øcà G0) @Ë���T´­�·±;���!´r�r¡��;���¢�:�y®+�Ê���¸�?��ªr�B�*�Ë¡��*´:�*¡Q¥J�*°
�B«u´­���r�L¦?���¢¨©�¢����´r�!�!º����?�#¦?����¨
�¢����´r�]�+�*«r�"¥Q�#�r¥;�F«����?�!±"¥­µy�*´:�r¡�´­�¢�?ª©���:�/�����r¡�¡¢�!���

233

Design Patterns for Evolutionary Robotics

���¤¦J�!�³ £�:��¨5���B�{¥B«:�³�·��«r�������r�B���� ¼���B�{���r¥Q���!¶/�³�J�F�y«r�Y���?���?�¢�Bª7«��B±y¨
�T´­���?ª� £�r��°
®�«��F±?�!º @Ë���T´­�·±;�¢�Bª#���?�]�³���?��ªr�B�*��¡¢�!´r�!¡Q¦B����¨©�Ê���¢´:�!�¯ £�r�L���B�§�!´r�r¡��;���¢�:�B«���µj�³�]«��F�F�
���?�r�B¡�±"¨j«�¬r���¢���!«:�³���*�L���©ÀJ�B±�«�ª:�­�­±����r¡��;�����r�=º 	 ë

â¸Ñ;×]ØvÞQà�Ñ?ÛcÓQÔèÌ² ��B�r�?�
�� Y���?�
���r¡��;���¢�:�B��ª:�*�?�!��«����!±�¥­µ����B���!´r�r¡��;���¢�:�B«���µ�«r¡¢ª:�r���Ê���?¨
���r¨©�7�*¡¢�/�³�¤���y¦Q�*�� £�r��¨©�¢�?ªy���?�#�F«r��¬`¶Q«r�B±����­�B��«�¡�¡2ª:�������?����«�¨©�¤¡��T®�ÀB���?�]�������*�r���r¶
���?�y���*¡��!�������r�m¨©�!�F�B«r�?����¨ ±;�­�]�³�=í �¤®L�r��¬Qºy���B�y�³µ;�³���*¨ ¨7�B�³�¤¥J�"�F�B«��?ª:�!±¼¶��³�����J«T�
�³�!¡¢�]�H�����r�
¦?���!���³�B�����*«r�7¬­���F¬7�¢�=º��Lµ7�F�B«r�?ªr���?ª�«��*�r¨�¥?�¢�J«T�����r���� J���?��À?���?�!���� £�?�B�������r�
«��B±(���?�y¥Q�*�B«u´­���r�#���*¦?���!���*�/��«������r�=¶��?�r¦Q�� £�B¡¢¡�µ(«�ª:��«:±;���*�/�¤�� LÀ?���B�!���¤���ïªr�*�B�y�³¦B«:���
�*«���¥Q�¤�����!«T���!±¼¶;®+�B���F���*´:�r¡��;�����r�¸���?�!�p�*«r�¸ £�:¡¢¡��T®#º

â¸Ó­ä!ß�Û£×]Øvà G å ÞJà`×]Ó:æ¼×:Ô
­�B«r¦?�¢�Bª¸�*´:�r¡��;�����r�����B�����!«:�³�]�+���?���F�B«r�B���¤���B«���«y���r¡��;�����r�
���§ £�r�B�B±¼º#Ç��T®L�*´:�*�]¶Q���B«�¦B�¢�?ª�«�¡·�³�"¦J�r���!�:����«r¡¢¡�µ����]±;�B�*�!�{���?�
�¢�B�?�T´T«T����´r�
�������!�?ª����p��
���?�+�!´r�r¡��;���¢�:�B«���µ¤�³µ;�³���!¨�º�Ì² Q���­�#¨7�B�F�©���B«�¦?���?ª��·��«�¦?¦B¡¢���!±¼¶r���?�!�����·�Y¡��Ê����¡���±;�ÊÄ`�*���*�J���
¥J�*��®¯�!�*�¤�!´r�r¡�´­�¢�Bª�«����:�:�����:¡¢¡��*�=«r�B±#�B«r�B±�®+���Ê���¢�?ª§«����:�:�����:¡¢¡��*�= £�r�=���?� ���:¥=º�Ç{�T®¯�!´r�!�!¶
�Ê ����­�j¡��Ê����¡��7���B«�¦?���?ªj�·��«�¦B¦?¡¢���!±=¶?���B�*���#���§«©���·�³¬y���B«��{�*´:�r¡��;�����r���?�!´r�*��ÀJ�B±?�{«©ª:�­�­±
�³�:¡¢�;���¢�:�=º

â¸Ó­ÛvÑ;×]Ó(' �§Ñ;×*×]Ó/Öuà�ä:Ô ç������¢ÀJ���·«�¡=ÃË´r�:¡¢�;���¢�:�"�r �+�]«�¡ �+�:¥J�r���!¶
­��¨7�?¡·«T���!± �Æ�:��¡·±

234

Design Patterns for Evolutionary Robotics

ÐfÑ?ÒÅÓQÔ � ØvÒ(ß�ÛcÑ;×!Ó('��êÞJÖTÛ '

å ÞQà`×!Ó/æ¼×:Ô ���r�
�B«u´r�L�F�?�­�:���!±����?���*´r�:¡¢�?�����r�B«r��µ����r¥Q�����·�*��«�¦B¦?���/«r�F�#����±?�!���¢ª:�����:�;°
�����r¡�¡¢�!���§ £�r�����?�©���:¥J�r������¦J�!�³ £�:��¨ ���?�©�F«r��¬����f¥Q�©���r¡�´r�]±¼º ���r�m�B«u´r�
�·±;�!«:��«r¥J�:�;�
®+�?���F��ÀB���?�]���{ £�?�B�������r�f���y�B���r¶B®+�B���F�p¥Q�*�J«u´/���r�{���!¦?���]�³�!�/��«T���¢�:�¸���¸�B���r¶Q«��B±�®+�B���F�
�*´r�:¡¢�?�����r�B«r��µ�«�¡�ªr�:���¢���?¨È�����J�³�:º����r�m«��������:�B���!���B�!±p«r¥J�:�;�§���¢¨©�j���:�B���?¨©¦;�����r�Æ�r�
�����B�*�+¦?�F«r�����·�*«�¡¼�·���³�?�]�����!ª:«r��±;���?ª7���?�#�!´r�r¡��;���¢�:�B«���µy�³µ;�³���!¨�º

��ÖuÞJã�ÛvÓ­ÒéÔ Ã�´r�:¡¢�?�����r�B«r��µï���!«��F�F�?�]�7�r ¿���*�8���!É/�?�����"���!�B�©�� §���?�:�B��«��B±?�©�r §�!´u«r¡¢�J«T°
�����r�B�!º @��*�� £�r��¨©�¢�Bª����?�!���ï�*´T«r¡¢�B«������r�B���:�����?�Å���r¥Q���f�·�f´r�!��µ��������!�/�B�r�B���:�����?�
���:¥J�r���"¨
�]�F�B«��B���!«�¡����r¨©¦Q�r�?�!�/���!¶{«��B±����]É/�?�¢���!�"«�´T«:����«�¨©�r�?�/���� ¤���¢¨©�rº��{�?¨
°
¥J�!���©�r �ñ!ì:ìrì¾ªr�*�B�*�F«T�����r�J�7®+�¢���Îñ!ì:ìrì¾�*´T«�¡��B«T���¢�:��¦Q�*�jª:�*�?�!��«������r�Å�·�j���:¨
¨©�:�=º�Ì²
«��p�!´u«r¡¢�J«T�����r�p��«�¬:�!�§«�¥Q�r�;�
ñ7¨©�¢�­�;���r¶Q���B�7������«r¡2���¢¨©�
�B��«�ªr�¤ £�r��«��p�!´r�r¡��;���;�����r�f�·�
ñ!ìrì:ì����	��

��� (���������	� � ����� (�������� ñ]ìrìrì �	� � ����� (����������� �

� (������ � ñ�! �"� � (� ����	��

��� (������ ¶Q®+�?���F�f�·�{«r¥J�:�;����®L�yµr�]«��F�*º����?�·����{�*�?�:�?ªr�����¸�������]���+���?�
±;�?�F«�¥?��¡¢�¢��µ��� ����?�����:¥J�r�§���:¨©¦J�:�?�*�/���{«��B±����?�¤¦B«������*�B�*�¤��
���?�#�!�?ªr���?�*�!�!º

�2ÞJÖuÚ:Ó­ärÔ ���?���?ª/�L���y���:�B����±;�!�+���!ª:«r��±;���?ª
�*´:�r¡��;�����r�����"���?�#���!«�¡¼®L�r��¡·±"�·�L����¨©�7���:�;°
�³�?¨©¦;���¢�:�=¶Ë±;� �y���?¡¢�����!������«��?���r¨j«������?ªfÀ?���?�!���
�*´T«�¡��B«T���¢�:�B�!¶����·�³¬m�� {±?�r���?ªÆ±?«r¨j«�ªr�
���
���?�#���r¥Q�����r���¢�������?�����:�?�B±;���?ª/�¯±;�B�����?ª©�*´:�r¡��;�����r�=¶;±;�B��«r¥?�¢¡��¢��µy�� ����?�����r¥Q���!¶?�*�r¨
°
¦?¡¢�*¹;�Ê��µy�r ����?�#���r¥Q���!¶­���?�#�*�­´­�����:�?¨©�*�/��«��B±"���:¥J�r�³°²�*�­´­�¢���r�B¨
�!�/�L���/���*�F«r�������r�B�!º

� ÞQÛvß�×!ØcÞJà¯ÔÂð¯�:�B�³�����B�H�©«¾���¢¨��?¡�«������r���� ����?�¸���r¥Q���]¶����?���*�­´­�¢���r�B¨
�!�/��«��B±Å���:¥J�r�³°
�*�­´­�¢���r�?¨©�!�:���¢�/���!��«:�H���¢�:�B�*º �{���y���?��¨
�;±;�!¡Ë���(����¨7�?¡·«T���"«��J±ï�*´T«�¡��B«����"�!«��B±?��±?«����
���r�/�����:¡¢¡��*�F�¯ £�r��¦Q�*�� £�r��¨©�¢�?ª©���?�7±;�]�³�����!±"��«:�³¬`º. ���ªr�?��� �©«��J±$#©�¢¡�¡¢�J������«����!�+���?�¤�·±;�]«?º
���?���!�#«�¦?¦?���:«:�F�?�!�L���*�*¨j�����j±;�r¨©���B«T���§���?��ÀB�!¡�± �

�$# Ñ;ã�ÛvÓpã�Ñ?ä]Ó('�ä]ØvÒ(ß�Ûv×!ØvÞQà¯¶;®+�?�*���#���B�¤���:¥J�r���{�T®+�����*�J�³�:����«r�B±f«r�����B«����:�����·�
�B���!±¸���y��«�¨©¦?¡��#«
¨
�;±;�!¡=�� ����?�#�!�­´/�����r�?¨©�*�/�]º

�&% Ó­ÞQÒÅÓ/×*ÖTØvÚ:Ñ?Û§ä]ØvÒ(ß�ÛvÑ;×]ØvÞQàË¶=�J�³���?ªf´r�]�H���r�¤�*«r¡��*�?¡·«T�����r�J�����p¨©�;±;�*¡����?�y�!�­´/�¢°
���r�?¨©�!�:��«r�B±y���?�#���r¥Q�����+���*�J�³���?ªj«��B±�«r�����B«������r�=º

�(' Øcà�ØcÒÅÑ?ÛYä]ØvÒ(ß�ÛcÑ;×!ØcÞJà¯¶r®+�B���F�����+«
���?�³°z����°z���B��°²¥J�:�?������¨7�?¡·«T���¢�:�=¶;®+�?�*�����r�?¡�µ
���?�#¨©�:�³����¨©¦J�:�³�F«��/�{«r��¦Q�!�H�F���� ����?�#���r¥Q����°z�!�­´/�����r�?¨©�*�/���¢�/���*�F«r�H���¢�:�"�·��¨©�;±­°
�!¡¢�]±¼¶?«��B±"���?�#���]���+�·��¨j«r±;�#�?�B���!¡¢�·«�¥?¡���¥­µ¸«�¦?¦B¡¢µ­���?ª©��«r�B±;�r¨ �?�r�·�³�:º

Ã��¢���?�!�Æ«�¦B¦?���/«r�F���r�Æ�/µ­¥?���·±Ï«�¦?¦?���:«:�F�?�!�f�!«��Ï¥Q���B���!±Ï £�r�Æ«r�­µ�ªr��´r�!�Ï¦?���r¥?¡��*¨�º
�+�r�?ª:�?¡�µr¶;���?�#��«r¥?¡��#¥B«r���!±�«�¦B¦?���/«r�F���³�!�*¨j�+¥Q�!�³�§���?�Ê���!±� £�:� ����¨©«r¡¢¡ �©�*�­´­���r���?¨©�*�/���
)�*,+�-/.10324+�560�798,:;0�<�=30�>@?6A1B�+�.C+�D/7FEGA1D/A1=H+�.I56A1=KJ/.L+�>6A1<�DM=3A1N�O	>P-Q0K?@0�N	+�?67/0�7R+�5S>6O/0�A1?P<�TUDWV�+�>6X
>60�?@D/5�8Q-/JY>�A1DZ>6O/0[A1D\>60�?@0�56>;<�]_^�0�0�V/A1D/N3>6O/A15;V/+�V�0�?�5@O/<�?`>S+�D/7a]�<\B�J/5@0�798�TU?@A >6A1D/NK>6O/0�5@0bV�+�>`>@0�?6D/5SO�+�5
-Q0�0�DG.10�]">U+�5�+�DZ0�cd0�?@B�A15@0S]"<�?4>@O/0P?60�+�7/0�?�e

235

Design Patterns for Evolutionary Robotics

� ��¨©«r¡¢¡¼�³��«������³¦B«:��� 5 ¶:���?��ªr�!�r¨©�������·�*«r¡B¨©�;±;�*¡¼���?�¢���!±y £�r� ���*¡¢�]«����¤�*�­´­�¢���r�?¨©�!�:�F� � ��¹­°¦J�!�B�³��´r�©�B«r��±?®L«r���:¶Q���B±;�­�:�§ v«:�H���r��µp�*�­´­�¢���r�B¨
�!�/� 5 «��B±¾���?�©¨©���?�¢¨j«r¡�¨©�­±?�*¡����?�Ê���!±
 £�r�7�*�r¨©¦?¡���¹Æ���r¥Q���F�#±;�r���?ªp���¢¨©¦?¡��©��«:�³¬;� � �*��ªr�/�7¡��*ªrª:�!±Æ���:¥J�r�¤®L«r¡¢¬­���?ª 5 ºyÌÍ�m¨j«��­µ�*«r���!�7�Ê�©�*«r�Å¥J�"´r�!��µ(�B«��F±(���Æªr�?�]���7®+�?�·�F�Å¨©�­±?�*¡L���]�³�:¡¢�;���¢�:�m���Æ�B�³�:¶�«��B±m®+�B���F�
¦B«��������r ¯���?�j®¯�:��¡·±¾���B«��7«����
���*¡��*´T«r�:�]¶�«r�B±¾®+�B���F�(���J«T�7«����©�?���¤��¨©¦J�:�³�F«��/�!º"ç�¡·�³�
¨
�;±;�!¡¢���?ªj�F�B«r�?ªr�]�����
���r¥Q���+���:¨©¦J�:�?�*�/�+¦J�!�³ £�:��¨j«r�B����«T��±;�¢ÄQ�!���!�/��¥J«T�³���*��µj´r�:¡Ê�F«�ªr�
¡¢�!´r�*¡·�+�*«r�"¥Q�#�B«r��±¸���j¨©�;±;�*¡zº

Ì²�Ë���¯�� ¿���*�j�B«r��±
���7���:�B�³�����B�H�¯«¤ªr�­�;±©¨
�;±;�!¡J�r `���?�§���:¥J�r����«r�B±j�¢�����!�­´/�����r�?¨©�*�/�
	 #�
zº ���:�ï�?�*�]±m���¾«:�����!�¤®+�?���F�Å«:�³¦Q�!�����7�� ����?�"���]«�¡�®L�r��¡·±(���B«���«����y��¨
¦Q�r����«r�/�#���
¨
�;±;�!¡c¶=«r�B±p®+�B���F�¾«r�����?���]º�»{ ¿���!�¾µr�:�p®+��¡¢¡�ªr�*���¢��®+���:�?ªj���B��ÀJ���³�{���¢¨©�r¶=«r�B±f���?�
���]�³�?¡¢�����?ª����r¥Q���¤���:�:�����:¡¢¡��*��®+��¡¢¡Y v«r�¢¡�����¦J�!�³ £�:��¨ �¢�(���B�j���]«�¡�®¯�:��¡·±¼º
­�:¨
�j«:�³¦Q�!�����
�� ����?��®¯�:��¡·±¼¶Ë���B�F��«:���*�r¡�¡¢�·���¢�:�B�
¥J�*��®¯�!�*�����*´:�*�F«�¡L�r¥����]�H�F�*¶Ë�!«���¥J��´r�!��µm�B«r��±Å���
¨
�;±;�!¡cº¯ç��?�r���?�!�+���?���?ª©���y���r�J�³�·±;�*�+�·�����?�¤«�¨©�r�B�:���r �«u´T«r�¢¡·«�¥?¡��#���:¨
¦B�;�����?ªj¦Q�T®¯�!�!º
�{�!¦J�!�B±;���?ª��r�¤���?�L���]�³�:¡¢�;���¢�:�¤�� B���?�+���¢¨��?¡�«����:�!¶u¨7�J�F�7¨©�r���¯�*�r¨©¦?�;���¢�?ª�¦Q�T®¯�!�2���B«��
®+�B«T�+�·��«u´T«���¡�«r¥?¡¢���r�"���B�#���:¥J�r��®+��¡�¡=¥J���?�!�!±;�]±¼º �{�����?ªy«©�³��¨7�?¡·«T���¢�:�"¨©��ªr�/�+¥J�����?�
�r�?¡�µ"´­�·«�¥?¡���«r¦?¦?���:«:�F�"���¾±?«r�?ªr�!���:�B�+�*�­´­�����:�?¨©�*�/���{�r�{�¢ Y���B�7���r¥Q���{¨©��ªr�/��±?«r¨j«�ªr�
���?�#�!�/´­�����:�?¨©�*�/�!º

»§�?�¤�� Ë���?�
�����Ê����É/�?��¦J�:�¢�/���§�� Y���?�©�³��¨7�?¡·«T���¢�:�¾«�¦B¦?���/«r�F���·�*¶Q���J«T�§�¢���¢�/�����;±;�B�*�!�
���?���?�*�]±m £�r�©«p¨©�;±;�!¡cºï���?�·���*�r�/���F«r±?�������¤�:�?�¸�r ����B�¸¨j«�����«r��ª:�?¨©�*�/���¤ £�r�
�B�³���?ª
���?���*´:�r¡��;�����r�B«r��µ(���r¥Q�����·�*��«�¦?¦B���/«r�F�=¶��B«r¨
�!¡¢µ(���B«T�j���:�:�����:¡¢¡��*�F�7�!«��Å¥Q��¦?���;±;�J���!±
®+�Ê���?�r�;�y�J�³���?ªÅ���:¨©¦?¡¢�*¹�¨©�;±;�*¡·�j�r §���?�f���:¥J�r���T�*�­´­�¢���r�?¨©�!�:�]º �{���¢�?ªÅ«(¨©�;±;�*¡{���
�³��¨7�?¡·«T�������?�#���r¥Q���+�·���³�:¨©�*�?�T®�«rª:«r�¢�B�³�L���?�¤��¦?�����¢���� ��*´r�:¡¢�?�����r�B«r��µj���r¥Q�������!�*º

â¸Ñ;×]ØvÞQà�Ñ?ÛcÓQÔ ðL«r���* £�?¡�¡¢µ©®+���Ê�����*�����:¨
¦B�;���!������¨7�?¡·«T���¢�:�B�Ë�r =���B�§���r¥Q����«��B±¸�Ê�F�¯�!�­´/�¢°
���:�?¨©�*�/�¯�*«r�y¥Q�{�B���!±
���7�*´T«r¡¢�B«����{�!«��B±?��±?«������³�:¡¢�;���¢�:�B�Ë±?�?�����?ª¤�!´r�:¡¢�;���¢�:�=º�ÌÍ�y¨j«��­µ
�*«r���!�!¶­���B�¤�³��¨7�?¡·«T���r���!«����*´T«�¡��B«����#�³�:¡¢�?�����r�B�+«���ªr���!«T��¡¢µ"«r�*�*�*¡��*�F«T���!±j���¢¨©�:¶?���B�*���*¥­µ
���]±;�B�����?ªf�T´:�*�F«�¡�¡��!´r�:¡¢�;���¢�:�¾���¢¨©�:º @Ë���:¥?¡¢�!¨j�����!¡�«����!±Æ���p«��;���r¨j«T���¢�?ª�ÀB���?�]���#¨©�]«T°
�³�?���*¨©�!�:�F��«����L«u´:�r�·±;�!±¼¶�«r�B±¤���©�*«r���L�� J¨©�:¥?�¢¡������:¥J�r���!¶�«�¡·�³��¦Q�T®¯�!���·�����?�]��«r�B±������³�B�!�
���!ª:«��F±;���?ª¸���r¥Q���#�B«r��±?®L«r���7 v«���¡¢�?���j«����j«u´r�r�·±;�]±¼º�Ì² ¯���?�©ÀQ±;�*¡��Ê��µÆ�� ¯���?�y���¢¨��?¡·«T�����r�
���{�?�¢ª:�p�*�B�r�?ª:�=¶?���?���*�r�/�����r¡�¡¢�!���*´:�r¡�´r�]±"���p���¢¨��?¡�«������r�f®+��¡¢¡�¦Q�*�� £�r��¨ ���?�¤�F«r��¬"�:�B���
���F«��B�³ £�*�����]±j���©���?�#���!«r¡Q®L�r��¡·±¼º

â¸Ó­ä!ß�Û£×]Øvà G å ÞQà`×!Ó/æ¼×rÔ ���?�����!���?¡Ê�Y�·�Y«��³µ;�³���*¨5«r�����B�L�:�?���¢¡�¡��B������«����]±7���7ÀJªr�?���3#?º
���?����µ;�����*¨È�*´T«�¡��B«T���!�§�*«��J±;��±B«T�������r�/�����:¡¢¡��*�F�+���f���?�
�³��¨7�B¡�«����r�]º+ç+ ¿���*�����*����«r�¢�p�*���¢°
���*���·«j«����§ £�B¡ÊÀB¡�¡��!±¼¶B���?�¤¥Q�!�³�§�!«��B±;�·±?«����#���:�:�����:¡¢¡��*�+�·������«r�B�� £�!�����!±¸���©���?�¤���!«r¡¼���:¥J�r�!¶
®+�?���F�����?�*���?�:¦J�* £�?¡¢¡�µ¸¦Q�*�� £�r��¨j�L���?���F«r��¬`º

ÌÍ�¾�³�:¨©�
�!«r���!���¢��¨
��ªr�/��¥J�©«yª:�­�­±p��±;�]«y���"�*�r�/�����­�?���!´r�:¡¢�;���¢�:�f £�r��«j £�!® ªr�!�;°
�*�F«T�����r�f�:�f���B�����!«r¡2���r¥Q���!¶J�������:¨
¦Q�*�J��«����¤ £�:��±?�ÊÄ`�*���*�B�*�!�§¥J�*��®¯�!�*�f���?�©�³��¨7�?¡·«T���r�
«��B±¸���?�#���!«r¡¼®¯�:��¡·±¼º

â¸Ó­ÛvÑ;×]Ó(' �{Ñ;×!×!Ó/ÖTà�ä:Ô ç������¢ÀJ���·«�¡�ÃË´r�r¡��;���¢�:�Å�� �+�!«r¡ �+�r¥Q���F�*¶
­�B«�¬­���?ª
­�¢¨��?¡·«T°
�����r�=ºH@��/�����¢¥B¡¢�§ £�;���B���#���*¡·«T���!±�¦B«T�����!���B�+«r������«�¥?¡�� ��«r���!±�
­�¢¨��?¡·«T�����r�2¶ J �*�r¨©�*�������!«�¡

­�¢¨��?¡·«T�����r��«��J± �p�¢�?��¨j«�¡0
;�¢¨��?¡�«������r�=º

236

Design Patterns for Evolutionary Robotics

Evolutionary algorithm Simulator Real robot

Fitness
Algorithm

Translation Translation

Feedback

Genotype

Model
Environment

Model
Phenotype

Physical
Robot

EnvironmentEvolutionary

 ���ªr�B��� #�!��H�)! � ��254 2�1 6>�7
 � 2 4��)�)����1 ��� 2(�)��� �0����� 1 ��
,6 6���6,1 43! �(6�� 29��6�� !&�8�=��1	����2 1 �
43�)�)���1��1 4�
�� 2 1	�0�)� � 4���6�"

ÐfÑ?ÒÅÓQÔ � C�Ñ+%=Øvà G � ØcÒÆß�ÛvÑ;×]ØvÞQà

å ÞQà`×!Ó/æ¼×:Ô ç��j�*´:�r¡��;�����r�J«���µ¤���:¥J�r���·�*����µ;�����*¨5�B«r�Y¥Q�*�!�j�¢¨©¦?¡��*¨©�!�:���!±¼¶/®+�?�·�F�j�B���!�
«¤�³��¨7�J«T���:�� £�r�¯�*´T«�¡��B«T���¢�Bª¤�*«��J±;��±B«T���§���r�/�����:¡¢¡��*�F�*º����?�{��µ;�����*¨ �B«r�Y¥Q�*�!�j�������!±¼¶­«��B±
�Ê���B«r�{¥J�!�*�f £�:�?�B±����B«T�§���?���*´r�:¡¢´:�!±����:�/�����r¡�¡¢�!���+¦Q�*�� £�r��¨È¦J�­�r��¡�µ"�:�B���#����«r�B�³ £�*�����]±
���©���B�����!«r¡¼���:¥J�r�!¶;�!´r�*�"���B�r�?ª:�"���?�*µ¸¦J�!�³ £�:��¨ ®¯�!¡¢¡¼�������?�¤���¢¨��?¡·«T�����r�2º

��ÖuÞJã�ÛvÓ­ÒéÔ �é�?�*�#�B�����?ª{«����¢¨��?¡·«T�����r�#«r¦?¦?���:«r�F�������*´:�r¡��;�����r�B«r��µ{���:¥J�r���·�*�!¶!�¢�2�� ¿���*�
�B«�¦?¦Q�*�J�����B«������:¥J�r���Y�!´r�:¡¢´:�!±¤���©���B���³��¨7�?¡·«T���r�Y¦Q�*�� £�r��¨j�Y�³��ªr�?�¢ÀJ�!«��/��¡�µ¤®L�r�F�³���������?�
���]«�¡�®¯�:��¡·±¼¶¼�:�#¨©«uµ­¥Q���!´r�!�¾ v«r�¢¡·�#���:¨
¦B¡¢�*���*¡�µrº
Ì²�¤�·�§��¨©¦J�/������¥?¡¢�
����®+���¢���j«�¦J�!�³ £�]�H�
�³��¨7�?¡·«T���¢�:�p�� L«��­µ����]«�¡��*�­´­�¢���r�?¨©�!�:�]º�ÃË´r�:¡¢´:�!±f���:�/�����r¡�¡¢�!�{®+��¡¢¡�´r�!��µ�¡��¢¬:�*¡�µf���!¡¢µ��r�
«r��¦J�]�H�����r ?���?�����¢¨��?¡�«����]±¤�*�­´­�����:�?¨©�*�/�2���B«T�Y«����Ë�?�r��¦B���]�³�!�:�����¤���B�¯���!«r¡:®L�r��¡�±=¶��³�B�F�
«r�����?�7®�«�¡�¡����B«u´­�¢�?ªj��¦J�]���¢ÀJ�¤�*�r¡��r�F�+�r�+���?�¤���r¥Q�����B«u´­���?ªj¦Q�*�� £�!�H�§®+�?�*�!¡2�;±;�r¨©�*����µr¶
�r�L¦J�/�����¢¥B¡¢µ©�*´:�*�"¥?�?ª:�¯���y���B������¨7�?¡·«T���r�]º����?�·�¯¥J�]���r¨©�]�¯�!´­��±;�!�/�L®+�?�!�"«����r�/�����:¡¢¡��*�
�*´r�:¡¢´:�!±¾�¢�m�³��¨7�B¡�«������r�(��������«r�B�� £�!�����!±p�������B�j���]«�¡����:¥J�r�!º©���?�·�#�����*¦(�������� £�!�����!±¾���
«r��
3�0��6�6�� 29��16/+4 ��4��)��� 1 � �2���$	¢ñ!ì
 	 ��
²º7Ç{�T® �?�T®ê±;��®L��¨j«�¬:���*�r�/�����r¡�¡¢�!���§�����:�������?�
���]«�¡��Ê��µyª/«�¦ �

�2ÞJÖuÚ:Ó­ärÔ »§�?�L¨7�J���Ë�*�r�B����±?�*�����?�+�*�r¨©¦?¡���¹;�Ê��µ7�� B���?�+�*�­´­�����:�?�*¨©�/�!¶"� �{�·���*���*���!�?�!�����
�� J���r¥Q����«r�B±7�!�­´/�����r�?¨©�*�/�]¶����!¡¢�·«�¥B�¢¡��Ê��µ7�� Q���*�J�³�:����«��J±�«:�H���J«T���:���!¶T¦Q�*�� £�r��¨©«r�B��� IB�B��°
���B«������r�B��±?�?�����¤´T«r��µ­���?ª�¥B«T�����*��µ¤¡��*´:�*¡·�*¶:´u«r��µ­���?ª�¡¢��ªr�/�Ë�*�r�B±;�¢�����r�J�*º�ÌÍ�j�³�?�:�³� !�«r¡¢¡;���?�
±;�¢���+���J«T��¨j«�¬:�!�L���]«�¡��Ê��µ"±;�ÊÄ`�*���*�/�� £���r¨ �B���*��«r�B±"���·±;µ"�*�r¨©¦?�;���*�+¨©�;±;�*¡·�!º

� ÞQÛvß�×!ØcÞJà¯Ôèç{¦?¦?¡�µÅ�?�:�����¸���(«r¡¢¡�¡��*´:�*¡·���r ����B�����¢¨��?¡·«T�����r�2º����?���?�r�·�³�����?�r�?¡·±Å¥Q�
«�¦?¦?¡����!±-��«r±;�]É:�J«T���!¡¢µ���«��J±#¥J� ���*�r�����]�H��¡�µ�¦?����ÀJ¡¢�]±+� 	 �
zº����?��¦B���rÀB¡¢�¯«��B±#¡��*´:�*¡/�*«��#¥Q�

237

Design Patterns for Evolutionary Robotics

�r¥;�F«����?�!±¸ £���:¨ ���*¦Q�!«T���!±���«r¨©¦?¡¢���?ª/�¯�r 2���?�#®¯�:��¡·±j���?���r�?ª:�¸���?�����:¥J�r���L�T®+�����*�J�³�:���
«��B±y«:�H���B«T���r�F�*º��2�¤���B�*���]«r�������:¥?�B�³���?�]���Y £�?�³���?�*�]¶/���?�§¦?����ÀB¡����� `���?�{�?�:�����§���?�:�?¡�±©¥Q�
´u«r�����!±¸±;�?���¢�?ª
�*´:�r¡��;�����r�2º�Ì²���·�¯��¨©¦J�:�³�F«��/�L���B«��¯���?�§�B�r�·�³���������B�F�=¶/���J«T�L���?���*´:�r¡�´r�]±
���r�/�����:¡¢¡��*�+�*«r�?�?�r�{���r¨©�����j���*¡�µy�:���*�*����«r�¢��«r��¦J�]�H�F�+�� ����?�¤����¨7�?¡·«T���¢�:�¸���B«T�§±?�
�B���
«�¦?¦?¡�µy�������?�#���!«r¡¼®¯�:��¡·±¼º

â¸Ñ;×]ØvÞQà�Ñ?ÛcÓQÔ ���B�7¦?���r¥?¡��*¨�«r���·�³�]�{±;�B�¤���¸���?�� v«r���§���B«T���Ê���·�{��¨©¦J�/�����¢¥B¡¢�7����®+���¢���
«��¾ñ]ìrì��ê«:�*�*�?��«����§¨
�;±;�!¡¼�� =���?�����]«�¡`®¯�:��¡·±¼¶­���:¨7¥?���?�!±¸®+�Ê���¸���?�� v«r���¯���B«T�+�*´:�r¡�´r�]±
���:¥J�r�7���r�/�����:¡¢¡��*�F�§���*�J±(���f��¹;¦?¡��r�¢�7«��­µ(«r��¦J�]�H�¤�� ����?�*���¤�*�­´­�����:�?¨©�*�/�����B«����*«r�(¥Q�
��¹;¦?¡��r�¢���!±=º2Ì² ;���B�¯���¢¨��?¡�«������r�#�rÄQ�!���2�r¦?¦Q�r�����?�B�Ê���¢�]�¼ £�r����¹;¦?¡��r�¢��«������r�����J«T��±?���?������¹;���³�
�¢�¾���?�
���]«�¡�®¯�:��¡·±¼¶Q���?�
�*´:�r¡�´r�]±f���r�/�����:¡¢¡��*�F�+®+��¡¢¡�¨©�:�³�§¡��¢¬:�*¡�µ� v«���¡�®+�B�*�p����«r�B�³ £�*�����]±
�������?�j���!«r¡Y®¯�:��¡·±¼º©ÌÍ� ���]�H�����?ª��?�:�����©�¢�/�������?�y���¢¨��?¡�«������r�(¨j«�¬r�]���*´r�:¡¢´:�!±Æ�³�:¡¢�;���¢�:�B�
¨
�:���{���:¥?�B�³�!ºY���?�{�B�r�·�³�{���*��´r�]�Y��®L�¤¦?�?��¦Q�:���!�!º ������³��¡�µr¶:���?���?�:������¨©�;±;�*¡·�¯«r¡¢¡Q�� ¼���?�
«r��¦J�]�H�����r ����?�#���!«�¡`®L�r��¡�±¸���J«T�{«�����¥J�!¡¢�T®����?��ÀQ±;�*¡��Ê��µ¸�� ����?�¤���¢¨��?¡·«T���:�!º�
­�]���:�B±;¡�µr¶
���?�#�?�:������¥?¡��?�����*ÄQ�]�H�F���*«r�B�³�]±¸¥­µy¥J«r±��r�+®+���r�?ª
¨©�;±;�*¡·���� ����?�#®L�r��¡·±¼º

»§�?�"±?«r�?ªr�!�7�r {«�¦?¦?¡�µ­�¢�Bª¾�?�:�����y���p���B�����¢¨��?¡·«T�����r�����!¶Y���J«T���¢�©¨
��ªr�/�©¥?¡��?�7���?�
���:¥J�r���L�³�!�B�³���?ª7���©«7±;�!ªr���*�����B«T�����*�B±;�!���Ë���B�§���r¥Q���L�?�B«�¥B¡¢�§���
¦J�!�³ £�:��¨ ���?�{�F«r��¬y«T�
«�¡�¡cº

â¸Ó­ä!ß�Û£×]Øvà G å ÞQà`×!Ó/æ¼×rÔ ���?�¯�³��¨7�?¡·«T���r�¼�?�T®(�B«:�`�?�r�·�³��«r¦?¦?¡��¢�]±����+�¢�!¶] £�r�F�����?ª��*´:�r¡�´r�]±
���r�/�����:¡¢¡��*�F�
�����*�r¦Q�f®+�Ê���½�?�B�*�*����«r�¢�/��µr¶L���?�*���*¥­µ����B�*���]«r���¢�?ª(���?�Æ�!«��?�B�F�Á���B«T�y���?�
�*´r�:¡¢´:�!±(���:�:�����:¡¢¡��*�F�#�*«r�ï�����:�������?�¸���]«�¡��Ê��µpª/«�¦ï«��J±m¦J�!�³ £�:��¨ ���?�j�F«r��¬¾���m���?�¸���]«�¡
®¯�:��¡·±¼º�Ç��T®L�*´r�!�!¶J���B�����B�����!«:�³�]±f���:¨
¦B¡¢�*¹­�¢��µf�� �¦Q�*�� £�r��¨©�?���?ªy���?�7�F«r��¬f�¢�¾���?�©���¢¨
°
�?¡�«������r��±?�?�¸���¾���?��«r±?±;�]±Å�?�:�����¸¨©��ªr�/�
±?�*¡·«uµ(�:���J«�¡¢�����?�"�!´r�:¡¢�;���¢�:�B«���µ¾¦B���;���]���!º
ç�¦?¦?¡�µ­�¢�Bª¸«r±?±?�Ê���¢�:�B«�¡2���B«r¦?�¢�Bª � ���*� �8/1�0�(� 29���,�)�)����1 ��� 2 5 ¨©��ªr�/���?�*¡�¦f�T´r�!���*�r¨©�§���?�·�
¦?���:¥?¡��*¨�º

â¸Ó­ÛvÑ;×]Ó('��{Ñ?×*×!Ó/ÖTà�ärÔ ç{�³���ÊÀJ�*��«r¡?Ã�´:�r¡��;�����r�¤�r �+�]«�¡��+�r¥Q���F�*¶�
;�¢¨��?¡�«����]± �(�r��¡�±�«��B±

­�B«�¦B�¢�?ªjÃË´r�r¡��;���¢�:�=º

�)��¸	����È�*�
	f��� �{	
�

���B«��?¬;�¯��� ��«��?���*¡ �p«uµ � �p«��!����¬©ÌÍ�B�����Ê���;���:¶����B�¢´:�*�F�³�¢��µ©��
;�r�;���?�*��� �§�*�?¨j«r��¬ 5 £�r��³�?�!¦?�?�!��±;���?ª����?���2¦B«�¦Q�*�]¶u«��B±§���+¨�µ§®L�r��¬;�³�B�r¦{ª:���:�?¦#«T�¼���?��
{��¬­�¢� @ �=�9@����r�? £�*���*�B�*�rº

%��������Y�{	�)+�{�

	¢ñ�
 �+�;±;�?�!µyç¤º �L���­�:¬­�!º2ÃË´r�r¡��;���¢�:�B«���µ����r¥Q�������!���­®+�?�!���§ £���r¨ «��J±y®+�?�!���§���Jº��,�)���
����1 ��� 2�������� ������1	��
�6���� ����! �,2 1 4�� ����� 4�2 1�������� 1 6�1 �-#��,1 � /
����)��� �
�4������ � �*¶J¦B«�ª:�!�
ñ"!`ñ!î?¶Qñ!î:î/ë;º

238

Design Patterns for Evolutionary Robotics

	 ��
 �§«r����� �¡¢�:���]«��?�Jº �+�!±?�B�����?ªï�­�?¨j«��é±;�]�³��ªr�é«��J±����B�*���]«r���¢�?ªï«:±?«�¦;�F«�¥?��¡��Ê��µ��¢�
�*´:�r¡��;�����r�B«r��µ¸���:¥J�r���·�*�!ºLÌÍ�p��º J �r¨©�z¶B�]±;�Ê���r�]¶ �,�)�)����1	����2��)��� � �2��� 1 ��
,6Hº=»§�:�F«����¢�
� ðL«r�B«r±?« 5 !Yç{ç{Ì �L�­�r¬;�!¶¼ñ!î:î/ë­º

	 #
#ÌHº=Ç{«r��´:�*µr¶ �7º�ð¯¡��¢Ä�¶�«��B±.@�º=Ç��J�³¥B«r�B±?�!ºjÌ������?�]���¢�m�*´:�r¡��;�����:«r�?��µ����r¥Q�������!�*º©ÌÍ�
�+�r�¢��¥B¡�«��!¶2Ç7º �f�*µ:�*�]¶��Jº °Íç¤º=«r�B±��é��¡·�³�:�=¶0
`º�¶2�]±;�Ê���r�F�*¶ 5,���?
�4�4�')� 2D� 6 ��
 �8#�� ���:º
�fÌ�� @Ë���]��� �L�F«r±­ £�:��± �L�/�:¬;�*¶BðL«�¨�¥?����±;ª:�r¶ �pç7¶����?¡�ñ]îrî �;º

	 ��
 ���·�F¬��/«r���:¥?�zº ���?�?�?���?ªy«r�*���/���¯���?�#���]«�¡��Ê��µjª/«�¦ !¯»������:¦J�;±"¡¢�;���:¨©�������r���*´:�r¡�´r�]±
�¢�Æ«j¨©�¢�?��¨j«�¡��³��¨7�B¡�«������r�=º��04�
�1 �8��4	�-� 1 4�6-� 2 � ��!;�(��1 4�� �
3� 4 2�
�4*¶�ñ �:ò �+! #rî !+���r¶
ñ!î:î0�?º

	 ��
 �¤º
�/«�¬r�:¥?�z¶2@�º­Ç��B��¥B«��J±?�*¶;«r�B±jÌHº;Ç{«r��´:�*µrº �{�r�·�³��«��B±j���?�����]«�¡��Ê��µ
ª:«r¦ !����?�§�J�³�
�� =���¢¨��?¡�«������r�©���y�*´:�r¡��;�����r�B«r��µ7���:¥J�r���·�*�!º �04�
�1 �8��4��-��1 4�6;� 2 � ��!;�(��1 4�� �
3� 4 2�
�4*¶
î �rî+!OëTì � !?ë���ì?¶Bñ!îrî �;º

	 ò
 ��«����
���/�³¬:�Bº�� 4��8������� 4 1	% ��� ��6 � 2(' � �����3������6�1 4�! 6�����')� 2(�)!$��
0��� 6���6,1 4�! 6
�0�2�����?��
�/�1 ��!���
�/D� 2 4&� 2�1 43� ����� 4 2�
�4+",@Ë���!�:�����*��Ç§«�¡�¡=ÌÍ�/���!���B«������r�B«r¡c¶`ñ]îrî �?º

	 ë
 �Æ�!�Ê° @�� �2�*�r¶��:�r�?��Ç{«�¡�¡·«�¨�¶�«��B±�Ç��*�B����¬ïÇ{«��?���r¦ �=�?�B±=º �=�]«����?���?ª¾���:¨©¦?¡¢�*¹
���:¥J�r��¥J�!�B«u´­�¢�:�?�F��¥/µ��*´:�r¡��;�����r�J«���µ¸«�¦?¦B���/«r�F�?�]�*º���16/ �,�8�0�0��40��2 ���)� � 6�/ ��� � 2
� 4����,21� 29� � �2��� 1 6 � � ��� � ���u¶B«r�?ª�ñ!îrî­ë­º

	 �
¤Ç��!�?����¬8Ç{«��?���r¦ �=�?�B±�«��B±��:�r�B��Ç{«r¡¢¡·«�¨�º
­�+�j�*�¢�!�/�"�?�!�?���;�*�r�/�����r¡�¡¢�!���¸�*«��
¥J�"�³�?��¦?���������?ªr¡�µÆ���¢¨©¦?¡��rº � 4,6 4��)�0
0/ � ���+4�� 2(��"�������" � 4 � ���,1	! 4�2 1 ��
$#��,1 � /
����)�
�,2 1 4�� ����� 4�2(
�4
��� 21� � 43��6�� 1 � �7
 � '�� 2����8�	�?/;¶2ñ]îrîròBº

	 î
��Q¥?��ªr�?���*® �f�·�F�B«�¡��*®+�·�
�:º � 4 254 1	��
 #�� �9�)��� 16/D! 6
� �&��1 �A� 1 ���1
�1 �8��4� �K��������1	����2
5,���0���0�)! 6Fº*
;¦?�����?ª:�*�
Y�*��¡·«�ªB¶ �L�*��¡��¢�=¶¼ñ]îrî:î?º

	Êñ]ì
�»§��« �*��� �f�¢ª:¡¢���?�J¶BÇ��!�?����¬�Ç{«��?���r¦ �2�?�B±¼¶`«��B±�
­���� v«r�?� ���:¡ÊÀ�º�ÃË´r�:¡¢´­���?ª�¨©�:¥?�¢¡��
���:¥J�r�������
���¢¨��?¡·«T���]±�«r�B±����]«�¡­�*�­´­�¢���r�B¨
�!�/���!º #��,1 � /
����)��� �
�4!�r¶:¦B«�ª:�!� �BñTë ! �9# �J¶
ñ!î:î �;º

	Êñ:ñ�
 �+�r¡¢ @� £�*�¢ £�*�#«��B±mð¯�?�����³���·«���
;�F�?�*���*�]º"�02('�4���6�1 � 2(')� 2D� �,2 1 4�� ����� 4�2(
�4�º7���B� �fÌ��
@����!���*¶BðL«r¨7¥?����±?ªr���p«r����«:�F�­�B�³�*�³�F�*¶`ñ!î:îrîBº

	Êñ���
¤ç{±;���·«������?�:¨©¦B�³�:�=ºïç������¢ÀJ���·«�¡��!´r�r¡��;���¢�:�Å�¢�����?��¦?�­µ;�³�·�*«r¡¯®L�r��¡·±¼ºmÌÍ� �,�)�)��� �
1	����2������ ������� 1 ��
�6 � � ���)! �,2�1 4�� ����� 4 2�1 � �2�0��1 6 1 � #��,1	� /,
3����� � �
�4 � ��� � � �
T¶?¦B«�ª:�!�
ñ!ìBñ"!Qñ�� �?º:ç{ç{Ì �L�­�r¬;�!¶¼ñ!î:î/ë­º

Software Development
Processes and Organization

241

241. Patterns for the Role of Use Cases

Patterns for the Role of Use Cases

Gertrud Bjørnvig
Microsoft Business Solutions

(Formerly Navision)
Frydenlunds Allé 6
DK - 2950 Vedbæk

+ 45 45 67 94 53
gbjrnvig@microsoft.com

Content

Introduction
Summary
The Patterns
 Know-How Kickoff
 Narrative And Generic
 Goals Define Number
 Deviations Define Scope
 Use Case As Center
Candidate Patterns

Consolidated Normality
Readiness Reflection List
Size The Iterations

Acknowledgements
References

Version: VikingPLoP 2002 proceedings.

Last edited 15 January, 2003

242

Patterns for the Role of Use Cases

Introduction
These patterns are about use cases. Or maybe they are not…

When I returned from VikingPLoP my mind was preoccupied with two comments
from the writers’ workshop. The first comment was something like: Take a look at
Steve Adolph’s “Patterns for Effective Use Cases”. It has just been published. Aha! A
whole new book with use case patterns! Interesting. When I began to work with my
patterns I tried to figure out if there was any other pattern work going on in relation to
use cases; I mean with such a proven technique I couldn’t be the only one. And I
wasn’t, but I didn’t know about the book. So what did that mean for my use case
pattern work?
The second comment was Maybe this isn’t about use cases. Not about use cases? I
was confused!

I bought the book [1] to see how their patterns were related to my patterns. Were they
overlapping? Were they complementary? Or were they something different?

First of all: It is a good book! I can recognize most of the patterns.
When I tried to compare these patterns with my patterns the statement Maybe this
isn’t about use cases began to make more sense. The majority of the effective use
case patterns are about the more technical part of writing use cases. Patterns like
BreadthBeforeDepth, MultipleForms, VerbPhraseName, and LeveledSteps are all
addressing good techniques for writing use cases. It seems like my patterns are more
about the use cases’ role in the development process culminating in the pattern
UseCaseAsCenter and the candidate pattern SizeTheIterations. I know this is an
overall consideration. There are several effective use case patterns addressing the
process, for example, SpiralDevelopment. And my pattern NarrativeAndGeneric is an
example of a pattern addressing a more technical issue. So the conclusion is not that
simple; in some degree the patterns are overlapping, in some degree they are
complementary, and in some degree they are something else.

Where does this bring me?

I have changed the name from “Patterns of Use Cases” to “Patterns for the Role of
Use Cases”.
And then I have chosen to use and refer to the effective use case patterns where I
thought it would improve my patterns. In one case – GoalsDefineNumber – I actually
use four of the patterns from the book to describe the solution, and I hope it has
improved the pattern.

Somehow it feels like my patterns act like a middle layer between Jim Coplien and
Neil Harrisons’s organizational patterns [6] and the effective use case patterns. We
need organizational patterns as UnityOfPurpose and HolisticDiversity in order to
utilize the potential of the use case technique. But we should also be able to manage
the different parts of the technique that the effective use case patterns cover, such as
naming the use case (VerbPhraseName) and leveling the steps properly
(LeveledSteps).

243

Patterns for the Role of Use Cases

I am referring to Navision in the paper, despite that the name of the company has
changed. Primarily because the things referred happened when the name was
Navision. But it is actually still correct since Navision now is the name of the product
line where most of the referred use case experiences are captured.

Summary

Know-How Kickoff: Begin the use case work.

Narrative And Generic: Separate detailed story telling from functional

requirements.

Goals Define Number: Limit the number of use cases through goal-oriented use

case definition.

Deviations Define Scope: Optimize the knowledge of the use case scope.

Use Case As Center: Let the use cases be the teams’ center for feature

development.

The natural sequence of the patterns follows the order:

Know-How Kickoff

|
Narrative And Generic

|
Goals Define Number

|
Deviations Define Scope

|
Use Case As Center

244

Patterns for the Role of Use Cases

The Patterns

Know-How Kickoff

… you have decided to apply use cases in the project.

The use case work is stuck before it is started; the use cases seem uninteresting
or the team cannot see why they should do use cases.

Sometimes when we begin applying use cases we are guessing more than identifying
and analyzing. We can only define one actor “the user” because we really don’t know
who the actors are. Or we define detailed and trivial use cases such as “Update
Customer Information” or “Set Up Vendor Type” instead of focusing on the real
problems we want to address. Maybe we haven’t been able to involve people with
sufficient knowledge or maybe we’re trying do use cases too early. The result is use
cases that aren’t substantial enough to encourage further exploration.

We can also begin too late, then it can be hard to get team members’ attention and
participation, as I realized in this situation:

The whole team is gathered to a use case session. A drafted design exists. The
project manager and the usability specialist think that lack of use cases is a
problem for the project. The developers are eager to begin coding. The product
managers are eager to see results. They feel that they know what they are
going to develop and cannot see any reason for doing use cases now. Most of
the session is spent on discussing why we should do use cases now.

It was too late for the team. It was obvious that most of the team members had a clear
picture of what they were going to do – but they didn’t have the same picture! And
they didn’t want anything or anybody to cloud this picture; “I know what to do, and I
don’t want anything that can delay progress now.”
If a team does not have consensus about the purpose of the project, it can be very hard
doing use cases. The lack of consensus can be an obstacle for the work – especially
later in a project.

So we have to get the team’s attention in time, and we need to identify the use cases
that really matter.

Therefore:

Before starting any design activities: Gather persons with know-how about
market, customers, users and domain to a use case work session. Base the
session on a product vision or business case.

A well-timed use case work session – with qualified know-how represented – is an
effective way to ensure that we identify the important use cases from the beginning.
And it is a good kickoff for the subsequent use case work.

245

Patterns for the Role of Use Cases

It is a good idea to EngageCustomers [6] in the session. If it isn’t possible, ensure that
you have a SurrogateCustomer [6] role to fill in the role of the customer. At Navision
we have a product manager role as a part of the team. The product manager represents
the customer, and it is crucial for the success of a Know-HowKickoff to have this role
present.

It is preferable that the majority of the participants are project team members – it can
give the nice side effect of a mutual buy-in to the use cases. It could also be other
stakeholders; it will support the principle of ParticipatingAudience [1] where you
involve customers and internal stakeholders in the use case work. But avoid having
too many people in the session – no more than ten. It can be very effective with just
three people, if they are the right people.

My experience is that with the right people – representing sufficient knowledge about
the project – in the room, you can identify the 5 to 12 most important use cases for a
project in a few hours. Of course, this depends on the number of people and the scope
of the project.

A use case diagram is effective as a mean to communicate and achieve consensus
about the overall goals and scope during the first use case session.
During the session is it also a good idea to list all open issues and questions, instead of
trying to resolve everything right away. It reduces the time used on discussions, and it
prevents too much guessing. Such a list will be your first version of a
ReadinessReflectionList (see “Candidate Patterns”).

UnityOfPurpose [6] is often a precondition for a successful Know-HowKickoff, but it
can also go the other way – the preliminary use case work can help achieve
UnityOfPurpose.

Know-HowKickoff uses the principle of HolisticDiversity [6]. It gathers a few people
with diversified skills and lets them communicate directly. The same goes for
DiversityOfMembershipi [6] where the principle is used for requirement teams. A
similar pattern is BalancedTeam [1].

The Navision feature team model supports these patterns very well; the team core
roles (product manager, developer, tester, user assistance, usability, project manager)
are gathered in the same team from the beginning of a project. The team is sitting
physically close to each other. The Navision feature team model is based on the team
model described in Microsoft Solutions Framework [9].

There is also an element of Lock‘EmUpTogether [6]; we need to gather different
people in the same room to do a very focused task.

A Know-HowKickoff can also work as a kind of working Face-To-
FaceBeforeWorkingRemotely, where you “begin a distributed project with a face-to-
face meeting for everyone [6].” A typical distributed project involves geographic

246

Patterns for the Role of Use Cases

distance and different time zones. But even a short geographic distance as the one
between buildings and floors can have a challenging impact on the communication.
Not to mention the mental distance there can be when roles belong to different
organizational units with different value set – for example business roles and
development roles. A project involving subcontracting is another example of a
distributed project where a Know-HowKickoff can work as a kind of working Face-to-
FaceBeforeWorkingRemotely.

These dimensions of Know-HowKickoff make it support UseCaseAsCenter.

Know-HowKickoff is a good beginning, but it doesn’t ensure further progress in the
use case work in itself. The next challenge is to write the use cases. One way to
handle this is to establish a SmallWritingTeam [1] who are writing
NarrativeAndGeneric use cases with ConsolidatedNormality (see “Candidate
Patterns”). Review their work through a variation of GroupValidation [6] with focus
on requirements instead of design. It can be done as a TwoTierReview [1] where the
review process is divided into two types of review: First one or more smaller reviews
with few people involved, and then a group validation with the complete group. Don’t
forget that DeviationsDefineScope.

247

Patterns for the Role of Use Cases

Narrative And Generic

… use cases capture the functional requirements. A use case has been identified in a
Know-HowKickoff, but not yet described.

Often use cases are too detailed to be useful as functional requirements, or they
are too abstract to be understandable.

Business people tend to have a lot of details in their use case descriptions. They like
to tell the story.

Domain experts tend to write more abstract, sometimes too abstract, use cases.
Everything is so familiar that things become implicit.

Developers tend to begin design in the use case description. They are focusing on the
solution.

We love stories and details, but we need precision and brevity.

Therefore:

Begin the use case with a narrative that illustrates the intention of the use case.
The concrete details that are good in a narrative can then be separated from the
more generic functional requirements where too many details are disruptive and
cause imprecision and inconsistency.

The use cases can concisely describes functional requirements and at the same time,
we can get a clear picture of a real context of use. This can be seen in the following
example:

Part of narrative: Christian finds the customer through the handheld device
and checks out the name of the contact person at the company, John Jensen.
The last time he visited John, he was just about to celebrate his 25th jubilee.
Christian wants to ask about that at the meeting.
Corresponding part of use case: The sales person checks information on
contact person.

To make qualified narratives (and qualified use cases!) you need sufficient data about
the users’ situation. The usability domain offers several good techniques of how to
gather valid user data – for example from site visits.

My experience from use case workshops is that it can be hard for a team to describe a
use case from scratch. But when we start with a narrative we get a common picture

248

Patterns for the Role of Use Cases

that makes it easier for the team to describe the more generic part of the use case. I
have not seen it work the other way around; when the generic part of the use case has
been written it seems to be very hard to tell the story.

One team in Navision describes their vision as a story presented as a role-play and
documented in power point slides. It was easy to derive use cases from that story,
since everyone had a common picture of the idea before the use cases were identified.

Many use case descriptions in Navision are supplemented with a storyboard as the
narrative.
Most narratives include at least one deviation from the main scenario. Narratives can
also go across use cases.

Narratives can give life to actor descriptions as well. Describe a real user by giving a
user profile with age, name, tasks etc. to supplement the more generic actor
descriptions.

NarrativeAndGeneric can help us write PreciseAndReadable use cases that are
“readable enough so that the stakeholders bother to read and evaluate it, and precise
enough so that the developers understand what they are building [1].”

249

Patterns for the Role of Use Cases

Goals Define Number

… the candidate use cases have been identified through a Know-HowKickoff.
Narratives illustrate the intention of the use cases.

The project has too many use cases. The use cases don’t give any overview. Team
members get lost in details.

Your background before use cases will probably decide what traps you risk falling
into.
What inspires you to do use cases? Visual modeling and UML? Or did you seek an
alternative to the traditional requirement specification? Are you a modeler or a writer?

The modeling trap is decomposition – an extension here and an include there, and you
end up with 50 use cases before the day is over.

The writing trap is completeness – the solution is described in detail and repeated in
many use cases. The result is the same as in the modeling trap: you miss the important
goals and have too many use cases.

Too many use cases mean a lack of overview and a lack of clarity as for what is
important.

Therefore:

Keep only those use cases that support the user in meeting their work-based
goals and the corporate business goals.

You need to identify the UserValuedTransactions which are “the valuable services
that the system delivers to the actors to satisfy their business purposes [1].” Knowing
the UserValuedTransactions can help you define a CompleteSingleGoal [1] for each
use case. Ensure ForwardProgress [1] by eliminating or merging steps that do not
advance the actor. MergeDroplets by “merging related tiny use cases or use case
fragments into the use cases that relate to the same goal [1]”, and CleanHouse [1] by
removing those use cases that do not add value to the system.

You can also prioritize your use cases in order to identify the FocalUseCases [3]. It is
the use cases that are most important to users, but the prioritization also includes other
parameters, such as stakeholders’ interests and risks expressed by development.

Focusing on user goals help us to reduce the number of use cases, and it helps us to
deliver useful software!

250

Patterns for the Role of Use Cases

Finding the right user goal level for a use case can be hard. One project in Navision
handled it this way:

The overall goal is formulated as a positioning statement: “Returns
Management transforms customer dissatisfaction into customer satisfaction”.
One of the UserValuedTransactions is to “Register Compensation Agreement
with Customer”. This transaction satisfies a CompleteSingleGoal for the user
and the business, so it is defined as one of the use cases. A part of this
transaction is to “Register compensation agreement for a special item going to
be repaired by the vendor”. It could be seen as a CompleteSingleGoal in itself,
but it is also a sub-goal to “Register Compensation Agreement with
Customer”.

Having sub-goals like this at the step level in the use case can help us manage the
number of use cases. I define steps broadly as steps in the main scenario plus steps
representing deviations from the main scenario, including extensions. Very few
extensions need to be described as full use cases. A row in the deviation list will often
be sufficient.

To solve the problem of too many CRUD (Create/Retrieve/Update/Delete) use cases
in administrative systems, you can use parameterized use cases as described by
Alistair Cockburn [5]. Alistair Cockburn was also the first to describe the principle of
goal oriented use cases [4].

GoalsDefineNumber helps you to constrain your number of use cases. A controllable
number of use cases is a precondition for having UseCaseAsCenter. My experience is
that a project should have no more than 15 use cases for a 6-9 month time period with
a team size at no more than ten people. See SizeTheOrganization [6] and
SizeTheIterations (see “Candidate Patterns”).

251

Patterns for the Role of Use Cases

Deviations Define Scope

… the core use cases have been identified and are characterized by GoalDefineSize.
The use cases are NarrativeAndGeneric with ConsolidatedNormality (see “Candidate
Patterns”) as the main scenario.

You don’t feel that you can base your time and resource estimations on the use
cases, or it has taken much longer to implement a use case than expected.

How do you estimate your use cases?

This question can actually mean two things: 1) How do I estimate? 2) How do I
ensure that the use cases provide a good foundation for estimation?

If it is the first question, the use cases cannot help you. It is just as hard to estimate
use cases as anything else.

The second question is more relevant. We feel that the use case is finished when we
have written the main scenario. It represents the core functionality, so we think we
can go on with design and implementation. But we realize that the main scenario is a
minor part. All the extra things that the user should be able to do in this context must
be implemented. And all the things that can go wrong must be taken care of, too.
Sometimes these things have an impact on the design that we haven’t even been
aware of. So at the end of the day, we have spent much more time on implementing
all the things that have not been a part of the main scenario than on the main scenario
itself. If we aren’t aware of it in beforehand we have a very poor basis for estimation.

A use case with nothing but a main scenario – no extensions, no exceptions, and no
variations – is only a beginning. The main scenario is the framework for deviations –
the ConsolidatedNormality (see “Candidate Patterns”) – and represents in many cases
less than the half of the scope. Each step in the main scenario is a potential source for
several deviations.

At the same time we can’t know everything before we start coding. Some things will
not be discovered before we begin to test. But we still have to optimize our
knowledge about the scope to estimate and prioritize. We have to be able to prioritize
in order to meet our schedules.

Therefore:

Define the potential scope of the use case by listing the deviations from the main
scenario in one or more deviation identification sessions. For each step in the
main scenario ask questions like: What can go wrong here? What else does the
user want to do here? What is happening if…?

252

Patterns for the Role of Use Cases

Involve different roles in order to get a qualified list of deviations. A tester is good at
focusing on things that can go wrong. A usability expert is good at focusing on user
experience. This is the principle of HolisticDiversity [6].

The deviation list provides a realistic feeling for the potential scope of a use case. It
can help us decide if we want everything on the list in scope or not, and we improve
our basis for estimating.

Deviations can be called variations, extensions, exceptions, or something else. I see
no practical benefit of separating the different kinds of deviations into different
categories.

At Navision, we have had good experiences with gathering domain experts in a
workshop where a first draft of the use cases – including the main scenario – is used
as a basis for structured deviation identification.

ExhaustiveAlternatives has a similar solution: “Capture all alternatives and failures
that must be handled in the use case [1].” But the focus here is more to avoid that the
developers will misunderstand the system’s behavior, so the system will be deficient.
DeviationsDefineScope focuses more on how to manage the scope. Anyway;
achieving both can only be good!

Sometimes it isn’t worthwhile doing the deviation identification for all use cases at
once. It is sufficient to do it for the use cases for the next development iteration. This
is closely related to SpiralDevelopment where the use cases are “developed in an
iterative, breadth-first manner, with each iteration progressively increasing the
precision and accuracy of the use case set [1].” See also SizeTheIterations (see
“Candidate Patterns”).

To implement UseCaseAsCenter you need DeviationsDefineScope.

253

Patterns for the Role of Use Cases

Use Case As Center

… the team has a shared understanding of the goals and the scope of the project
achieved through Know-HowKickoff, NarrativeAndGeneric, GoalsDefineNumber and
DeviationsDefineScope.

You have invested the effort to do use cases, but during design and coding you
realize that the use cases are not used. Things are not implemented consistently
with the agreements documented in the use cases. Changes are not documented,
and maybe not communicated at all.

Very few people like updating existing documentation. Especially if the document has
been a part of an approval procedure, where the goal more is to get the approval than
to have a useful document during development. But outdated use cases are not useful
for coding, testing, or user documentation purposes.

Use cases are often used in the beginning of a project to capture agreements about
direction and then they die. This can be okay and has a value in itself. But it means
that it can be hard to know what is being implemented and why. The developers may
be the only ones who are updated, and other roles have to disturb them in order to do
their job.

I have heard statements like “Use cases are only for developers” or “We only do use
cases in order to do test cases”. If the use cases are written for a specific role – and
probably by that role, too – this role, and nobody else will use them.

Other statements like “I cannot test from these use cases” or “It isn’t possible to
design from the use cases” are signs of a role that hasn’t been involved in developing
the use cases, but now is expected to use the use cases as a basis for their work.
Involvement is everything – and ResponsibilitiesEngage [6].

Use cases have the potential to be the repository of important agreements about
functionality, but often they end up being a one-man or one-role show or they just die.

Therefore:

Let the use cases be the center or placeholder for other work products. Ensure
that all team roles contribute to the use cases. Organize test cases around use
cases, insert references between for example use case and user interface, list
tasks in relation to use cases, and plan the development iterations based on use
cases.

If other work products are organized around the use cases the team will have a
common interest in having readable and updateable use cases.

254

Patterns for the Role of Use Cases

When use cases synchronize the work of the team, they become the natural driver of
the development iterations.

Use case driven development is an effective way to control iterative and incremental
development, and if you succeed doing it you will get the full benefit of your
investment in use cases.

Having UseCaseAsCenter can help preventing the problem of deceased use cases, but
it can be very hard to repair the situation.

I have only seen real use case driven projects when the leader (formal or informal) of
the team wants it like that. It has to be planned that way.

Putting the UseCaseAsCenter certainly has its strengths. An outsourced development
project illustrates this:

At Navision a development project was outsourced to a development partner.
The project manager from the partner and the project manager from Navision
met to plan the development based on use cases. The project manager from the
partner should prepare by listing tasks. He has made a list, but hasn’t related
them to the use cases. We wrote the use case names on posters, and did the
same with all the tasks. Each task was then placed below a use case, and what
surprised us all was that it was possible to relate every task to a use case, even
though they were identified independently of the use cases.

Then the use cases were grouped into iterations. At first the project manager
from the partner thought that there were too many dependencies to divide the
development into several iterations, but we realized that a lot of these
dependencies weren’t a real problem. Maybe some things had to be
implemented as stubs (for example a piece of code that simulates a non-
implemented function) in the first iterations, but it could be done. The
advantages outweighed the disadvantages. We planned five iterations,
executed three, and the project was delivered on time.

Architecture and system design will go across use cases and is not naturally linked to
use cases. Some projects need a more technology and architecture driven approach,
but the use cases will still be a good way to connect the development work with test
and user documentation (a user doesn’t have to be an end user – some times the user
is another developer).
In FeatureAssignment features are assigned to people for development, but it is
emphasized that this should be coupled with the role of CodeOwnership (each code
module in the system is owned by a single developer) to “strike a balance between
maintaining architectural integrity and getting the job done [6].” The same is true for
UseCaseAsCenter; you need a balancing mechanism to ensure architectural integrity.
Use case driven iterations can be used to avoid designing more than what is actually
needed for a given iteration. See also SizeTheIterations (see “Candidate Patterns”).

255

Patterns for the Role of Use Cases

Adornments [1] have similarities with UseCaseAsCenter by recommending that
nonfunctional information should be associated with the use cases in supplementary
sections.

There is a relation between UseCaseAsCenter and WorkFlowsInward.
WorkFlowsInward means that “Work should flow in to developer from stakeholder,
especially customers. Work should not flow out from managers [6].” The use cases
are an agreement between stakeholders and the team about the functionality of the
system. When we have UseCaseAsCenter, most of the work can be derived from the
use cases instead of being generated by a manager role. It means that
UseCaseAsCenter can support that WorkFlowsInward.

The principle in UseCaseAsCenter is essentially the same as Ivar Jacobson’s A Use
Case Driven Approach [7] [8]. While Jacobson is advocating for a modeling approach
with traceability through the different models, UseCaseAsCenter is focusing more on
use cases as a common center for the team’s work.

You need UseCaseAsCenter to SizeTheIterations (see “Candidate Patterns”).

256

Patterns for the Role of Use Cases

Candidate Patterns

During the work with the five first patterns I have identified three candidate patterns.

Consolidated Normality
The strength of the use case description structure is related to the relation between the
main scenario and the deviations. This structure allows us to handle complexity in a
simple and consistent manner. But it requires that we are able to define the “normal”
scenario – without any “if’s” at all. Many use case authors have a hard time doing
that, but my experience is that it is always possible to define the normal – and it is
necessary in order to get structured use case descriptions.

This is similar to ScenarioPlusFragments [1]. Maybe it is too much overlap to write
this pattern? Express the ConsolidatedNormality as LeveledSteps [1].

Readiness Reflection List
It is very effective to maintain an open issue list per use case (plus one in general).
The character and number of open issues gives us a good picture of the situation. Is it
a big issue? Is it a minor issue? How long is the list? It is always hard to know when
we are ready to begin a new activity. The open issues at the list can help us to reflect
about our readiness; look at the issues and you will probably know if you are ready.
Ready for design, ready for code, ready for test, ready for shipping…

A ReadinessReflectionList can also help us identifying the areas where we have high
confidence as we need to GetOnWithIt [6].

Size The Iterations
Empirically it seems like we shouldn’t have more than 15 use cases for a project (or
sub-project), divided into 3 to 5 development iterations, based on 1 to 3 use cases
each. I don’t know why it works that way – but I guess it is a pattern.

SizeTheIterations builds on the principle of SpiralDevelopment [1].

257

Patterns for the Role of Use Cases

Acknowledgements

First of all I would like to thank Jim Coplien for opening my eyes to the pattern world
beyond the more technical patterns related to (system) architecture and object-
oriented programming. It has been a great source of inspiration. It inspired me to
begin the work of writing these patterns. And it also inspired me to spend three days
in the shadow of a palm with a view to the Greek sea reading Alexander’s “The
Timeless Way of Building”. It was after I had finished the patterns for VikingPLoP.
My first impulse was to go home and rewrite it all! I didn’t have time for that, but I
got great insights in the philosophy of patterns and pattern languages.

Thanks to the teams in Navision that have provided me with the stories and examples
that I’m using in the patterns – I hope you find that I have used the material in a
decent manner.

Special thanks to my Navision colleagues Dan Henriksen, Susan Wiingaard, and
Diana Velasco for commenting on early versions of the patterns.
And to Brian Jay Godkin for helping me improve the English language as well as the
content for this version of the patterns (any inappropriate use of the English language
is most likely caused by my last moment updates!).

And thank you to all the nice people who workshopped the patterns at VikingPLoP; I
appreciated your comments very much.

Most of all I would like to thank my shepherd, Neil Harrison, who guided me through
the challenging work of improving the patterns up to VikingPLoP.

258

Patterns for the Role of Use Cases

References

[1] Steve Adolph, and Paul Bramble. Patterns for Effective Use Cases. Addison-
Wesley 2002.
[2] Christopher Alexander. The Timeless Way of Building. New York, Oxford
University Press 1979.
[3] Robert Biddle, James Noble, and Ewan Tempero. Patterns for Essential Use
Cases. Technical Report CS-TR-01/02, April 2000.
[4] Alistair Cockburn. Structuring Use Cases with Goals. JOOP September and
November 1997.
[5] Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley 2001.
[6] Jim Coplien and Neil Harrison. Organizational Patterns. Org Patterns web site
January 2003: http://www.easycomp.org/cgi-bin/OrgPatterns?BookOutline
[7] Ivar Jacobson et al. Object-Oriented Software Engineering. Addison-Wesley
1992.
[8] Ivar & Sten Jacobson. Use case Engineering: Unlocking the Power. Object
Magazine October 1996.
[9] Microsoft Solutions Framework. MSF Resource Library web site January 2003:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/itsolutions/tandp
/innsol/msfrl/default.asp

i This pattern cannot be found directly from the link in the references section, but it can be found here:
 http://www.easycomp.org/cgi-bin/OrgPatterns.book?HarrisonPatterns

259

259. Agile Environments - Some Patterns for Agile Software Development

Facilitation

Agile Environments – Some Patterns for Agile
Software Development Facilitation

Klaus Marius Hansen

ISIS Katrinebjerg
University of Aarhus

Aabogade 34
DK-8200 Aarhus N

Abstract

Agile software development demands an agile working environment in contrast to tradi-
tional, specification-oriented software development. Pair programming, continuous user
involvement, and ad-hoc meetings are examples of work practices that require facilitation
for new ways of working. We present patterns that facilitate the creation and evolution of a
working environment for agile development.

1 Introduction

Many system development projects are facing uncertainty with respect to which
solutions to create, how to create these solutions, or even which problem to solve.
Traditional prescriptive and specification-oriented development processes such as
the early object-oriented development methods (Booch, 1991), (Jacobson et al.,
1992), (Rumbaugh et al., 1991) fail to address such commonly occuring project
situations.

There have been continouous reactions to such (earlier and later) processes start-
ing with the early participatory design work (Nygaard and Bergo, 1974), going
over Joint Application Development (Wood and Silver, 1995), to current methods
and processes such as Adaptive Software Development (Highsmith, 2000), Crystal
(Cockburn, 2001), Dynamic System Development Method (Stapleton, 1997), Ex-
treme Programming (XP; (Beck, 1999)), Feature-Driven Development (Coad et al.,
1999), and SCRUM (Schwaber et al., 2002). These processes share a number of

Email address: marius@daimi.au.dk (Klaus Marius Hansen).

c�2002 Klaus Marius Hansen/ISIS Katrinebjerg

260

Agile Environments - Some Patterns for Agile Software Development Facilitation

characteristics: They aim at providing working software in uncertain and complex
situations through a focus on, e.g., iterative development, incremental addition of
functionality, and active stakeholder involvement.

Based on the observation of such common characteristics, the agile manifesto
(Beck et al., 2001) establishes four fundamental values for agile software devel-
opment:

� individuals and interactions over processes and tools,
� working software over comprehensive documentation,
� customer collaboration over contract negotiation, and
� responding to change over following a plan.

The environment, physical and virtual, in which agile software development is per-
formed is important in that it may contribute significantly to working with these
values: A work environment that favors personal communication may help facil-
itate individuals and interactions, the physical environment may help developers
focus on developing thus aiding in making working software, locating a develop-
ment team close to a customer site may enhance customer collaboration, flexible
arrangements of project rooms may help in responding to change by allowing dy-
namic reconfiguration. Since the principles of agile software development go back
to the early days of participatory design and since the work environment may make
a significant difference to agile software development projects, it makes sense to
capture and express the experience of agile software development faciliation, i.e.,
the practices of helping bring about agile software development easier, through.
Thus, this paper tries to do that through the formulation of a set of patterns for agile
software development facilitation.

1.1 Form

The major part of this paper consists of a set of patterns for agile software de-
velopment facilitation. They are written for software developers and managers, a
distinction that may become blurred, however, in agile software development.

For the description of patterns, we use a slight variation of the narrative Portland
Form (Cunningham, 2002): Each pattern name is followed by a problem and a set
of associated forces for that problem. The solution to the problem that the pattern
represents is started by a Therefore: and a short solution. Finally, the resulting con-
text is discussed. References to patterns are shown in italics.

The last part of this paper consists of a problem/solution summary of the presented
patterns.

261

Agile Environments - Some Patterns for Agile Software Development Facilitation

2 Patterns for Agile Environments

The following patterns provide a set of starting points for relating experience in
agile software development facilitation. Currently, the patterns are divided into four
categories:

� Context encompasses patterns that are not specific to facilitation within agile
software development, but are prerequisites for agile faciliation.

� Place concerns social properties of locations: One location may be used for
concerts during the week and church ceremonies on Sundays yielding differ-
ent places (Harrison and Dourish, 1996). The patterns in this category are then
concerned with facilitating social aspects of the physical development environ-
ment.

� Space is concerned with the physical properties of locations: How much room
is there, how is the lightning, where is the furniture placed etc (Harrison and
Dourish, 1996).

� Detail contains faciliation patterns that are additions to the Space and Place pat-
terns.

Within each category, the patterns are organized according to importance.

2.1 Context

2.1.1 Team Chooses

You need to provide the best working environment for your development team.
Each project is unique. Your team is motivated and dedicated since they will be
working in an agile manner, moreover you may be working with a process (such as
XP) that requires and should maintain high discipline.

Agile software development favors individuals and interactions.

Therefore: The team decides how their work environment should be and sets rules
for how development should be facilitated.

This pattern is at the core of agile software development: responding to change
requires that individuals are able to make changes as required.

With respect to facilitation, this means that the team - including a project manager
and possibly a customer - should be able to decide how to balance the forces of
the subsequent patterns in this collection. If your process requires high discipline
(such as XP) this is not in contradiction to that. This pattern just acknowledges that

262

Agile Environments - Some Patterns for Agile Software Development Facilitation

project members are competent professionals and allow them to inform their own
work situation.

The agile values should constrain what the team is able to decide. Focus on individ-
uals and interactions, working software, customer collaboration, and responding to
change is mandatory and decisions on faciliation should not compromise this. Hav-
ing the Customer Close By (Section 2.2.2) or One War, One Room (Section 2.2.1)
are examples of patterns that are almost required when applicable.

2.2 Place

2.2.1 One War, One Room

Developers and stakeholders on your project need to communicate as effectively
and efficiently as possible. The frequency of and need for communicating is high.
The team is small.

Therefore: Place developers in the same room. Also put Customer Close By (Sec-
tion 2.2.2).

For large projects it is impractical to place all developers in the same room, but
for smaller projects (at least up to ten developers), it maximizes the potential face-
to-face communication and awareness. This arrangement is also ideal for pair pro-
gramming. If corporate culture makes it impossible to have such a room, creating a
persistent design room (Beyer and Holtzblatt, 1997) in which design meetings and,
e.g., Writing on the Wall (Section 2.2.3) may take place, may serve as a compro-
mise. Geographically separated teams makes faciliation more difficult.

Even if the team is heterogeneous through having, e.g., object-oriented developers,
ethnographers, usability experts, and customers on it, co-location may work very
well (Christensen et al., 1998).

Care must be taken in also providing space for more private activities, such as
reading and phone calls through, e.g., Public and Private Spaces (Section 2.3.2).

2.2.2 Customer Close By

Stakeholder requirements are initially vague and are constantly prone to change.
You need the development team to discover and keep in sync with requirements.
The customers needs to know the progress of the team.

Therefore: Place the customer and developers close by and make room for that.

263

Agile Environments - Some Patterns for Agile Software Development Facilitation

If customers are co-located with, or readily accessible to, the development team,
there should be a workspace for the customer for doing ordinary work. The devel-
opment team should have access to the customer at all times. XP advocates this
kind of arrangement.

A complimentary approach is to locate the development team within the customer
organization. If this is possible, this is more effective in terms of learning about
and designing for the practice of the customer (Christensen et al., 1998). DSDM
advocates this kind of arrangement.

This kind of stakeholder involvement in the project will probably not suffice. It
may, e.g., be beneficial to include ethnographic studies of real work when dealing
with complex problem domains (Christensen et al., 1998).

The nature of the project may make customer co-location difficult: for contract
development it may be hard economically to convince the contracter of this kind
of arrangement. For in-house development co-location may be easier, in particular
if provisions can be made for the customer to work effectively on her day-to-day
work while located near the development team. For off-the-shelf products, it may
be impossible to be co-located with customers.

2.2.3 Writing on the Wall

Developers and customers should have easy access to writing material for discus-
sions, thinking, and visualization. You want to maintain awareness and access to
the results. You want to capture ideas and suggestions as they evolve.

Therefore: Place whiteboards and paper for writing in development rooms.

Make sure you have dedicated space for these activities so that it is possible to
quickly go to and from such discussions without interrupting the work of others.

For whiteboards, you will need plenty of space for sketching and modelling. Also,
if you have Space for Pairs (Section 2.3.4) you may consider having a whiteboard
for each pair. An option is also to use brown paper or even whiteboard wallpaper to
cover an entire project room with writing surface...

Mynatt (1999) investigated the use of whiteboards in a personal and a public office
setting. She points to four characteristics of office whiteboard use:

(1) Whiteboards are effective for thinking and pre-production tasks: ideas and
thoughts such as how a graphical user interface should be designed or which
responsibilities a class should have can quickly and easily be written or erased.

(2) Use of whiteboards leads to clusters of persistent and short-lived content: most
of what is written on a whiteboard is really ephemeral, but some content such

264

Agile Environments - Some Patterns for Agile Software Development Facilitation

as to do list persist for much longer.
(3) Whiteboards contain everyday content as well as formal drawings.
(4) Whiteboards are and can be used for information that ranges from being semi-

public to private.

An extensive use of whiteboards or other analog writing material may cause prob-
lems, however: content cannot be saved or restored and can only be manipulated
in very primitive ways. For saving, and partly for restoring, a digital camera may
help. It is common practice to capture contents of whiteboards using such means
and later use the images for recall or for more formal documentation (Andersen
et al., 2000). If you frequently need to update your content, you will either need
massive amounts of whiteboard space or these tools may be too Simple Artefacts
(Section 2.2.4). Another problem is that whiteboard and paper are not good at doc-
umenting precise decisions due to their ephemeral character. Also, although these
materials are better at representing the development of a solution, or discarded pro-
posals, they are not good at capturing rationales.

Using electronic whiteboards can help overcome some of the weaknesses of ana-
log whiteboards. Electronic whiteboards capture the pen input made by users and
transfers this input to a computer. There are two major variants of electronic white-
boards: Whiteboard replacements, such as the SMART Board (http://www.smart-
tech.com) are complete, standalone replacements of traditional whiteboards. They
are typically combined with a computer and a projector so that a computer image
may be projected onto their screens. These technologies are expensive and mostly
applicable if the writing requires a lot of interactivity. Whiteboard augmenters, such
as the Mimio (http://www.mimio.com), can be plugged onto any existing white-
board after which they can capture what the user draws on the whiteboard if the
special pens are used. They can be used either in non-projected or projected mode.
In non-projected mode, the whiteboard acts just as an ordinary whiteboard, but en-
ables the saving of drawings on the whiteboard. In projected mode, the whiteboard
augmenters work much like the electronic whiteboard replacements. Whiteboard
augmenters are much less expensive than whiteboard replacements and enable the
reuse of existing whiteboards. The are, however, more problematic to set up, par-
ticularly in projected mode. In either case, if project mode is to be used, consider
using Simple Artefacts (Section 2.2.4) in this mode.

Ambler (2002) introduces the Agile Modeling methodology which has a number
of detailed suggestions for supporting object-oriented modelling in an agile manner
by organizing project rooms with plenty of simple, readily available, and flexible
writing surfaces and writing material. Concretely, Ambler advocates that a room
to be used for modelling should contain dedicated space, significant whiteboard
space, a digital camera, modelling supplies, a bookshelf or storage cabinet, a large
table, a computer, chairs, wall space to attach paper, a projector, reference books,
food, and toys. In general, Ambler stresses the use of simple and flexible tools,
such as whiteboard and paper, over more complex tools, such as CASE tools. This

265

Agile Environments - Some Patterns for Agile Software Development Facilitation

works well for simple situations that require more writing that reading; if there is
need for extending previous models or using previous models for reference, it be-
comes problematic to use just analog material. For this Ambler recommends having
a project, a computer with a CASE tool, and a "CASE jockey" who operates the
CASE tool to capture changes drawn on the whiteboard and to show previous mod-
els. Electronic whiteboards, as introduced above, may improve on this sitatuation
and make the choice between of tools much more flexible.

2.2.4 Simple Artefacts

You want to make sure developers focus on producing working software instead of,
e.g., just working with software. Using Complex artefacts used in software produc-
tion may detract the developers’ attention from this.

Therefore: Provide and use simple artefacts, physically as well as virtually. The
simplest tool that solves a problem should be used.

Index cards are ubiquitous tools also in agile development processes. They are
cheap, readily available and sufficiently simple as not to detract developers from
their primary focus.

Whiteboards and paper, e.g., for Writing on the Wall (Section 2.2.3), are simple
tools that are ideal for collaboration and communication. For some situations these
may be too simple, cf. Writing on the Wall (Section 2.2.3).

Use virtual tools that fit your work processes as closely as possible, preferably
maximizing support for communication, feedback, and customer collaboration with
a focus on working software. For modelling, Ideogramic UML (Damm et al., 2000),
which combines electronic whiteboards and computer-aided software engineering,
may be ideal. For programming, an Integrated Development Environment (IDE)
that is flexible and allows you to combine just the needed components, may be
ideal.

It may be argued that this pattern is actually the XP value of Simplicity used on
faciliation.

2.3 Space

2.3.1 Flexible Furniture

You want Space for Pairs (Section 2.3.4) and Space for Groups (Section 2.3.3).
Ordinary office equipment and arrangements makes flexible adaptation of spaces
for these purposes difficult.

266

Agile Environments - Some Patterns for Agile Software Development Facilitation

Therefore: Provide flexible furniture and allow developers to rearrange it through
Team Chooses (Section 2.1.1).

Chairs should be movable so that people can pair and participate in group meetings.
You might also want space for "standing" meetings (as advocated by DSDM).

Tables with adjustable legs are good for flexible pairing when programming.

Artefacts used for Writing on the Wall (Section 2.2.3) should also preferably be
movable.

2.3.2 Public and Private Spaces

You want to facilitate group and pair communication while still catering for the
needs for private communication and thoughts. You may have One War, One Room
(Section 2.2.1).

Therefore: Provide a mix of public and private spaces.

These spaces should intermix with Space for Groups (Section 2.3.3) and Space for
Pairs (Section 2.3.4).

An effective arrangement in XP has been to provide small, semi-private bull-pens
along one wall of the room and have the middle of the room be common.

Often, if this is not provided, developers tend to create their own, virtual privacy by,
e.g., listening to music using headphones. This practice hampers communication
within the team.

2.3.3 Space for Groups

Communication with customers and brainstorming among developers is essential.
You want to provide awareness of such (ad-hoc) meetings to all project members.

Therefore: Make space for groups. Make the space visible to all.

Meeting with an on-site customer, for, e.g., the planning game of XP, may be one
of the reasons for having Space for Groups. This space can be combined with Cus-
tomer Close By (Section 2.2.2). Awareness of results of group work may be made
through Writing on the Wall (Section 2.2.3).

267

Agile Environments - Some Patterns for Agile Software Development Facilitation

2.3.4 Space for Pairs

Developers need to communicate, collaborate, and coordinate effectively also in
the small. Private offices or inflexible personal office space makes hampers this.

Therefore: Make room for pairs so that pair discussions and pair programming are
facilitated.

This may involve having Flexible Furniture and is facilitated by having One War,
One Room (Section 2.2.1).

2.4 Detail

2.4.1 Perks

Morale is high because of Team Chooses (Section 2.1.1) and the agile work process.
You want to keep morale high and you want to support lateral thinking in the project
group.

Therefore: Give developers perks in the form of food and toys.

Create a place in which it is possible and welcome to relax and where it is possible
to eat food, drink coffee, play with toys, read magazines etc. The team should make
sure they do not spend too much time on this.

268

Agile Environments - Some Patterns for Agile Software Development Facilitation

3 Problem/Solution Summaries

Problem Solution Pattern Name

You need to provide the best
working environment for your
development team. Each project
is unique

The team decides how their
work environment should be and
sets rules for how development
should be facilitated

Team Chooses

Developers and stakeholders on
your project need to communi-
cate as effectively and efficiently
as possible

Place developers in the same
room

One War, One
Room

Stakeholder requirements are
initially vague and are con-
stantly prone to change

Place the customer and develop-
ers close by and make room for
that

Customer Close By

Developers and customers
should have immediate access to
writing material to be used for
discussions and for thinking

Place whiteboards and paper for
writing in development rooms

Writing on the Wall

You want to make sure devel-
opers focus on producing work-
ing software instead of, e.g., just
working with software

The simplest tool that solves a
problem should be used

Simple Artefacts

You want Space for Pairs, Space
for Groups, and want to al-
low for adaptation to the current
project situation

Provide flexible furniture and al-
low developers to rearrange it
through Team Chooses

Flexible Furniture

You want to facilitate group and
pair communication while still
catering for the needs for private
communication and thoughts

Provide a mix of public and pri-
vate spaces

Public and Private
Spaces

Communication with customers
and brainstorming among devel-
opers is essential

Make space for groups. Make
the space visible to all

Space for Groups

Developers need to communi-
cate, collaborate, and coordinate
effectively also in the small

Make room for pairs so that pair
discussions and pair program-
ming are facilitated

Space for Pairs

You want to keep moral high
and you want to support lateral
thinking in the project group

Give developers perks in the
form of food and toys

Perks

269

Agile Environments - Some Patterns for Agile Software Development Facilitation

References

Ambler, S. (2002). Agile Modeling: Effective Practices for Extreme Programming
and the Unified Process. Wiley.

Andersen, C., Hansen, K., Sandvad, E., Thomsen, M., and Tyrsted, M. (2000). Tool
support for iterative system development activities: Issues and experiences. In
Proceedings of NWPER’2000, pages 1–21.

Beck, K. (1999). Extreme Programming Explained: Embrace Change. Addison-
Wesley.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, R., Marick, B., Mar-
tin, R., Mellor, S., Schwaber, K., Sutherland, J., and Thomas, D. (2001). Mani-
festo for agile software development. http://www.agilemanifesto.org.

Beyer, H. and Holtzblatt, K. (1997). Contextual Design: A Customer-Centered
Approach to Systems Designs. Academic Press/Morgan Kaufmann.

Booch, G. (1991). Object-Oriented Design with Applications. Ben-
jamin/Cummings.

Christensen, M., Crabtree, A., Damm, C., Hansen, K., Madsen, O., Marqvardsen,
P., Mogensen, P., Sandvad, E., Sloth, L., and Thomsen, M. (1998). The M.A.D.
experience: Multiperspective Application Development in evolutionary proto-
typing. In Jul, E., editor, ECOOP’98 – Object-Oriented Programming. Proceed-
ings of the 12th European Conference, pages 13–40. Springer Verlag.

Coad, P., Lefebrve, E., and de Luca, J. (1999). Java Modeling in Color with UML.
Wiley.

Cockburn, A. (2001). Agile Software Development: Software Through People.
Addison-Wesley.

Cunningham, W. (2002). About the Portland Form. http://c2.com/ppr/about/-
portland.html.

Damm, C., Hansen, K., and Thomsen, M. (2000). Tool support for object-oriented
cooperative design: Gesture-based modeling on an electronic whiteboard. In
Proceedings of CHI 2000, ACM Conference on Human Factors in Computing
Systems, pages 518–525.

Harrison, S. and Dourish, P. (1996). Re-place-ing space: the roles of place and
space in collaborative systems. In Proceedings of CSCW’1996, Proceedings of
the Conference on Computer-Supported Cooperative Work, pages 67–76.

Highsmith, J. (2000). Adaptive Software Development: A Collaborative Approach
to Managing Complex Systems. Dorset House.

Jacobson, I., Christerson, M., Jonsson, P., and Övergaard, G. (1992). Object-
Oriented Software Engineering: A Use Case Driven Approach. ACM Press.

Mynatt, E. (1999). The writing on the wall. In Proceedings of INTERACT’99,
pages 196–204.

Nygaard, K. and Bergo, O. (1974). Planning, Control and Data Handling: Textbook
for the Trade Unions. Part 1 Initiation. (In Norwegian). Tiden Norsk Forlag.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Loresen, W. (1991).

270

Agile Environments - Some Patterns for Agile Software Development Facilitation

Object-Oriented Modeling and Design. Prentice Hall.
Schwaber, K., Beedle, M., and Martin, R. C. (2002). Agile Software Development

with SCRUM. Prentice Hall.
Stapleton, J. (1997). DSDM Dynamic Systems Development Method : The Method

in Practice. Addison-Wesley.
Wood, J. and Silver, D. (1995). Joint Application Development. Wiley.

271

271. Pattern Language for Conducting a Successful Niche Conference

Pattern language for conducting a successful niche conference
Cecilia Haskins

Lecturer at the Norwegian School of Information Technology
cecilia.haskins@nith.no

Pattern: Personal Connection
Abstract: This is the first pattern for a pattern language that will eventually build on
precedent patterns and add the essential elements that are required by the organizing
committees for smaller conferences. This pattern addresses the challenge of attracting
quality speakers on a shoestring budget. The author is very greatful to Neil Harrison
and Linda Rising for their patience and advises during the shepherding process, and to
the members of Workshop 2 for their helpful commentary during VikingPLOP 2002.
It is the hope of the author that the foundation for the entire language will emerge
with the help of the shepherding and future workshops.

Summary of the Language
Total number of patterns = 12
Grouped into 4 sections entitled Vision, Atmosphere, Roles and Customs. The
patterns in the Vision section identify the core values of the rOOts conferences, to
provide a forum for the discussion of new thinking – a spirit of learning. The other
pattern areas serve to reinforce the core.

Vision
Create a rewarding, mutually nurturing environment for the exchange and discussion
of trends in the software community linked to “object” oriented themes.

1. Marketplace of new ideas (Day 1 Panel)
2. News from the front (experience reports)
3. Environmentally-conscious
4. Something to take away and use tomorrow
5. Mixing up the formula

Atmosphere

Establish a setting for the conference that is comfortable, intimate and conducive to
formal and informal dialogues.

6. Comfortable beds
7. Time to talk
8. Night on the town

Roles

Leadership and participation are important to a successful symposium.

9. Enthusiastic committee
10. Distinguished speakers
11. Engaged participants
12. Credible web site

272

Pattern Language for Conducting a Successful Niche Conference

Customs
Repetition of certain formulas re-enforces the comfort level for returning delegates
and speakers and creates a format for “continuing” dialogues between and within each
conference event.

13. Something to remember us by (gift selection)
14. Personal connection

Related patterns
Antipattern: Greedy Conference

Notes.
The conference should have a vision that defines the purpose and establishes the
reason that the speakers have been invited. Speakers are informed of the nature of the
funding and sponsorship and become a part of the foundation for the conference by
their presence. In turn, they help create a forum for the exchange of new ideas and
not just another conference.

The essence of this solution is captured in a set of steps.
The organizing committee should create a wish list of persons they wish to hear
during the conference. Individual members of the committee volunteer to take the role
of personal host to each speaker.

Once the theme of the conference is determined, the speakers are asked to suggest
what presentations or tutorials they would most like to deliver. (see “Mixing up the
formula”)

After the speaker arrives in town, every effort is made for the host (or another
member of the organizing committee) to greet the speaker. On the evening before the
conference starts a small welcoming dinner with the speakers and 2-3 of the hosts is
scheduled so that the speakers do not have to find a meal, navigate a strange city, or
eat alone (unless they so choose). This serves to break the ice for persons who have
not yet met, but will spend the better part of 2-3 days together. Those already
acquainted often pick up unfinished conversations from their last meeting, and the
mood is generally light and jovial.

Speakers are encouraged to be approachable to the small audience during lunch and
conference social events, and a book signing is recommended. A unique gift with the
conference logo is presented to each speaker as thanks and a memento of the
occasion. (see “Here’s a little something to remember us by”)

273

Pattern Language for Conducting a Successful Niche Conference

Element Description of the Pattern

Name Personal Connection

Problem

Most conferences strive to offer a program to their delegates with the most qualified speakers
available. The organizing committee of a small conference with a limited budget may find it
difficult to offer large honoraria to their speakers, and therefore fail to attract the caliber of
speaker that the delegates deserve.

Context The organizing committee for a small, intimate niche conference has additional challenges from
those of better-funded conference committees.

Forces

§ Speakers of international caliber have hectic schedules and can command high fees

§ Speakers generally find conferences highly impersonal

§ The decision to attend a conference is highly dependent on the content and speakers

§ For most delegates the ability to attend a conference is related to an affordable price

Solution

Establish a Personal Connection with the speakers for your event. This is done by creating a
personal invitation, assigning a personal host and allowing a personal relationship to grow.

Begin with a personal invitation. Sometimes a committee member has met the person identified
as a candidate speaker. In those instances, that committee member should write the invitation
and build on that acquaintance. Other speakers are identified because they are authors of a book
that has been referred by another rOOts speaker or read by a committee member. In those
cases, this is the basis for the personal invitation. Every invitation refers to the web site of the
conference to establish credibility and when possible, indicated which other speakers are
already on the program with whom this speaker may wish to spend some time.

Simplify and personalize the interactions between the committee and the speakers by assigning
a Personal Host. The Personal Host is responsible for all communications before and after the
conference. During the conference, the Personal Host will greet the speaker upon arrival, make
sure that room reservations and meals are suitable and be available to assist with any questions
that arise while the speaker is in town.

Speakers are informed of the nature of the funding and sponsorship and become a part of the
foundation for the conference by their presence. The extra attention compensates the speaker
for a reduction in their normal honorarium. All travel expenses and any expenses that would be
incurred during their visit are fully covered by the committee. When requested, the presence of
a spouse is encouraged, and the spouse is included in all social activities.

At the end of the conference, a special, speakers-only event is scheduled, designed to show off
some aspect of the host town, and allow those speakers that can afford the extra day to relax,
confer and continue to enjoy each other’s company before going home.

In many instances, friendships begin between the invited speakers and the committee members.
These relationships become the basis for planning future conferences.

Examples

From conferences rOOts 2000 and 2001 and 2002

In 1999 the vis ion was generated to create a small conference in Norway that expanded on the
realm of thinking spawned by the creation of Simula and the promotion of object-orientation for
software design and development. Four prominent authors were considered critical to the
success of the first event. They were invited and asked to defer or reduce their usual honoraria.
Members of the committee accepted the role as “host” to one speaker and this approach has lead
to the background for this pattern. Today, the rOOts committee members have good friends who
in turn can suggest other persons with interesting and new ideas.

ROOts speakers have shaped much of the vision that motivates this conference. In 2000, Cope
helped the committee articulate a niche position for the conference resulting in the current
formula with tracks for both technical and leadership delegates. Martin Fowler gave us many
helpful tips on what worked best from his perspective as a speaker, and advised the committee
not to grow the conference into the thousands of delegates, as was the then-current plan.

274

Pattern Language for Conducting a Successful Niche Conference

Element Description of the Pattern

In 2001 a world-class author approached the committee and offered to be a speaker. All of our
keynote speakers have deferred honorariums. All of our speakers who receive honorariums
reduce their rates and spend lots of time with the delegates.

Resulting
Context

The end result is that for every 2 speakers who say “no thanks” there is one that says yes. And
often those who decline in one year because of a conflict in schedule make it clear they would
like to be invited again.

A small conference achieves its primary goal of creating a program filled with highly qualified
presenters. The presenters actually enjoy the conference because they are relaxed and allowed
time to exchange ideas with their peers. As a consequence, they are very generous in the time
they spend with the delegates. Delegates leave satisfied and looking forward to returning next
year.

Conference sponsors enjoy the prestige of being associated with an event with world-class
presenters and continue to support the conference in future years, which in turn helps the
committee to pay the speakers some money and at the same time keep the conference fees low.

Speakers are willing to consider repeating the experience, and the relationship is born. The
relationships established from prior years work to the advantage of both the speakers and
organizing committee.

There is always the possibility that a speaker will not accept the committee offer, but that is the
only negative consequence encountered to-date. There have been 2 experiences where rOOts
was scheduled against a “bigger” event and lost potential speakers to that event.

Rationale

§ Speakers have an altruistic side that prompts them to help a worthwhile event. They are
also human and value having a positive experience and a bit of a good time. They like to
take holidays and meet new people.

§ Components of a successful conference include sponsorship and good attendance both of
which are enhanced by the presence of world-class presenters

§ Delegates are inevitably drawn to conferences at which published authors or renowned
speakers are giving presentations and tutorials

§ Delegates’ employers are interested in spending their training money in the most efficient
way possible (minimized travel and conference fees, maximized conference content)

Related
Patterns

Antipattern: Greedy Conference

Known Uses Conferences rOOts 2000 and 2001 and 2002

275

275. Patterns for the Practicing Software Architect

Patterns for the Practicing Software Architect
Klaus Marquardt, Käthe-Kollwitz-Weg 14, 23558 Lübeck, Germany
Email: marquardt@acm.org or pattern@kmarquardt.de
Copyright © 2002 by Klaus Marquardt. Permission granted for the purpose of VikingPLoP 2002

Large software systems and projects have a lot of internal dependencies that comprise not only
software design, but also the process and the organization. Some of these dependencies can be
introduced intentionally, others will grow undetected and prevent the system or project to
evolve in an optimal manner. A software architect may detect undesired dependencies and try
to cure the system from them. The presented patterns provide techniques that enable a focused
work, and refine and redefine the role of an architect within the project.

Introduction
There is no commonly accepted definition of the profession of a software architect yet. Most
approaches focus on the initial up-front activities needed for large projects. Key success
factors are the creation and sharing of a common vision of the system, and a focus on the
system parts responsibilities and their mutual dependencies. However, some important
qualities of the system cannot be planned for in advance, but need constant care and attention.
Here another working attitude can serve the architect, an attitude towards problem solving.
The system becomes more consistent and exhibits more internal qualities when the initial
architect also is the most frequently consulted problem solver.

A different metaphor offers new perspectives both for agile development and for projects
facing problems – which every project will at some time. The software architect then takes a
role similar to a medical doctor. She examines the system and makes a diagnosis, identifies
the underlying causes and starts with treatment. This metaphor complements the more
common engineering metaphors and shows its strength in different situations.

This paper collects patterns about activities of an architect, and the role that she might take
within an organization. It is part of a larger effort to make problems and solutions accessible
in a medical form, as symptoms, diagnoses, and therapies. The diagnoses are typical entry
points and combine different therapies and show their relations and interdependencies. Some
diagnoses from design structures and organizations have been published before
[Marquardt01, Marquardt02a] and are referenced throughout the paper; see the appendix for
thumbnails.

Therapy Pattern Format
The pattern form used for the therapies deviates in some respect from canonical forms. First, a
therapy might fit different diagnoses, thus it starts with a “meeting point” more general than a
usual context.

Especially for therapies it is essential to know their mechanisms, and to learn about side
effects, cross effects, counter indications etc. – just as you would expect for any medication.
The respective sections extend the pattern form and are introduced by corresponding symbols:

the effective mechanisms and the related diagnoses or pathogens;

scope, costs, roles involved;

side effects, counter indications, overdose effects;

cross effects and related therapies.

Each therapy pattern reflects on its implementation and relevance and closes with an example.

276

Patterns for the Practicing Software Architect

Contents
Therapy Category Thumbnail

DIVIDE ET IMPERA Architectural
technique

When you need to provide a starting point for system development
and for management, divide the software system in distinct parts.

IMPERA SED AUTEM
DIVIDE

Architectural
technique

When you suffer from the fact that your system is a monolith that you
are no longer able to manage, identify potential components that
could come to closure and separate them from the rest of the software
system.

BIG PICTURE
ARCHITECTURE

Architectural
technique

When you need to provide an architectural outline that all decisions
can be measured against, define a catchy architecture outline and
make it become part of the project jargon.

EXPLICIT DEPENDENCY
MANAGEMENT

Architectural
technique

When the internal structure erodes while the project focuses on
functionality and delivery dates, introduce strong forces for all
development, and manage the structure as visible as you do with
functions and dates.

NEGLECT THE LEVEL
BELOW

AKA

DEFINED NEGLECTION
LEVEL

Architectural
technique

When you need to establish the architecture in the implementation
without compromises in key issues, decide on the level of detail that
is controlled by the architect, and neglect all levels below that.

COMPONENT
MAINTENANCE RULES

Architectural
technique

When the architecture needs to support a distribution of tasks
assigned by project management, define rules about your system
structure that developers can follow while they fulfill assigned tasks.

GENERIC SITUATION Architectural
technique

When you can not come to closure before you know how to deal with
all possible states and situations, abstract from the concrete situations
and describe each situation as an incarnation of a general one.

PART TIME ARCHITECT Architect’s role When after the initial architectural effort the architect can not
continue to work in the same role, allow the architect less time to care
for the system.

ARCHITECT ALSO
IMPLEMENTS

Architect’s role When you need a commonly shared vision of the software’s
architecture throughout the entire development, make the architect a
developer, a primo inter pares.

REDUCE
ARCHITECTURAL
BROADNESS

Architect’s role When the architect begins to hinder the project’s progress because the
team relies too heavily on his time and expertise, identify areas that
are not central to the system’s structure and keep them apart from the
architects.

277

Patterns for the Practicing Software Architect

Divide et Impera1

Consider a project that is too large and complex to be handled by a single developer. You are
asked to sketch a system architecture.

In the initiation of a large software project, you need to provide a starting point for system
development and for management. You are aware of possibly unstated expectations like

• the system structure must allow for parallel development and easy integration;

• you need to identify a reasonable order of tasks and the effect of changes;

• you need to tell which parts of the system are completed, and how they can be
packaged and tested.

In short, you are about to define a system architecture.

A monolithic software system is the structure
with the least effort in the beginning, … but a carefully partitioned system scales

better with increasingly complex
requirements and a growing scope.2

The system is developed with the least effort
when you define the architecture right at the
projects’ start, … but before halfway into the project you

hardly learned enough to finalize the
interfaces and architecture.

Late changes to the system structure require
rework effort and time, … but you do not know the optimal

partitioning in the beginning.
You do not like to spend effort for tasks that
are not visible to the end user, … but non-functional expectations need to

be addressed even if they come at a high
engineering cost.

You need to answer questions about the order
and distribution of assigned tasks, … but the system structure should be able

to stand independent of the tasks, for
changes, reassignment or maintenance.

Therefore, divide the software system in distinct parts. Consider and evaluate cuts both along
the lines of application domains, and of technical subsystems. Identify the intended
subsystems, define their dependency graph, their responsibilities, and rules for their division.

With this solution, you scale down the problem: you get to a number of smaller scopes that
are each used and maintained by a much smaller group of developers, and become stable and
finished in a more reasonable time. You do not need to complete the entire system to close
down each single part of it [Caesar].

While the partitioning of each system is unique and hard to predict, here are some starting
points that have proven effective in other projects:

• IDENTIFY APPLICATION MODEL. The essence of the system is its meaning to the user.
Before you can do any division, your analysis must be sure of the semantic core.

1 Latin: Divide and conquer
2 see [Dyson+02] for an example evolving from scratch to a complex internet server architecture

278

Patterns for the Practicing Software Architect

• SEPARATE VIEW FROM MODEL. Make sure that whatever you present does not
influence your data model, and that the specifics of the presentation are not reflected
in your application model. This has proven particularly useful when multiple distinct
views had to be supported for different use cases.

• SEPARATE MODEL FROM TECHNOLOGY. While you might be certain to use a particular
infrastructure throughout the project’s lifetime, your system division, testing and
integration becomes much easier when large parts of the software do not depend on it.

• SEPARATE APPLICATION FROM PROTOCOL. You gain flexibility and testability when
your application does not depend on some specific protocol, but treats each protocol
connection as an additional view on the model. Applicable in most technical systems
and where a high degree of interoperation with other systems is required.

• APPLICATION DECOMPOSITION. Within your application model, you will be able to
define distinct areas that have little overlap or commonalities. Separate these areas
explicitly, and address shared areas distinctly. The defined application areas are a
valuable starting point for a development order and sub-team division.

• FOLLOW ORGANIZATION. Like the architecture, the organization divides and structures
its components according to its needs. When your division of responsibilities
contradicts the organization’s, you create a friction that can be severe enough to
effectively replace any integration with finger pointing. Divide the system so that only
complete parts are given to an organizational unit, and that the dependencies are in
sync.

• DEFINE CLEAR AND MINIMAL INTERFACES. Check your division whether the identified
components have clear and potential minimal interfaces to each other. The emphasis
lies on clear here – unclear interfaces can tear your project down, while extensive
interfaces basically require a steeper learning curve for new programmers.

• INSTALL ISOLATION LAYERS. Each part of your software will have to solve problems
that are unknown to other parts of the system. The solution is a private property that
should not shine through the interfaces, otherwise your system becomes untestable and
might need frequent rework when particular solutions are exchanged.

• ISOLATE RISKS. From the very beginning, you will suspect that some software parts
are particular suspect with respect to performance, hardware or driver changes, or
other risky properties. Divide the system so that these risks are treated in only one
component each.

• IDENTIFY SHARED CODE. While you divide the system, you will often see that some of
the cuts you like to establish cannot be made clearly because both sides need some
shared knowledge or code. Define this shared area as a component on its own, and
start developing its interfaces early in order to stabilize them quickly.

The list above indicates that your system will be divided along multiple dimensions. Each
package of your system should sit at exactly one coordinate point of these dimensions, so that
you do not introduce conflicting forces within individual architectural granules.

When dividing your system, do not forget that you need a plan to conquer. Make sure that the
identified divisions can be set together again and integrate into a functioning, consistent
system. Play an integration planning game where you combine possibly available
components, and check whether the partial system would be executable and testable. You
might consider replacing particular components with dummy or trivial implementations.

279

Patterns for the Practicing Software Architect

This pattern contains an essence of the art and craft of software architecture. While from a
philosophical viewpoint software architecture is about creating and sharing a vision, as in BIG
PICTURE ARCHITECTURE, most clients of architecture demand more concrete guidance. A
software architect must resolve three key tensions within a project: the tension between a top-
down approach where the architect defines what is to be implemented, and a bottom-up
approach where the architecture is the result of the finished development; between desired up-
front activities and pragmatic refactoring of not-so-perfect subsystems; finally, the tension
between the immediate need for task assignment and the deferred need for a consistent
maintainable system structure.

The art of applying DIVIDE ET IMPERA lies in three aspects with the component definition:
they should be defined along application defined lines, exhibit appropriate mutual
dependencies, and be of an adequate size. Define the components in a way that they need as
little programmatic access to one another as possible. When you need that access, order the
component dependencies in a manner that the most frequently used component becomes
stable first.

An appropriate component size depends on the total system size. It is usually not useful to
distinct more than about a dozen components per level of abstraction. This may give you a
rough idea; however, the application coherence of the components is definitely more
important.

The main mechanism is to establish a separation of concerns, and to get to smaller
system pieces that you can manage more easily. By forcing you to structure the
system, DIVIDE ET IMPERA is preventive against most structural diseases such as
QUICKSAND BASES, CROWDED PACKAGES, FOUNDLINGS, and DEPENDENCY CYCLES.
Applied on a small scale, it can become effective against CROWDED PACKAGES and
DEPENDENCY CYCLES.

The effort of DIVIDE ET IMPERA depends on your and the teams’ abilities to abstract,
communicate, and learn. It is about proportional to system and the team size, and can
be scaled down by simple timeout criteria. It can be lower when a preventive BIG
PICTURE ARCHITECTURE is in place. Involved roles are developers and architects, with
a limited involvement of management.

There are no counter indications. You might experience an overdose effect when you
choose too many and too small components, that you become busy trying to master the
complexity of component relations instead of gaining the profits of a clear system
structure. The most severe side effect is that you might get the division wrong,
providing more irritation than guidance and effectively preventing system integration
and maintenance.

A number of other therapy patterns help to increase the effectiveness of DIVIDE ET
IMPERA: BIG PICTURE ARCHITECTURE, NEGLECT THE LEVEL BELOW, COMPONENT
MAINTENANCE RULES, and MAP COMPONENTS TO EXECUTION. Soothe possible
overdose and side effects by applying IMPERA SED AUTEM DIVIDE frequently from the
very beginning which complements the top-down approach by a bottom-up attitude.

An example is given with the IMPERA SED AUTEM DIVIDE therapy pattern

280

Patterns for the Practicing Software Architect

Impera sed autem Divide3

Consider a project that is too large and complex to be handled by a single developer. While the
initial system is quite aged, it needs further maintenance and functional additions.

In a large software project that grew without restructuring for some time, you are faced with
one of the following problems – or more likely, with several of them within a short period:

• The changes you introduce to the system have unexpected effects for unrelated
functionality, or no effect at all.

• You are unable to assign a task that does not interfere with other tasks.

• You find no way to complete an assignment without changing already finished system
parts.

• You cannot test a single functionality without testing the entire system.
In short, you suffer from the fact that your system is a monolith, or Big Ball of Mud
[Foote+00], that you are no longer able to manage. The problem at hand can be in any area
like parallel development, closure, testability, or packaging.

You do not like to spend effort for tasks
that are not visible to the end user, … but further functions are increasingly hard to

add and come at a high engineering cost.
Late changes to the system structure require
rework effort and time, … but you do not know the optimal partitioning

in the beginning.
A monolithic software system is the
structure with the least effort in the
beginning, … but in the meantime you learned about your

system and sense an emerging structure.
You know that you need to spend time on
revising your systems’ structure, … but you can not afford to put the

development to a hold.
Therefore, identify potential components that you could finish independent of future system
extensions, and separate them from the rest of the software system. Finish these components
before you continue with functional expansions. If you cannot complete the components
themselves, declare their interface as a component on its own and finish that one. Thus, the
application becomes completed in terms of these defined independent, or at least well ordered
building blocks.

Consider and evaluate cuts both along the lines of application domains, and of technical
subsystems. The topics described in DIVIDE ET IMPERA can give you a starting point. Define
the components’ responsibilities and interfaces and check for dependencies with other
component candidates. Start dividing the system where the current monolithic structure
hinders you most, and introduce further structure in a piecemeal growth manner.

With this solution, you define some area of the system for which you can solve your problem.
You get a smaller scope that can be handled by a smaller group of developers, and become
stable and finished in a more reasonable time. Neither do you need to complete the entire

3 Latin: Conquer, but also divide

281

Patterns for the Practicing Software Architect

system to close down these specific parts, nor do you need to finish all separation efforts
before you continue to develop user relevant functionality.

The art of applying IMPERA SED AUTEM DIVIDE lies with the component definition, just as in
DIVIDE ET IMPERA. However, you are in refactoring [Fowler99] mode now and might face
some unpleasant facts of the de facto system. Take special care to limit mutual access
between the components. When all components access each other, you will not win the
division (and might lose the imperative), and most liabilities of a thicket like structure become
re-introduced. As always with refactoring, also take care not to break existing functionality
(your imperative), preferably by maintaining an automated test suite for user visible features.

One major advantage of IMPERA SED AUTEM DIVIDE is that it can be introduced into an
existing code base, often with surprisingly little changes and at a low cost. On the downside,
the division is by convention only and can in general not be enforced in code. Applying
IMPERA SED AUTEM DIVIDE requires buy-in by most of the developers. Some languages and
environments offer constructs that help them to stick to their conventions.

The main mechanism is to separate different concerns where they stand in your way,
and to factor out smaller system pieces that you can manage more easily. IMPERA SED
AUTEM DIVIDE is thus effective against structural diseases on a limited scale, such as
QUICKSAND BASES, CROWDED PACKAGES and FOUNDLINGS with a chance for
remission of most symptoms.

The effort of IMPERA SED AUTEM DIVIDE is proportional to the amount of code, and
can be scaled down to the most suffering components. It can be lower when a
preventive BIG PICTURE ARCHITECTURE or a operational structure according to DIVIDE
ET IMPERA has been in place. Involved roles are limited to developers and architects.
However, when you introduce IMPERA SED AUTEM DIVIDE late in your project you
need to re-consider your system partitioning. This can become a fundamental
architectural change – to the positive, but at the price of rethinking and refactoring.

There are no side effects or counter indications. An overdose effect can occur when
you apply IMPERA SED AUTEM DIVIDE against a grown and working system at the end
of its life cycle.

IMPERA SED AUTEM DIVIDE is a natural counterpart to DIVIDE ET IMPERA. You need
both of them in different stages of the project. A successfully established BIG PICTURE
ARCHITECTURE helps to minimize the dose you need of IMPERA SED AUTEM DIVIDE.

The software of an integrated workplace needed to integrate a number of different
applications. Each of these applications brought along its own user interface and
data model (PLUG-IN PACKAGE [Marquardt99]). The system became divided along
these packages, plus the common software parts they depended on, and the
software parts that employed the plug-ins.
The packages as well as the common framework turned out to be of a too large
granularity. They were subdivided during development: most packages according
to technical aspects as user interface, communication, persistence; one plug-in
package became subdivided along sub-applications within the initial application to
support the existing know-how of the development team.

282

Patterns for the Practicing Software Architect

Big Picture Architecture

Consider a project that is too large and complex to be handled by a single developer. You are
asked to sketch a system architecture.

In a large software project that is started from scratch, you need to provide an architectural
outline that all decisions can be measured against.

A detailed architecture provides the closest
decision guidance, … but a late architecture delays the project, or

becomes avoided by decision makers.
A concise architecture is easy to transport and
understand and provides consistency by itself, … but a short Metaphor4 may have multiple

meanings and mislead the projects’
participants, and

… a Metaphor answers too little questions
beyond its particular domain.

Communicating and arguing about the
architecture is tedious and may become
frustrating, … but an architecture not known to the team

will be ignored and forgotten.
Therefore, define a compact architecture outline and make it become part of the project
jargon. The software architecture outline must cover the top level of the technical structure,
the key domain abstractions, interfaces and interactions, and the order and stability of
development.5

You need to illustrate the most important issues in a simplified way. The simplifications
should match with the developers’ experience and scale up to a large extent. Examples from
the technical domain are a Document-View or a layered architecture. The domain model
typically comprises less than 20 classes and their relations. The most relevant interfaces can
also be categorized and sketched. The order and stability of development can be expressed in
packages and their dependencies.

Metaphors can help you to outline parts of the BIG PICTURE ARCHITECTURE with a few words
that evoke guiding associations. Graphics and diagrams are typically most appropriate for
components, interfaces and interactions. Resist the temptation to use buzzwords and
technology phrases as they do not help you to distinct your unique system.

Influencing the project jargon is most easy when you can refer to common vocabulary. This
can be pattern names in technical domains. Key domain classes usually creep into the
commonly used language from the customer. Packages and dependencies may require more
thought and more discussion within the team, before a common terminology becomes
established.

A BIG PICTURE ARCHITECTURE typically is specific to your system and its domain. However,
you make your life (and the life of your peers) easier when you refer to a common and rather
precise vocabulary. Some architectural patterns as MODEL-VIEW-CONTROL [Buschmann+96]
can transport significant ideas with a few words.

4 as in over-simplified XP
5 This is an extension to the SHAMROCK pattern, thumbnailed in [O’Callaghan99]

283

Patterns for the Practicing Software Architect

Where you need to introduce specific high-level concepts, try to maintain a level of detail and
abstraction that can provide guidance. Well-understood and well-understandable systems
typically contain SMALL FAMILY SYSTEMS [Kerth95], that is a limited number of participants
at about the same level, who know each other well and play defined yet distinct roles. You
may use this as an completion criterion for this level of detail.

While patterns are most useful for technical issues and interfaces, the specific small families
often occur in top level domain classes. Relate these aspects to each other, and explain why
the combination of different views on the system is important, and which view is most
appropriate when.

The dependencies within these views and between them must be explicitly modeled, so that
all current and foreseeable questions can be evaluated against all of them. Views from
different aspects should be orthogonal and complement each other well. Be prepared to even
address issues of proposed team structure, project scheduling and task assignment.

The main mechanism is to establish means and ways of communication. BIG PICTURE
ARCHITECTURE is effective against all diseases related to communication problems,
with a chance for remission of most symptoms.

A BIG PICTURE ARCHITECTURE requires time to develop and communicate. The
architect needs to involve all roles of the project. The effort is comparable to other
team building processes, and could be spend in parallel to similar processes that cause
friction but form a team and consensus.

There are no side effects or counter indications. An overdose effect can be “micro-
architecture”, similar to micro-management. The most severe side effect is that you
might choose an inappropriate big picture, providing more irritation than guidance and
effectively preventing a consistent system development.

BIG PICTURE ARCHITECTURE is one of the essential architectural techniques you need
from the very start of the project. In conjunction with DIVIDE ET IMPERA and NEGLECT
THE LEVEL BELOW it transports the architectural vision of the system.

In lack of other common vocabulary, an architect introduced an extensible
architecture with the notion of “colored boxes”. Each box represented an extension
component, the color indicated its particular purpose with respect to techniques
and application. Within each component, a Model-View-Control pattern (MVC)
came into place, and within the MVC participants one more level of substructure
was defined. After some time, the vocabulary and dependencies became obvious to
the team, and each developer was able to place a given class at the correct logical
location – or to tell what was wrong about it.

284

Patterns for the Practicing Software Architect

Explicit Dependency Management

Consider a project in which each new functionality is designed in a small group, and for each
of its aspects the most appropriate place in the system is determined. An architect observed
whether the agreed relations are kept during development.

In a large software project, the internal structure erodes while the project focuses on
functionality and delivery dates.

Functions and dates are externally visible and
easy to track, … but the internal structure is visible to

developers only – or incomprehensible to
everybody.

You do not like to spend effort for tasks that
are not visible to the end user, … but non-functional expectations need to be

addressed even if they come at a high
engineering cost.

Functions and dates determine how valuable
the software is initially, … but deficits in the non-functional internal

structure limit the development speed,
testability, and maintainability.

Non-functional properties are plenty, and
they are incredibly hard to measure
objectively, … but a focus on very few important issues

like dependencies and responsibilities6

gives you a usable grip to the system’s
internal quality.

Therefore, track the internal system dependencies as a manager would track dates and
delivered functionality. Use your influence skills and introduce strong forces so that the
management of the structure becomes a similar visibility. Establish restrictive rules for the
key dependencies within your system. Enforce that all developers stick to them as they do to
coding conventions and project schedules.

However, hold a minute before weighting your influence against others. First make sure that
you are detailed about the desired structure, that it is well communicated, and that the
components interfaces are clear, consistent, and unambiguous with respect to dependencies
and their direction. Use DIVIDE ET IMPERA to outline and define the structure, but also use
NEGLECT THE LEVEL BELOW to define your stop criteria, reduce your workload and avoid
appearing draconian.

Check the dependencies on a regular basis, and establish this check as part of the commonly
accepted development process. Make sure that you have tool support for the checks!
Remember that compiler and linker already do a similar job, they typically can be
instrumented to fit parts of your needs.

You need to create a dependency model and maintain it through the project. Update both the
model and the checking tools with each change. As a rule of thumb, do not check for mutual
dependencies in more than three dimensions or about three dozen components. If further
divisions are needed and in place, they are probably less relevant for frequent checking.

6 for a motivation of this, see [Marquardt01], “A view on software architecture”

285

Patterns for the Practicing Software Architect

EXPLICIT DEPENDENCY MANAGEMENT can most successfully be done by strong personalities.
It is hard to introduce additional forces onto the developments, and it is even harder when
they are orthogonal to the manager’s (short term) forces.

The main mechanism is to bring the internal structure and its relevance to the project’s
success into everybody’s consciousness. EXPLICIT DEPENDENCY MANAGEMENT is
effective against all diagnoses caused by too little attention on structural issues, such
as DEPENDENCY CYCLES.

The related costs depend heavily on the project and its participant, and grow
facultatively with the project size. This duty should be a significant part of the job
definition of the software architect. Other roles involved are software developers, but
they should hardly notice their involvement.

The only counter indication is a project of small size, i.e. when you are likely to
overdose this agent. An overdose effect can be “micro-architecture”, similar to micro-
management. When an architect cares for too many details, the developers perceive
both mistrust and that their work is not valued.

The key therapy for combination with EXPLICIT DEPENDENCY MANAGEMENT is
NEGLECT THE LEVEL BELOW. The combination can help you to cope with the
combinatorial explosion of component relations with increasing project size, and avoid
the micro-architecture overdose effect.

A project used a visual modeling tool and established a process to keep this model
consistent with the actual code. Custom-made scripts checked the model for various
design metrics, among them for prohibited usage between dedicated system areas,
and for cyclic dependencies among packages.

286

Patterns for the Practicing Software Architect

Neglect the Level Below

Also known as: Defined Neglection Level
Consider a project with a detailed architecture designed by an architecture team. The
developers see a huge pile of paper, prepare for trouble, implement the system according to
personal taste – and ignore the paperwork and the ideas buries within.

For an ongoing project, you have defined a well-thought concise architecture. You need to
establish the architecture in the implementation without compromises in key issues.

An architecture is expected to cover
everything relevant for system design and
implementation, … but a voluminous architecture is neither

read nor implemented without overly tight
restrictions.

The architecture has prepared for every
reasonable issue arising, … but during development of sufficiently

large projects new, unforeseen issues will
arise.

The system is most consistent when
everything is controlled by the architecture, … but oftentimes consistency in details is less

important than a clear overall structure.
An intentional limitation of your efforts helps
you to reach your major goals, … but you need to be aware where a slip in

details can be crucial for the project’s
success.

Therefore, decide on the level of detail that is controlled by the architect, and neglect all
levels below that. While you are serious about the architectural rules at high levels, relax your
control on all levels below the one that is of architectural interest. For each interest area, you
might define a separate neglection level.

This is an important rule of thumb when you care for DIVIDE ET IMPERA and a BIG PICTURE
ARCHITECTURE. For example, take care for packages and the order of components; but neglect
cycles among classes within a single package or components.

While there is no commonly valid rule across all projects and domains, here are some starting
points how to determine your initial level of neglection. Be aware that this neglect is subject
to change during the project, according to identified risks, workload, and customer needs.

• ONE LEVEL BELOW BASICS. As a first approximation, look at the components you
defined in DIVIDE ET IMPERA and take care of no more than one level below that one.
Include especially risky components in full detail unless you are swamped with work.

• LISTEN. Except when compiled from newcomers, the team usually knows quite well
where critical points are and what to take care of.

• DON’T INTERFERE EXPERIENCE. Where the most experienced developers work, you
may neglect the most activities – provided you have clearly communicated and
reasoned about your priorities and architectural goals, and received a high degree of
buy in. Stay in close contact to understand when you need to get rid of your neglect.

• BE ARROGANT. After accepting other people’s competence and wisdom, you need to
be sufficiently arrogant to go for your viewpoint in case of any doubt.

287

Patterns for the Practicing Software Architect

Like some other patterns about the software architect, NEGLECT THE LEVEL BELOW requires a
delicate balance. To the inexperienced, it can turn into bad advice for at least two reasons.
First, in medium sized project with experienced developers, an architect’s credibility may
partly depend on his ability to discuss even on details. Second, decisions on detailed levels
may strike back to higher levels, if they are not in line with the big picture. You need to know
which decisions are of key importance, and follow them to the implementation. If you really
neglect these, somebody else will take over and become the de-facto architect of the project.
And this is probably OK, because the knowledge of an appropriate neglection level comes
with experience, and this is what being an architect should be related to.

The main mechanism is a defined focus for the architect’s work and a relief from tasks
that do not increase success probability. Additionally, NEGLECT THE LEVEL BELOW
applies a divide-et-impera strategy with respect to responsibilities in the project,
allowing other experienced developers to grow with their tasks. It is preventive and
palliative against all diagnoses caused by overly tight architectural control or by
ignored architectural rules.

NEGLECT THE LEVEL BELOW is especially useful in large, complex projects. There are
no costs related, and only developers and architects need to be involved.

Lack of experience is a clear counter indication. It is important that you know what is
important, what is not, and which issues may become important at which time during
the project. The overdose effect of NEGLECT THE LEVEL BELOW would be to have no
meaningful architecture at all, whilst the underdose effect is the same – though from
ignorance from the other side.

NEGLECT THE LEVEL BELOW is best accompanied by BIG PICTURE ARCHITECTURE, in
which you already define what are the key architectural issues to you. JOINT DESIGN
can help you notice when you are about to miss important issues, and PART TIME
ARCHITECT can help you to really let go and focus on key issues only.

A large Plug-In based project introduced design conventions that banned
bidirectional or cyclic dependencies among packages. These rules were checked
with automated tool support. Within a package, dependency cycles were explicitly
accepted. This allowed for a refactoring when cycles were appropriate to the
solution, and kept the high-level dependency structure manageable.

288

Patterns for the Practicing Software Architect

Component Maintenance Rules

Consider a project that is too large and complex to be handled by a single developer. You are
asked how the system architecture supports tasks assignment and parallel development.

In a large software project that is started from scratch, the architecture needs to support a
distribution of tasks assigned by project management.

The order and distribution of assigned
tasks is a project management issue, … but the technical system partitioning is an

architectural issue.
The task assignment must be related to
the technical solution, … but the architecture itself does not depend on a

particular (arbitrary) assignment, and the
overall solution does not change with tactical
project decisions.

You need to answer questions about the
order and distribution of assigned tasks, … but the system maintenance depends on the

logical components and structure alone.
Therefore, define rules about your system structure that developers can follow while they
fulfill assigned tasks. These rules provide guidance to maintain and update the system
consistently. Adding functionality must always be paralleled by questioning and updating the
system structure [Parnas94].

Define which subsystems and packages the system needs to distinguish, and why – as you do
in a DIVIDE AND IMPERA. Define each major package’s responsibilities, so that it is easy to
determine which classes or functions belong into it, and which must be kept out. Also provide
criteria on when a new package should be created, and how and where this finds its
appropriate place within the top level architecture.

Again, the components defined in DIVIDE AND IMPERA form a good starting point. A
reasonable, though obvious rule would be that each package belongs to exactly one side of
each separation. Each functional addition or further separation enforces the creation of
additional packages. Further rules come from intentional abstraction layers, and an analysis of
expected changes, configurations, and system extensions.

Another important hint for a component maintenance problem is unclear ownership. For each
package, exactly one or one team of developers should feel responsible. Mutual access
problems indicate a missing separation and typically require splitting the component.

The larger the system, the more you need to care for a consistent component structure. In
small projects, you might be well of with a much simpler system division oriented along the
lines of use cases or stories (as used in Extreme Programming [Beck99]). Here, each use case
forms both a task and a component – driven to an extreme, the system could consist primarily
of Use-Case Controllers [Aguiar+01]. This is surprisingly similar to the functional
decomposition with its known liabilities [Martin96], and it hardly scales for larger systems.

Besides finding appropriate rules, the implementation of COMPONENT MAINTENANCE RULES
has another hard part: communicating the rules in a way that developers adhere to them.

The probably most effective way for communication is JOINT DESIGN [Marquardt02b], where
you participate in the developers’ work and can give both rules and the reasoning behind

289

Patterns for the Practicing Software Architect

them. Seek for discussions where you can combine answers to arising questions with
explaining the goals behind your advice. You may even write a short document of a few pages
that summarizes the rules and can be a usable reminder. Unless the project is really huge, I am
not in favor of presentations – except to upper management, and people outside of the project.

COMPONENT MAINTENANCE RULES is effective because it defines the scope of the
architecture and its scaling mechanism. It is curative for all diagnoses that are caused
by structure erosion, such as CROWDED PACKAGE, FICTITIOUS MARRIAGE, and
FOUNDLING.

COMPONENT MAINTENANCE RULES is the daily task of a software architect. Its effort
depends on the quality of the guidelines and the willingness of the developers to
follow them. Involved roles are limited to developers and architects.

There are no counter indications or overdose effects. A possible side effect occurs
when there is no architect’s position defined, in this case typically a senior developer
suffers from trying to fulfill this task by working overtime.

DIVIDE ET IMPERA and BIG PICTURE ARCHITECTURE are necessary first steps for
COMPONENT MAINTENANCE RULES. To know where to stop with rule definition, apply
NEGLECT THE LEVEL BELOW. Another related diagnosis is FUNCTION FOLLOWS FORM,
which can be avoided by an agent combination of COMPONENT MAINTENANCE RULES
and MAP COMPONENTS TO EXECUTION.

Possible rules and heuristics could include:
Every function is placed as low in the package graph as possible. Potentially
commonly usable classes must be accessible from potential clients with respect to
the global division of your system. Use abstraction layers to increase the reuse
potential, and put specific implementations at a higher level.
If frequent conflicts between different developers occur, check whether some
packages need to be split because they combine incoherent responsibilities.
Application related classes must not depend on technical issues, such as persistence
or serialization. Nothing depends on a presentation.
It is easier to do performance tuning in a clear logical structure, than to debug in a
performance optimized system.

290

Patterns for the Practicing Software Architect

Generic Situation

Consider a component within a project that has a limited and well understood functionality. All
its states or error conditions can be related to a few generic situations, and its responsibilities
described by a few generic interfaces.

In a software component under construction, you need to describe all states that a specific
property can take. The software itself needs access to these properties. You can not come to
closure before you know how to deal with all possible states and situations.

It is convenient to have each single
condition mentioned uniquely, … but you can adopt to new situations more

quickly when you have the ability to
categorize them in familiar terms.

It requires little thought to change a system
whenever you learn more about it, … but it is expensive to couple all your

development efforts tightly, and update or
recompile your existing code base with
essentially unrelated changes.

Anticipation of yet undiscovered system
properties is error prone, … but you can use your application knowledge

to come to separation and closure quickly.
Therefore, abstract from the concrete situations and describe each situation as an incarnation
of a general one. Instead of describing each possible state individually, your system might
allow you to abstract to a small number of states of a more general nature.

If you manage to define and live with a few, at maximum a few dozens of general situations,
your basic requirements may be fulfilled while you come to closure with the remainder of
your software component and its dependees.

Apply GENERIC SITUATION whenever you or a colleague is tempted to enumerate some
property on system scope. When there is no definite criteria to end this enumeration, step back
and look for commonalities among the already available entries. Combine similar descriptions
to a common one.

GENERIC SITUATION is a standard technique to software engineering as to all scientific
disciplines, and has become especially popular with object-oriented approaches. Though it is
mostly expressed using base classes and inheritance, it is not limited to that. The general
nature of GENERIC SITUATION is to retreat from the problem at hand, check for similarities
with other known or expected problems, and describe the commonalities among them.
Domain specific application level protocols for standardized data exchange, e.g. based on
XML, are examples for successful GENERIC SITUATION.

The ability to find and communicate abstractions and GENERIC SITUATIONS comes with
experience, and depends on individual personalities. When you are insecure, do not start with
GENERIC SITUATION but approach your system in a piecemeal growth manner, learning about
the system while you complete it. However, you miss chances for an early decomposition and
independent completion of different subsystems.

It is important to control changes to your generalized software parts. Each change violates the
system’s closure, and reduces the trust its clients have into it. Especially avoid bloat – for a
successful GENERIC SITUATION, less is always more.

291

Patterns for the Practicing Software Architect

Occasionally, you will find that your GENERIC SITUATION falls short of describing a particular
situation. If necessary, you can accompany the general description by some optional context
information, like class name or source file.

The main mechanism is to reduce the systems’ complexity by using your knowledge
of the application domain, rather than by technical engineering means. GENERIC
SITUATION is effective against QUICKSAND BASES, with a chance for remission of all
symptoms.

The effort of GENERIC SITUATION is in the up-front considerations, and can not be
scaled. Involved roles are limited to developers and architects. The most significant
side effect is that you have an increased effort for late corrections after wrong guesses.

Counter indications are a project that is not in an early stage, or a component whose
domain is not well known to the development team. You might experience an
overdose effect when you try to describe everything in a generic manner, and forget
that software is about timely delivery of real functionality.

The C++ STL defines fourteen exception classes that it throws in error situations.
A framework project decided to report only a limited number of error codes to their
clients, because the analyzed error situations offered only very few meaningful
reactions of the client code. They defined a class ReturnCode that was returned
instead of an integer and basically consisted of a definition of 18 error codes. All
situations were described in terms like Timeout, InvalidArgument, InvalidState, or
Concurrency. It was found that three of the 18 initially defined general codes were
never actually returned from a framework function.

292

Patterns for the Practicing Software Architect

Part Time Architect

Consider a large project lasting for several years, now in its second half. The initial
architectural work is done, and the roles, duties and assignments of the lead technologists are
to be changed.

After the initial architectural effort, the remaining questions to the architect will arise in ad
hoc situations. The architect can not continue to work in the same role, trying to answer
questions before they arise.

Architecture is a key factor in software
development, … but it is only one of a number of key

success factors.
The architectural outline is done early in the
project, … but most architectural work is done in a

piecemeal growth manner.
You are the best architect the software system
could possibly have, … but the system needs more than just you,

and you need more than just this system.
You are valued for your expertise and advice, … but other people also love to contribute

and be recognized for their work.
Therefore, allow yourself only a limited time to care for the system in the architect’s role. Let
go as soon as the system can prosper with less care, and stay in control of only the very
essentials of the architecture.

This can be done in several ways that also give other advantages. You could spend more time
doing actual coding (as in ARCHITECT ALSO IMPLEMENTS), helping to finish the system. You
could move forward to another project or other unrelated tasks. You could invite other team
members to take some architectural responsibilities, giving them adequate career
opportunities.

When your time as full time architect of the particular system has passed, strange things will
happen. Colleagues and managers will pay less attention to your suggestions, some colleagues
might try to occupy your position, your focus on structure might lead to over-design and
unnecessarily slow down the development pace – in short, you potentially harm the system
and your career.

The difficult part is to identify the right moment to let go. Similar to movie stars and
politicians, you can tell that the moment was there. It takes a very self-conscious and ego-less
person to declare herself partially superfluous, and to admit that the project would run faster
without her work. If you initiate a change actively, you avoid that others have this impression
first, and you can decide yourself to go back into full time mode when integration problems
arise or major extensions are planned.

Whatever you decide to change, you face a difficult situation that you need to balance. The
system still requires some guidance and a firm hand for consistent answers to arising
questions, often on an ad-hoc basis and with a low response time, especially for integration
problems near the project’s end. To be able to fill this demand, you should keep off the
critical path in other assignments7. On the other hand, most assignments only make sense and

7 see also: LAZY LEADER, [Coldewey98]

293

Patterns for the Practicing Software Architect

offer learning and career opportunities when you are able to spend time and commitment –
including the willingness to work on the most important issues.

Doing architecture on a part-time basis has a large political aspect and requires agreement
with your manager. I have seen more than one project where project manager and architect
were competing for their influence. All suggested measures take some control within the
current project away from you, so you need to carefully consider your career and learning
opportunities. The longer you stay with a project, the more thorough insights you can gain,
and you gather experience-based knowledge of aspects related to admission, packaging, and
shipping. However, you are also more likely perceived as “ordinary developer”, which might
not be your favorite role within the organization. So you need to balance your opportunities.
In any case, you are better off if you suggest your favorite choice before somebody else does.

PART TIME ARCHITECT is intended to help when the architecture hinders the system
development, such as in DESIGN BY SPLINTER. It can also be applied during the normal
course of the project, especially when you start to REVERT THE ORGANIZATION
[Marquardt02a].

This can start as a personal practice for architects, but in the mid term it requires
management support. The costs depend on your organization and on the teams’ ability
to fill missing parts of the architecture by themselves. The costs are lower with teams
used to agile development methods [Cockburn02] compared to teams following a
traditional, waterfall-like process.

A side effect is the potential influence to your career. PART TIME ARCHITECT can be
fostered by JOINT DESIGN, where more developers take over architectural tasks. The
overdose effect can be lethal for a project: having no consistent architecture, and
stopping being an architect. Beware of the overdose effects of any agent that decrease
the influence of architecture. Do not lose your strengths! This is in no way a
recommendation to drop all architectural efforts and to let loose the dilettantes.

One particular implementation of PART TIME ARCHITECT is ARCHITECT ALSO
IMPLEMENTS. Note that PART TIME ARCHITECT goes nicely together with agile
development methodologies where parts of the architecture emerge, and the architect’s
role can be filled by different project participants.

For a significant functional extension of a medical product, an architecture team
was formed of four developers. One of them was the initial architect of the product.
All architects remained the lead developers of their respective teams. This lead to a
very quick exchange of experience, and the team established a productive and
informal working basis. Product development proceeded smoothly and combined a
successful follow-on product with a consistent architectural vision of the complete
system. The four architects found a productive way of cooperation. While the initial
architect acted as a MENTOR and improved his team and change management skills,
the developers raised their architectural skill level.

294

Patterns for the Practicing Software Architect

Architect Also Implements8

Consider a project where the architects have their desks among the developers, consult them
for decisions and are consulted in turn, and suffer from the system’s insufficiencies just like
everybody else does.

After some initial effort in high-level system structure and guiding rules, you need a
commonly shared vision of the software’s architecture throughout the entire development.

Good architects have special skills in abstract
thinking and communicating, … but they are often also the most

experienced developers.
An invisible outsider as architect is not able
to convince the development team, … but mere presence does not make a vision

a shared one.
Architects might perceive the need for
structural maintenance tasks, … but these task are to be fulfilled by

individual developers on a daily base.
Therefore, make the architect a developer, a primo inter pares9 - in addition to her
architectural tasks. Assign development tasks to her that are influenced by architectural
decisions. It is common practice to let the architect implement the most difficult system parts,
but take care to keep him off the critical path and plan some slack time for unforeseen
architectural issues.

Leading by example brings a lot of short and long term benefits. You get a consistent system
and a well educated development team, and a number of high quality feedback loops. This
will most likely increase your system’s development speed, its internal quality, and decrease
its maintenance costs. On the other hand, an architect switching between different tasks might
be less effective, and some of the tasks can not be completed as quickly as usual.

In huge industrial projects, it is fairly uncommon to have an architect do anything but
architecture – whatever your organization may mean with this term. However, ARCHITECT
ALSO IMPLEMENTS is a common policy in smaller teams. When different teams and
organizations begin to cooperate, for example in projects crossing geographical and cultural
borders, stating this policy explicitly is of major importance. Otherwise, misunderstandings
will occur with respect to roles, responsibilities, influence and availability that can seriously
hinder a successful cooperation.

ARCHITECT ALSO IMPLEMENTS helps you to keep the system in sync with the
architecture, and the architect in sync with the development team. It is effective
against problems that come with diminished architectural consequence, such as
CROWDED PACKAGES.

This is common practice for a large number of small to medium sized teams. When
introducing it anew, it requires management decisions, a clear definition of the
architect’s role, and the willingness to take the risk of delays in architectural decisions,
or of delayed task completion respectively.

8 initial version published by J.O.Coplien [Coplien95]
9 Latin: first among peers

295

Patterns for the Practicing Software Architect

A side effect is the potential influence to your career. While you gain influence within
the project team, your influence on a company level might be smaller than before.

ARCHITECT ALSO IMPLEMENTS is probably the most common one of the possible
implementations of PART TIME ARCHITECT. It can help to overcome possible overdose
effect introduced by NEGLECT THE LEVEL BELOW.

A large bi-national project established an architecture team, consisting of one
architect from each site. One architect focused mainly on this formally mighty
architecture team and did not participate in the daily development work. The other
architect took more care for concrete daily questions than for the central
architecture team. After eight months, the first architect had lost contact to his team
to a degree that the team went astray and did not manage to deliver useful
software. Finally the project was restructured, based only on results of the second
team. The other development department was dissolved.

296

Patterns for the Practicing Software Architect

Reduce Architectural Broadness

Consider a large project in tough times. While the architect is busy clarifying issues on a
company level, important components are designed by the team with little to no architectural
influence.

The architect begins to hinder the project’s progress because the team relies too heavily on his
time and expertise.

It is important to have an architecture in place
to develop a consistent system, … but architecture is not the only thing that is

valuable about a system.
The architect is often the most experienced
technician in the project, … but not all tasks require the same level of

expertise.
A good, consequent architect can be a
MENTOR [Marquardt02b] to other developers, … but an overly rigorous architect takes away

self confidence of other developers.
Therefore, identify areas that are not central to the system’s structure and keep them apart
from the architects, from meticulous design reviews, and from discussions about their
structure.

Let the architect focus on issues that cross the boundaries of the project or the organization,
and that are of key importance for future projects. In these areas, an architect’s expertise is
mandatory. Allow small teams of seasoned developers to design large subsystems
independently, leave them alone for a while and trust in their ability to finish successfully.
The architect needs to work overtime less, and other developer gain experience.

As a starting point for your non-central areas outside of the architect’s scope, again take a
look at the components identified during DIVIDE ET IMPERA. Candidate components need to
fulfill two criteria: they need to be leafs in the dependency tree that are not suppliers for
several other components, and the developers working on them need to be both experienced
with the task at hand and familiar with the BIG PICTURE ARCHITECTURE.

Experienced architects in a less experienced team tend to control other developers too tightly,
even after those have learned a lot and could walk alone. The hardest part is not to find the
right system part to let go, but the right time. It might help you to observe how the team and
system evolves during the architect’s vacation. If the team discusses similar issues and
questions decisions, they are ready to gather their own experiences.

Make sure to enable very short feedback loops when requested by the developers, and plan for
milestones when the architect and the team come together and discuss their achievements.

The main mechanism is to share responsibilities, and to allow yourself to let go.
REDUCE ARCHITECTURAL BROADNESS is effective against all pathogens related to team
paralysis without an architect’s presence, and against over-managed dependencies as
in DESIGN BY SPLINTER.

REDUCE ARCHITECTURAL BROADNESS can be a personal practice for architects, or a
management decision. Its effort is neglectable, but you should prepare for the risk
associated with the side effects.

297

Patterns for the Practicing Software Architect

Inexperienced developers outside of the architect’s influence sphere are a clear counter
indication. Check for this especially when REDUCE ARCHITECTURAL BROADNESS is
initiated by management. A side effect is that you might need to get some system parts
back into the architecture later, and need to do some severe refactoring then. Another
side effect is a potentially lower prestige of your job – given that you strive for a
technical career path. The overdose effect can be lethal for a project: having no
consistent architecture.

REDUCE ARCHITECTURAL BROADNESS can be successfully combined with JOINT
DESIGN [Marquardt02b]. This agent combination minimizes the individual side effects
and negative consequences, and reduces the project’s risk. It can go together with Part
Time Architect, although the initial intent there is not to protect the team and system,
but to unbind resources from less critical tasks.

While the architects of a large system struggled with a company wide component
strategy in an inhomogeneous environment, seasoned developers developed a
significant part of the GUI concepts. This way the system development proceeded,
each developer did an important job in accordance to his abilities, and the
architecture focused only at the most critical structures.

298

Patterns for the Practicing Software Architect

Conclusion
During the lecture of this article, you have learned about several therapies that can help you to
prevent and cure architectural deficits of your system. Most of them have a broad spectrum of
applicability that is only outlined by the context example. The presented therapies cover the
key aspects relevant to the software architecture and the architect herself, although references
and links to the surrounding environment are addressed where necessary.

The pattern literature has dealt with the presented topics before. Jim Coplien and Neil
Harrison have published patterns about architecture and organization [Coplien95, Coplien+],
Alistair Cockburn has written project management patterns using a pharmaceutical analogy
[Cockburn98]. These works try to cover similar needs, but the approach presented here allows
for a better linkage between the different therapy patterns and a broader range of different
aspects via the more general diagnoses as entry points [Marquardt01].

However, the selected therapies leave more gaps than they fill so far. Besides the vast amount
of obviously missing therapies, they need to cover more field experience, and a comparison
between alternative agents. In parts, these comparisons are covered by other publications cited
above. Future work is needed to collect the therapies in the distinct areas to reach
completeness, and to explore alternatives in relation to each other. If you could point me to
gaps or know how to fill some, please contact me at pattern@kmarquardt.de.

Acknowledgements

Many thanks to Andy Carlson, the VikingPLoP 2002 shepherd for these patterns. He provided
a distant view on the patterns and forced me to improve my casual writing style, so that I
could possibly get my points across to those readers who are not already familiar with my
ideas. I owe the workshop participants at VikingPLoP a great debt, especially Neil Harrison
for his constructive workshop lead.

Additional thanks to the shepherds for my EuroPLoP 2001 and 2002 submissions, Robert
Hanmer, Neil Harrison, and Arno Haase, as well as to the participants of the respective
workshops. This work would not have been possible without their encouraging, valuable and
valued feedback.

299

Patterns for the Practicing Software Architect

References
AgileManifesto online at: http://www.agilealliance.org

Aguiar+01 Ademar Aguiar, Alexandre Sousa, Alexandre Pinto: Use-Case Controller. In: Proceedings of
EuroPLoP 2001

Beck99 Kent Beck: Extreme Programming Explained: Embrace Change. Addison-Wesley 1999

Buschmann+96 Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal: Pattern-
Oriented Software Architecture. Wiley 1996

Caesar Gaius Iulius Caesar: De bello gallico

Cockburn98 Alistair Cockburn: Surviving Object-Oriented Projects. Addison-Wesley 1998

Cockburn+01 Alistair Cockburn, Laurie Williams: The Costs and Benefits of Pair Programming. In: Succi,
Marchesi: Extreme Programming Examined, Addison-Wesley 2001

Cockburn02 Alistair Cockburn: Agile Software Development. Addison-Wesley 2002

Coldewey98 Jens Coldewey: Lazy Leader. In: Proceedings of EuroPLoP 1998

Coplien95 James Coplien: A Generative Development-Process Pattern Language. In: Pattern Languages
of Program Design, Addison-Wesley 1995

Coplien+ James Coplien, Neil Harrison: (to be published).
Online at: http://i44pc48.info.uni-karlsruhe.de/cgi-bin/OrgPatterns.book

DeMarco+92 Tom DeMarco, Timothy Lister: Peopleware. Dorset House 1992

Dikel+01 David Dikel, David Kane, James Wilson: Software Architecture. Organizational Principles and
Patterns, Prentice Hall 2001

Dyson+02 Paul Dyson, Andy Longshaw: Patterns for Internet Architecture. Submitted to EuroPLoP 2002

Foote+00 Brian Foote, Joseph Yoder: Big Ball of Mud. In: Pattern Languages of Program Design 4,
Addison-Wesley 2000

Fowler99 Martin Fowler: Refactoring. Addison-Wesley 1999

Malveau+01 Raphael Malveau, Thomas Mowbray: Software Architect Bootcamp, Prentice Hall 2001

Marquardt99 Klaus Marquardt: Patterns for Plug-Ins. In: Proceedings of EuroPLoP 1999

Marquardt01 Klaus Marquardt: Dependency Structures. Architectural Diagnoses and Therapies. In:
Proceedings of EuroPLoP 2001

Marquardt02a Klaus Marquardt: Diagnoses from Software Organizations. To be published in: Proceedings of
EuroPLoP 2002

Marquardt02b Klaus Marquardt: Patterns for the Treatment of System Dependencies. (Provisional title) To be
published in: Proceedings of EuroPLoP 2002

Martin96 Robert Martin: Designing Object-Oriented C++ Applications using the Booch Method,
Prentice-Hall 1996

O’Callaghan99 Alan O’Callaghan: Patterns for Change. In: Proceedings of EuroPLoP 1999

Parnas94 David Lorge Parnas: Software Aging, Invited plenary talk, ICSE 1994

Rüping99 Andreas Rüping: Project Documentation Management. In: Proceedings of EuroPLoP 1999

300

Patterns for the Practicing Software Architect

Appendix: Diagnoses Reference
For your convenience, here are some thumbnails of referenced diagnoses and patterns from
previous publications [Marquardt01, Marquardt02a].

QUICKSAND BASE

A class is designed in a way that it is
fundamental for the system and highly
visible, but will be frequently changed
during development

CROWDED PACKAGE

Missing architectural influence leads to
unmanaged packages that are so filled
up with classes that all overview or
task parallelism becomes impossible

FOUNDLING

A class has few relations to other
classes within the same package, but it
is closely related to several classes
from one or more other packages

DEPENDENCY CYCLES

Packages or classes depend on each
other directly or indirectly, forming
one big chunk that must be used,
reused, and maintained as a whole

QuicksandBase

<<Client>>

<<Client>>

<<Client>>

<<Client>>

<<Client>>

<<Client>>

<<Client>>

<<Client>>

<<Client>>

CrowdedPackage

301

Patterns for the Practicing Software Architect

DESIGN BY SPLINTER

The static dependencies of a system are
over-managed, leading to a complex of
very small packages that is
increasingly hard to understand

FUNCTION FOLLOWS FORM

Many classes are designed with a
physical context in mind, like the
process or device they will be executed
on, and exhibit inconsistent
responsibilities

UGLY INTEGRATION

Developers lead a careless life taking
responsibility only for their own code.
System responsibility is with persons
considered “poor guys”

303

303. A Language Fragment of Social Antipatterns in Systems Development

A language fragment of social antipatterns in
systems development

Met-Mari Nielsen
mmn@daimi.au.dk

DAIMI
University of Aarhus

Ny Munkegade, DK-8000 Aarhus C, Denmark

Abstract
This paper presents a language fragment in the field of social antipatterns in systems
development, most of which relate to the antipattern Corncob. The refactored solutions
present ways to counter the negative consequences of Corncobs in different situations.

A minor issue of this paper was to find a form where the victims of the antipattern gain the
knowledge relevant to a successful refactoring of their situation. To this end I have defined
(yet another) antipattern format.

1. Introduction
The patterns presented in this paper all came together as part of a one-hour workshop on
antipatterns at PLoPÅrhus the 28th of May 2002. As the talk concerned antipatterns based
on examples from [Brown et. al. ‘98] and amongst them the Corncob1, it is perhaps no
surprise that Corncobs are in some ways instrumental in bringing about most of these
antipatterns. What surprised me was how closely related these antipatterns actually were,
even though the people present were a mix of developers and managers within systems
development and none of the evening’s five groups came up with identical antipatterns.
The result was what I call a language fragment; by no means exhaustive, but closely related
antipatterns.

I might note that the Corncobs in this paper refer to advocates of the pluralist organization
[Morgan ‘86]: persons whose one and only goal is to gain and execute power to further
their own position, and in this process causing problems for your project. Section 4 gives a
more detailed description of the corncob antipattern.

2. A good solution is hard to find
One of the experiences of PLoP Århus so far was that most design patterns are relatively
hard to identify or use in your own projects, whereas the antipattern discussion set us free
to discuss solutions and implementations.

1 All uses of existing pattern (or antipattern) names are boldfaced throughout the paper, for easy
identification.

304

A Language Fragment of Social Antipatterns in Systems Development

When it comes to social situations it can be difficult to explain to outsiders why and how
things are done as they are, but antipatterns presented us with a workable way to explain
(by example) how some roles and attitudes can become problematic and what the
organizational consequences are. Somehow the bad examples were an easier way to access
the total sum of our expert knowledge and what we thought was “good” project
management (this may, however, be inherent to the Danish way of thinking).

The ideal company probably does not exist, and sometimes you just “put up” with some
persons or practices because other aspects of your job make it worthwhile. While the larger
context of your company or industry might cause some ingrained problems, the solutions I
have chosen to present should all be possible to implement in small scale within a single
team or project.

Most of the refactored solutions mirror my own opinion of good organizational culture.
This also leads me to empathize that even though there might be other solutions viewed as
equally good and stable, they would not lead to an organization where I would want to
work (given the choice).

3. About the form
First of all antipatterns should present "easy" and "bad" solutions to a general problem and
include some form of refactoring of the situation at hand, to reach a "better" solution
[Long’01] [Brown et. al. ‘98].

3.1 Name
There must be appropriate names that easily convey meaning to both novices and experts:
If a name already has been coined for some part of the antipattern then it might do for the
whole. If a "victim" coined it, it is likely to be shared by other victims.
If it dips into some general culturally shared knowledge, then it might even take with those
who haven't experienced the antipattern (yet).

One of my favorite examples of easily understood names is Copliens pattern Sacrificial lamb
[Coplien’95]. Describing why it is sometimes needed to make an example (of an perhaps otherwise
innocent person), to place the blame and get on with a project.

One of the hardest problems in writing these patterns was finding valid English names (The
patterns were initially conceived in Danish). A name carries great value especially if it can
dig into some common knowledge or essence about the problem at hand. It simply helps
focus the discussion and understanding of the pattern, not to mention that commonly shared
concepts are a way of expressing patterns of human behavior. I therefore decided to
include both the initial Danish name and the corresponding English one as pattern title.

3.2 Context
Since the antipatterns documented herein present a good deal of organizational/human
behavior it seemed to me that the ethnographic pattern form might feasible for this format.
Martin notes that design patterns are too problem-oriented and therefore skips the problem
section, entirely concentrating on the contextual and organizational situation as seen,
leaving an appropriate design to the computer scientists (or whoever is in charge of
decisions) [Martin et. al. ‘01]. However, this approach will obviously not work when the
main concern are for those affected by the antipattern to be able to refactor a solution. And
hereby I reveal myself; because I wish these antipatterns to be refactored and understood

305

A Language Fragment of Social Antipatterns in Systems Development

by those affected, not just as tools to be used by experts in organizational change (although
they are welcome).

Even if a good name has been found, you need to convince people that this is a valid
problem. Stories are a good way of relaying a context without preconceptions of former
training [Erickson’96]. This is in a way close to Alexander’s way of writing patterns
because the stories as told often relay information of both the context and forces that must
shape the refactoring process [Alexander et. al. ‘79].

One of my favorite ways of describing shaping forces and conveying refactoring solutions come
from Alexander's pattern Connected play, where studies of emotional problems show that psychosis
correlate with number of childhood playmates2. The study has nothing to do with architecture but
conveys at least to me how a viable neighborhood should look for families with children. But
moreover it gives you power to change a potentially "bad" situation, "just" by making sure your
child has a network of playmates (not necessarily including path systems between a minimum of 64
houses).

3.3 Refactoring
This leads me to the refactoring part of the antipattern. I have chosen those generic
solutions acceptable to me as a person (and an employee), leaving my interpretation of "the
good (work) life" open for discussion without really having any theory to back it up (just
happy/unhappy co-workers to prove the point).

4. About the Corncob
As many of the antipatterns in the paper revolve around the Corncob, I would like to
document what I find as important aspects within this antipattern.

Brown’s general form states that: “[...] Corncobs focus much more on politics than
technology, they are usually experts at manipulating politics at personal and/or
organizational levels. Technology people can become unwilling easy victims of the
Corncob’s tactics.” [Brown et. al. ’98, p236].

Such people would find themselves at home in what Morgan names a “pluralist
organization”. A pluralist has the following worldview [Morgan ’86, p188]:

• “Emphasis on the diversity of individual and group interests. The organization is
regarded as a loose coalition which has just a passing interest in the formal goals of
the organization.”

• “Regards conflict as an inherent and ineradicable characteristic of organizational
affairs and stresses its potentially positive or functional aspects.”

• “Regards power as a crucial variable. Power is the medium through which conflict
of interest are resolved. The organization is viewed as a plurality of power holders
drawing their power from a plurality of sources."

The pluralist focus on conflict can actually be healthy for your organization! Morgan states
that “[...] in group decision-making situations, where the absence of conflict provides
conformity and “groupthink.” The existence of rival points of view and of different aims
and objectives can do much to improve the quality of decision making.” ([Morgan ‘86]
p.191).

2 zero playmates giving 85% chance of severe emotional problems, more than four giving a 30% chance.

306

A Language Fragment of Social Antipatterns in Systems Development

If such views are prevalent in your organization, then maybe it is you who are misplaced.
However, Corncobs come forward in many situations, and thereby gives reason for the
following antipattern:

4.1 Corncob a.k.a. Den Stadde
 Many views exist on the relevance of the name corncob, in my search for something more
tasteful, I came across the Danish expression a “stadde” (mid-jutlandish dialect for a kind
of stubborn horse). Describing the situation where one horse in a four-in-hand does not pull
it’s worth, and therefore looks magnificent when the tour is over. This describes to me at
least another aspect of the corncob, he is no team player.

Problem: “A difficult person (the Corncob) causes problems through destructive behaviours
for a software development team or, even worse, throughout an enterprise. This person may
be a member of the team or a member of external senior staff.” [Brown et. al. ’98, p236]

Antisolution: Sticking to rules and procedures, waiting for the corncob to recognize the
need for at common goal. Any conflict resolved to the corncobs satisfaction will only
support his view and use, of organizational politics.

Vignette 1, “The good”:
A large company had a true corncob in charge of one of two sales divisions, that is not only
responsibility of sales but also in charge of a number of semi-independent partners doing
actual installation and support. The division’s sales rate was terrific and earnings were the
best of all departments. Unfortunately some of the splendor came from the fact that the
corncob in question bullied the manager of the central R&D department into allocating ad
hoc support hours for incomplete installations (billed to R&D). Every techie in sales
thought him a great manager because he always managed to acquire the needed resources
to complete an installation. Guess what the R&D people thought.

Vignette 2, “The bad & the ugly”:
I haven’t come across any easy vignettes, but they all involve long histories of small
manipulations and unsuccessful meetings.

Refactoring:

• The antipattern for corncob states in known exceptions, that some situations can
benefit from a corncob manager ([Brown et. al. 98] p. 237).

• Install procedures that emphasize the need for a common goal, and minimize the
corncobs possibilities of impacting your own goals.

5. The Language fragment
The relations between the antipatterns presented in this paper are depicted in Figure 1. The
antipatterns cover different strategies; there are the individual roles where for example.
Corncob is instrumental in creating faithful few, and there are the symptoms or cultural
strategies whereupon the corncob tries to manage his (or her) surroundings.

307

A Language Fragment of Social Antipatterns in Systems Development

I n d i v i d u a l C u l t u r a l

T h e s u s p i c io u s
c u s to m e r

M a n a g i n g b y
C l i f f h a n g in g

B r o k e b y
n i c e n e s s

D e a th b y
m e e t in g s

U r g e n t k i l l s
t h e i m p o r t a n t

C o r n c o b

T h e f a i t h f u l f e w

Figure 1: A language fragment of social antipatterns in systems development

Most of the antipatterns presented come in different flavors. A given strategy usually holds
benefits for somebody (hopefully fore those implementing it). Therefore the antipatterns
presented are chosen to show different consequences of a given strategy (as extremes of a
continuum). From “the good” where strategy might even have a positive effect on the
organization, to “the bad” where the majority involved wants a change and it is achievable,
to “the ugly” where only extreme measures (like suicide or maybe murder) will cause a
change.
As previously stated the problems and refactorings are chosen to achieve a situation
perceived as “good” and “beneficial” for me and my friends.

5.1 The faithful few
a.k.a. Tordenskjolds soldater
"Tordenskjolds soldiers" is an expression from Danish history. The hero Tordenskjold let
his soldiers march in ring, and thereby convinced the enemy that he had a very large army
when in fact they only saw the same soldiers again and again (possibly a little out of breath
from running around the back alleys).

Problem: Too much knowledge ends up in a few brains

• “The good”: By divine hand only a few know what it is really about and therefore
needed in almost any decision regarding their field. When the persons concerned
literally are the only ones knowing what the company does or how the system
works.

• “The bad”: The same persons always ends up doing what others don't want to,
documenting, testing... making coffee, mainly because others with more political
savoir faire manages to push these tasks away from their desks.

Antisolution: Others "forget" to do the work themselves and rely on The faithful few to
close the gaps. When such a person disappears (either by death or other reasons) the gap is
sorely felt because of the missing knowledge. If you ever have tried to leave a job and kept
getting requests and questions from your former colleagues then you was probably one of
The faithful few.

308

A Language Fragment of Social Antipatterns in Systems Development

Vignette 1, “The good”:
In the company where I currently work we have a truck number of one3. Bo knows all
about customers, installations and technology, and moreover he holds a lot of goodwill
with the customers. The rest of the employees on the other hand know mainly about their
chosen field of functionality (Even the director of the company has trouble defining what
we do in general). We all want a bit of Bo's time because he knows all the critical bits and
pieces of the business, from design to customer contacts. Therefore he doesn't get to do any
work of his own. All day is spent responding to everybody else's needs. As Bo’s greatest
value to the company is his R&D, drastic measures went into ensuring than this was what
he actually spent his time on. First he was sent on a lot of holidays just to relax and “think”,
but somehow customers got hold of his hotel number or there were “critical” problems to
solve on the road.
The end solution possessed almost every refactoring they could think of at once. They
continued the holidays, they hired me to document all their customer installations and
generic modules (mainly Bo’s knowledge), they restricted customers to call their product
managers, Bo got official telephone hours once a week and he was sent home to work
(without phone) twice a week. This has created a “partway” barrier between Bo and the
customers but also between Bo and those in company who used to depend on him. While
this happened some customers allocated new contact persons within their companies,
which also helped a lot in “educating” them not to phone Bo at home at 5’oclock in the
morning. These measures have gone a long way to distribute knowledge in the organization
(People has to learn to do things themselves now). Unfortunately Bo likes to know
everything there is to know, and this part of the antipattern has not been completely solved
yet.

Vignette 2, “The bad”:
Torben is a systems developer in a company where manpower is scarce, mainly because
sales keeps selling more solutions than there are resources to develop. In the beginning
Torben had great commitment to his company and was quickly known as somebody
reliable to put in some extra hours and put out some fires. After a while all his hours was
spent on the closure of Fire drills4. This became a boon to some of the previous
programmers on the projects, because when installation time came Torben was a good
place to put the blame for faulty functionality. As a consequence he also ended up with a
lot of critical knowledge about the projects and therefore often was chosen to do further
maintenance when needed (and again as the faults was his he deserved to right them,
right?).

Refactoring: Even though this pattern doesn't seem to be a large organizational problem it is
my experience that The faithful few only really appear in a wider context of antipatterns
and therefore refactoring depends in part of recognizing these patterns as well.

Where there are Corncobs you usually have some of the faithful as well (I haven't seen
Corncobs in relation to a project without their "faithful" e.g. those who do the work and
take the blame). If this is the case you might try to refactor the Corncobs themselves.
There are, though, cases of faithfuls without any real corncobs around

3 How many people “need” to be hit by a truck before your project/company grinds to a halt.
4 The fire drill minipattern, empathizes mismanagment [Brown et. al. ‘98]. From a system developers view
the pattern results in a frantic implementation and testing phase within a ridiculuosly short timeline.

309

A Language Fragment of Social Antipatterns in Systems Development

• A "soldier" can be successfully discharged if resources are allocated so that people
have time to acquire an appropriate level of knowledge. The simplest strategy is to
limit his exposure within the company (simply by letting him work at home,
without a phone a few days a week); this forces people to cope without him.

• If the "soldiers" knowledge is really unique it might be an idea to document it in
some way, maybe even hiring a cheap student to take interviews and do the tedious
job of writing it down

• There might be many reasons why a particular job becomes undesirable and mostly
this is connected with the organization culture. If such is the case, measures should
be taken to make the job more desirable. Mostly these functions gets collected into
a job-description, and someone are hired to do the “cleaning”, after a while the
person usually gets the idea that the job they are doing are not desirable. Maybe this
is an antipattern in itself?

• Another way of dealing with the problem of to much knowledge in to few brains is
to implement some pair techniques; indeed a suggestion at the PLoP meeting was to
counter the pattern with pair programming and/or reviewing.

Related patterns: Corncob is usually a precondition for faithful few. As managing by
cliffhanging can be a strategy to elicit sympathy sometimes faithful few employ this as a
means to avoiding confrontation. When a job is undesirable it usually falls on the faithful
few. All instances of Sacrificial lamb [Coplien’95] I know of, has been in highly political
organizations where the lamb was one of the faithful ones.

5.2 The suspicious customer
a.k.a. Den mistænksomme kunde
Sometimes you encounter a customer bent on having it “his way”, calling you (or your
company) a thief and a liar is just a part of the process. Sometimes the acquirement of
something new transforms people into corncobs instead of resolving into a trust-
relationship5.

Problem: Your customer might have chosen this company as a provider, but that doesn't
mean he has to trust your decisions.

Antisolution: Sometimes the solution becomes that of Indulge the child; if the customer
has the money and wants to pay why not let him.

Vignette 1, “The good”:
A large organization decided that they basically needed a database of a specific type of
assets; with the demand to update and access locally and still have a central point to do cost
statistics. They hired some consultants to make a requirement specification and later a
provider to deliver the actual solution. When we (the project team) sat down to read the
requirements, several design decisions were noted, which would severely impede
performance. Most notably it required a copy of the database for each level of access rights
and then synchronizations for every single update. This seemed unnecessary. When we
tried to change this (and some other problems) the contact persons within the institution
protested wildly. No change was to be made to the design, because then there wouldn't be
any guarantee that the software would fulfill functionality demands. Months of discussions

5 Linda Risings customer interaction patterns points the right way [Rising ‘99].

310

A Language Fragment of Social Antipatterns in Systems Development

and pleading were the result. Every meeting, every phone conversation during this phase
was concluded with the fact that they wouldn't trust any changes to the initial design.
The turning point came when the four future system administrators were presented with the
administrator interface (we included demonstrations with both one and three databases).
When responses came back from the meeting we were allowed to make whatever design
changes we wanted (even though the four in question were not high ranking within their
company or the project).

Vignette 2, “The bad”:
A friend of mine was in charge of a project where the customer’s system administrator was
convinced she was upping the price. Every change request or update involved long
negotiations whether this really was the time or money needed and usually the exchanges
ended with the system administrator going back and trying to reformulate his demands so
they would appear to be less demanding (but still resulting in the same functionality).

Refactoring: If you want to make beautiful code and systems that in a smooth way supports
the customer’s needs, you would want to refactor this situation. In my experience the
access points, e.g. the customers contact persons are probably in their own way Corncobs,
playing for power and stalling for time.
The way to deal with such situations is to partly play their game, circumvent the corncob
and tap into another level of the organization.
This can be done as part of the development process by arranging one or more meetings
where, for instance, the future users or those responsible are invited. Try to show them a lot
of sensible solutions (not necessarily related to the real issue), build trust with others than
the corncob.

Another solution is to let the customer go. Saying that you cant/won't provide what he
wants... This might be necessary if it isn't possible to refactor as above (in “the bad” there
was literally nobody else to access within the customer company).

Related patterns: This is basically Corncob as a customer. An objection to the proposed
refactoring is that if you don't take the money and provide the product then you might end
up Broke by niceness, making a product that the customer needs but doesn't want to pay
for.

5.3 Broke by niceness
You could describe this pattern as the difference between sales and development in many
organisations.
Problem: When trying to get a perfect result many project teams loose sight of the monetary
issues involved.
Antisolution: Extend on the existing solution.

Vignette 1, “The good”:
A company provided a solution ten years ago to a major customer. The system still has
such a nice track record that the customer doesn't want to change hardware platform. The
downside is that they are stuck with maintaining otherwise obsolete technologies and
needing to keep track of the relic, when all other customers (indeed the industry) long since
have discarded both the hard- and software.

Vignette 2, “The bad”:

311

A Language Fragment of Social Antipatterns in Systems Development

A switch company provided a hardware box to pick and choose automatically between the
cheapest phone companies. They invented (and distributed) a piece of software that
automatically updated their boxes. This made hardware updates practically unnecessary.
However, as the company made their profit from these hardware updates, they went broke.

Refactoring: This is a point for which I have yet to see any clear-cut solution. Maybe
because deep down I myself would like to provide a perfect system. The overall danger is
just that you (and your company) get stuck in old technologies, supporting the same old
solutions instead of spending time on developing new ones. Which of course in the long
run might be bad.
 The proposed solution is to abandon the perfect solution in favor of an appropriate one.

Related patterns: Trying to satisfy the suspicious customer might end up you in broke by
niceness.

5.4 Managing by cliffhanging
Remember the old Zorro-series? Each episode would end with our hero in some sort of
predicament, sometimes even falling over a cliff edge. This was the cliffhanger. The next
episode would start with an explanation of how Zorro managed to survive his trouble, just
to be thrown into some new adventure (of course helping the downtrodden along the way).

Problem: An unstable stressful situation “needs” to be prolonged.

When a situation is becoming critical, that is, filled with "unsolvable" problems with regard
to the time available, people tend to get critical of the one in charge of relaying the bad
news, instead of focusing on a possible solution.
Cliffhangers can be used to divert attention and create sympathy for the messenger and the
cause while still keeping peoples attention

• “The good”: Create unity/sympathy in a difficult situation
• “The ugly”: To keep the employees/fellow co-workers from revolting

Antisolution: The messenger chooses to preface all news with something good (hopefully a
solution to something) and ends with the "unsolvable" problems thereby postponing
discussion (possible critique) and a probable solution, to a later meeting.

Vignette 1, “The good”:
A company had a period when it was bought, first by one and then another cooperation.
Amidst the organizational changes imposed by this situation, their product started to sell
rather well. Every Friday employees sat down to a new dose of procedures, new projects,
hiring rounds or hiring stops, and the way of coping was to weave these problems and
sometimes solutions (for these came as well) into an ongoing cliffhanger which kept us
with a notion of "we're all in this together..."

Vignette 2, “The ugly”:
I know a company where management for four years has been on the cliffhanging
premises. Manpower for systems development and support are short and products relying
on designed, but not developed, software keeps getting sold. Every time there is an
announcement from the department manager, people tense up. Afterwards they laugh it off,
because every "solution" tends to be of the "do something worthwhile for your company..."
and "two bottles of wine to those who helps finishing the product by Friday". Relief

312

A Language Fragment of Social Antipatterns in Systems Development

prompts the laughter, this time they were not the ones sent to Brazil for a week of 25-hour
workdays (and then promptly sent to England for a three-day fire drill). After years and
years of it, most of the department finally said quits and started looking for work
elsewhere, but management managed to keep their attention for another four months with
promises of management and organizational change (later it was revealed that it wasn't
their department that was subject to change).

Refactoring:

• If you wish to stop a cliffhanger it is necessary to see what the story is and identify
the factors that cause the stress. This is mainly a question of company policy,
whether to hire more people or to let down expectations.

• When a Corncob employs cliffhanging, his motivation is to prolong a situation in
their favor. Try to deal with and solve the underlying problems, and the cliffhanger
ends (just as a new and fair minded governor would have put Zorro out of the job).

• In some instances though this is not a bad pattern though, as it simply helps people
cope with a situation full of immediate "unsolvables" and a lot of stress.

Related patterns: Cliffhanging can be employed by Corncobs to prolong a situation in their
favor. This is also a form of antipattern to Compensate success [Coplien’95], as when
rewards are used instead of allocating time/manpower.
Cliffhanging can also be used to uphold a permanent state of Urgent kills the important
(As was the case of the company described in “The ugly”). Meetings are often the place
where cliffhangers are told, and death by meetings can be a consequence of cliffhanging.

5.5 Death by meetings
Nothing happened, lets have a meeting!

Problem: To many meetings ends up with nothing to show

• “The bad”: Nobody wants to take responsibility
• “The bad”: Meetings are often seen as places to further personal agendas

Antisolution: Lets have a meeting to decide what to do and how to do it.

Vignette 1, “The bad”:
A project in crisis was deemed "prestigious", meaning that the director really wanted to see
the customer happy on this one. A programmer (incidentally one of The faithful few) was
shipped overseas and even provided with a suit on the company credit card so as to appear
keen and professional. When he arrived he was eager and prepared to work round the clock
to smooth the bugs and bruised egos within the system. But what happened? Because the
problems weren’t easy to solve nothing much happened in the first four hours after the first
welcome meeting. Then another meeting was called to clear why nothing had happened,
and yet another and yet another. No problems were actually cleared on this trip because all
the time was spent on meetings and preparing for them instead of actual problem solving.
The time spent went to meetings about what the problems were and why nothing had
happened since last meeting.

Vignette 2, “The ugly”:
A company had the policy to have strategy meetings every three to four months, where
management and key programmers sat together to prioritize present and coming projects.
Karsten went to the first few with great hopes of incorporating the development of next

313

A Language Fragment of Social Antipatterns in Systems Development

generation of company software (which was his initial job description) into the company
plan. He ended up getting caught in power plays, and long discussions about who said what
at the meeting and waiting for the next meeting where issues would be clarified.6

Refactoring:

• It seems to me that endless meetings is a hallmark of Corncobs, this is where
power is demonstrated. The power to stall a decision is particular in this context.

• One source has reported that having stand-up meetings (as described in Extreme
Programming) is a good way to solve some of the problems (but on the other hand
then the winner is the one with most stamina).

• A well-defined meeting agenda, clear-cut roles and responsibilities.

Related patterns: Corncobs of course as they particularly indulge in this pattern.

5.6 Urgent kills the important
 If your company continually keeps impossible schedules, every new customer or project is
seen as important as the previous, the problem is just that the last (many) project isn’t
finished yet.
Note: This pattern corresponds to the root cause Haste in [Brown et. al. ‘98].
It is included as an antipattern because I have seen successful strategies of dealing with this
situation in relation to some of the previously mentioned patterns.

Problem: Last in first out has become your way to deal with impossible workloads. The
consequence in all the companies was that the systems delivered were somehow amputated
and almost impossible to support.

Antisolution: This pattern ties deeply into cliffhanging. If for one reason or another you
want to keep urgent kills the important as a permanent situation then management by
cliffhanging can help you make a culture devoted to rush decisions and solutions.

Vignette 1, “The bad”:
I know a company where documentation isn’t considered worthwhile because what matters
is getting the code out. Therefore no matter what your preferences were when first hired,
nobody really documents anything anymore (nobody allocates time to do it).

Vignette 2, “The bad”:
At another company, project plans were impossible to meet but forced through anyway by
management with the notion to do as much as humanly possible.

Vignette 3, “The bad”:
At a third company it was sales that had the final word in allocating resources. The result
was that each new sale was given priority over all other projects (and that meant a new
system every month or so).

Refactoring:

6 This is the only case I know where attendees really wanted to do summaries just to ensure that their
particular words were quoted "correctly".

314

A Language Fragment of Social Antipatterns in Systems Development

If you want to be proud of the end result (and not the money earned or the amount of work
done in a very short while) there are different strategies given the wider context:

There are a number of different ways, not necessarily mutually exclusive, to deal with this
pattern:

1. Become a Corncob yourself and start digging into a power base of your own.
2. Make yourself a niche as somebody who goes against the culture.
3. If it is possible and desirable to change company policy then new procedures may

be implemented in a few projects or with a few key persons for a start, but this
demands that all involved are willing to change their way of working (beware of the
Corncobs).

4. Last but not least: change company.

Note that both 2) and 3) can be successfully implemented with a shield of procedures or a
Gatekeeper [Coplien’95].

6. Epilogue: Into the harbor
This paper is about antipatterns. Many projects can be successfully refactored, whereas
others could not. When a company does not resolve their antipatterns, projects die. The
process of not dealing with such an amount of antipatterns is covered by this last
antipattern, with an unproven refactoring, which I present here:

6.1 Into the harbour
a.k.a. Kør projektet i havnen
 Named after the Danish custom of "getting rid" of a car by driving it into the harbour and
then claiming it was stolen. The name was coined to cover projects, which were swamped
in antipatterns and other problems, where you sincerely meant that the system under
development was a piece of junk never to be installed.

Problem: Too many antipatterns has killed the project
Antisolution: 1) start all over again or 2) abandon the project, and (crucially) place the
blame somewhere else. Remember: make the customer believe it was unavoidable or other
people’s personal problems that caused the fiasco.

Vignettes: Unfortunately no company I know of wants to admit to such procedures in
public (which is, of course, was the whole point of this antipattern).
Refactoring: I have never seen a dead project cause any real change. My only advice would
be to build yourself a beautiful company.7

7. Acknowledgements
The (new) antipatterns presented in this article were partly workshop effort and partly
formulated by individuals prior to the meeting. Not knowing where to place the blame I
thus invite all the attendees of PLoPÅrhus to share the honor of this paper.
Thanks to Karsten Nielsen and Torben Jacobsen for good story material.
Last but not least thanks to Ulrik P. Shultz.

7 Patterns for Building a Beautiful Company, Linda Rising, Caroline King, Daniel May, Steve Sanchez
forthcoming in this publication.

315

A Language Fragment of Social Antipatterns in Systems Development

8. References

[Martin et. al. ’01] Martin, D., Rodden, T., Rouncefield, M., Sommerville, I., Viller, S. Finding patterns in
the fieldwork. In proceedings of the 7. conference on ECSCW, 2001

[Erickson’00] Erickson, T. Lingua francas for design: Sacred places and pattern languages. DIS ’00,
Brooklyn New York, ACM 2000

[Erickson’96] Erickson T. Design as storytelling. in methods and tools 1996

[Long’01] Long J. Software reuse antipatterns. ACM SIGSOFT, software engineering notes vol. 26
no. 4, July 2001, p 68.

[Brown et. al.’98] Brown, Malveau, McCormic III, Mowbray Anti patterns. John Wiley & sons, Inc., 1998

[Alexander et. al. ‘79] Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel, S.
A. A pattern language. Oxford University Press, Oxford, 1979

[Coplien’95] Coplien, J. O. A generative development-process pattern language. In Pattern Languages
of Program Design (eds. J. O. Coplien and D. C. Schmidt). Reading, Mass: Addison-Wesley, 1995

[Morgan ‘86] Morgan, G. Images of organization SAGE Publications 1996

[Rising ‘99] Rising L. Customer Interaction patterns, In Pattern Language of Program Design 4 (eds.
Foote, Harrison and Rohnert). AG communication systems corporation 1999

317

317. Patterns for Building a Beautiful Company

Patterns for Building a Beautiful Company

A work in progress. Last updated January 7, 2003

Linda Rising, risingl@acm.org
Caroline King, IAMCKING@aol.com
Daniel May, danielmay@yahoo.com

Steve Sanchez, Steve@mastermarble.com

When you see a beautiful company, the different parts mesh together. There is a sense
of balance and peace in the meetings. There is a quiet efficiency in the hallways, offices and

rooms. There is a sense of well−being and community among workers, management, customers,
and partners. There is trust between management and workers and between employees. There is
a vitality that arises out of the shared sense of purpose. In an ugly company, there is fear in the

troops. Management is harsh and bureaucratic. Workers feel like they are on a death march.
Bruce Whitenack

Introduction

The patterns in this collection define a toolbox for building a beautiful company. We believe that
these patterns will enable entrepreneurs to produce more than just a place where people turn up to
punch in and out. We hope to create workspaces where people feel they’re making a difference at
some level, where they are free to be their best.

As we watch the Enron and WorldCom dramas unfold, we see a disturbing leadership pattern and
its result. What’s missing are whole (in the sense of complete) firms built on a foundation of
possibility, integrity, and beauty. In many instances what we see today is that profit is
everything.

We believe that to make money, you have to believe in the product or service you offer and care
for the customers or clients you serve. That isn’t a religious argument; it’s a business lesson.
When a company cares passionately about what they do and the people they do it for, magic can
happen.

Beautiful companies value individuals−both customers and employees. These organizations are
transparent and collaborative and respect relationships as the bedrock of all good businesses.
Their structure is more a network than a top−down hierarchy. In these companies, fairness is a
given; they value what’s ethical above what’s expedient. [Hefferman02]

"All happy families resemble one other," wrote Tolstoy in Anna Karenina, "but each unhappy
family is unhappy in its own way." We have uncovered commonalities of beautiful companies in
a series of interviews where the first question we ask is, "Do you believe you are trying to build a
beautiful company?" The rest of the interview reveals what beauty means to the person being
interviewed. The outcome is a collection of common solutions to the problems of running a small
business.

318

Patterns for Building a Beautiful Company

Arie de Geus [deGeus97] states that there are two kinds of companies. The first he calls an
economic company, run for purely economic purposes. People are treated as assets and the goal
is to produce maximum results with minimum resources. The economic company is a corporate
machine whose purpose is the production of wealth for a small group of managers and investors
and feels no responsibility to the membership as a whole. In the second kind of company, return
on investment is important but must complement the optimization of people. To produce
profitability and longevity, care is taken to build a community: defining membership,
establishing common values, recruiting people, developing their capabilities, assessing their
potential, living up to a human contract, managing relationships with outsiders and contractors,
and establishing policies for exiting the company gracefully. The values of the company coexist
with the values of the individuals within the company and every member is aware of this
coexistence. De Geus calls this organization a "Living Company." Our preference is for
"Beautiful Company."

There’s a lot of advice for entrepreneurs. The business world is drowning in self−help books. It’s
difficult to know where to turn. The world is rapidly changing. The rules are being rewritten as
fast as we can learn them. The fundamentals are being replaced and the foundations are shifting.
Success is being redefined. Even the well intended need guidance. How to begin? How to
proceed?

In the beginning of our entrepreneurial journey, we brought all the books and learned to want
more of the same kind of thing. The books set up a one−way conversation. They say, "Look what
we did at Lucent, or IBM, or GE, or HP. But this information can be daunting and it doesn’t
always apply. Our intention is to reach entrepreneurs of small or mid−size companies in the early
stages of developing their businesses.

There are no 100% beautiful companies. We don’t intend to present a utopian viewpoint but an
ideal to be approached by imperfect people. Along the way, there will be struggles and problems
that must be solved. This work is a toolbox for building a beautiful company and the stories of
how these tools have helped others.

Although we believe that many of the patterns could be applied to any business, our experience is
mostly with small companies. As a result, we don’t directly address issues with stockholders, for
instance, or other concerns that small business owners usually don’t face.

Profitability and success are of concern to any business. We believe that regardless of the
product, regardless of the domain, regardless of the success criteria held by the entrepreneur,
these patterns can be used to reach the desired goals. Usually people believe that their problems
are unique, but what we find is a tremendous commonality among the challenges that small
business entrepreneurs face. The exact product or widget doesn’t make the difference. The
common denominator is people.

Experienced patterns writers, Linda Rising and Daniel May, have teamed with Caroline King and
Steve Sanchez, business coaches, to capture knowledge about running a successful small

319

Patterns for Building a Beautiful Company

business. Caroline has over 20 years experience as a business consultant for small business
owners. Steve has been the owner of Master Marble in Phoenix, Arizona since 1990 and has been
involved in business coaching and consulting for over seven years.

Acknowledgements

Thanks to our shepherd for PLoP ’02, Bruce Whitenack, for his encouragement and valuable
suggestions. Thanks to our shepherd for VikingPLoP ’02, Klaus Marquardt, for adding an
international perspective and helping our patterns grow.

320

Patterns for Building a Beautiful Company

The Structure of the Pattern Language

Beautiful Purpose. Chart the direction of your beautiful company by defining your purpose−not
a product definition−a description of something deeper.

Beautiful Leadership. To build a beautiful company, lead from the heart and grow a workplace
community.

It’s a Small World. Keep an open mind; look for opportunities to share interests; look
for connections.

Know Your Limits. In a small organization, you think you have to know everything but
it’s important to realize that no one can do everything.

The Right Coach. When you’re stuck and don’t understand what’s holding up progress,
find a good business coach.

No Ordinary Workplace. Create a workspace for your beautiful company where people will
feel like they’re part of a happy family, where they will feel safe and free to grow.

Organizational Integrity. Creation of an extraordinary workplace depends on the balance
between business reality and preservation of human values. Your company and everyone in it
must live by its values.

Beautiful People. To grow a happy family, treat your people as volunteers and allow them to
share in the business.

The Right Person for the Job. To find Beautiful People, let everyone know the kind of
person you want. It’s a Small World. Trust your instincts and look beyond the resume.
Set up an Audition.

Audition. Let the applicant work for a short time to see if it’s the right fit for both sides.

Be All That They Can Be.

Graceful Exit. Organizations are made up of people and people are constantly changing.
Set up the expectation that separation is a natural occurrence.

Changing Conversations. When dealing with people whose values seem different from
yours, change the conversations you have. Instead of reflecting the unpleasantness, create
a new intention and let them know you are sincere.

Beautiful Customers. Be authentic and expect your customers to be authentic.

Beautiful Outsiders. Treat those your company will interact with by explaining your intention
and living up to it.

321

Patterns for Building a Beautiful Company

Beautiful Purpose

I’m the owner of Master Marble, a natural stone fabrication company in Phoenix, Arizona. I
founded the company in the fall of 1990, with two employees. I think of myself as a creative
entrepreneur able to make something out of nothing or do a lot with a little, but my real strength
is to create a vision, share it with others, and help bring it to life. Steve Sanchez

???

You realize that there’s more to creating a beautiful company than just creating a product,
delivering services, and making money.

How do you chart your direction without a map?

Entrepreneurs get stuck in the details of the company and lose sight of the big picture. It’s hard to
see what’s going wrong. People just keep making the same old meatloaf−maybe they try to make
it faster or cheaper, but they stay inside what they know. They hope for a different new taste but
keep using the same ingredients.

Companies need to know what they stand for. They need nonnegotiable, minimum standards.
They need to be able to say, "We will not accept work that goes against our standards, because
that’s not who we are." [Webber02] Nineteenth century philosopher Thomas Carlyle said, "A
man lives by believing something, not by debating and arguing about many things." Once you
decide to decide, life becomes surprisingly simple. You don’t have to think about certain issues
or questions again. You simply get on with things and don’t waste time and energy rehashing,
debating, and arguing the problems and possibilities. [Marriott+97]

"To start with, unless we can define a purpose for this organization that we can all believe in, we
might as well go home. That’s ’purpose’ as in, ’We the people of the United States of America,
in order to form a more perfect union ...’ The purpose has to be an authentic statement of what
the organization is about. [Waldrop96]

Therefore:

Clearly define what your company is all about. This is not just a product definition−but a
description of something deeper.

A beautiful purpose lights up, inspires, moves, touches, and creates a feeling of well being,
comfort, safety and excitement within the company.

Identifying and capturing your purpose is a difficult task. You will need time for this activity.
Start by answering the questions:

Who are we as a company?
What is our purpose?
What products/services do we provide?
What do we want to be/become/be known for?
Why are we special?
What are we proud of?
What difference do our products/services make?
What do we care about this?

322

Patterns for Building a Beautiful Company

David Packard posed the following questions: "I want to discuss why a company exists in the
first place. In other words, why are we here? I think many people assume, wrongly, that a
company exists simply to make money. While this is an important result of a company’s
existence, we have to go deeper and find the real reasons for our being." An effective way to get
at purpose is to pose the question, "Why not just shut this organization down, cash out, and sell
off the assets?" and to push for an answer that would be valid now and 100 years in the future.
[Collins+94]

Don’t just preach these values, institute concrete organizational mechanisms to stimulate change
and improvement. [Collins+94] Once your purpose has been identified, when you know your
purpose, you’re clear on your goals, now articulate Vision and Mission Statements that bring
your purpose to life. People will notice and respond to your purpose and alignment.

Century Roofing, Inc., with over 30 years experience in the Arizona roofing industry, is
dedicated to providing the highest quality roof systems at a competitive price, while building
lasting relationships based on friendship and trust.

Master Marble Ltd., the industry leader in providing the beauty and durability of natural stone,
stands for excellence in customer service, craftsmanship and innovation. As a team we all
flourish in a win/win environment.

Ginger L. Price, D.D.S., is a professional and personable dental team committed to providing
the most comprehensive quality care in a gentle manner to individuals who value themselves and
their health.

323

Patterns for Building a Beautiful Company

Beautiful Leadership

The leader of the company is like the captain of a ship. Even though not everyone on the ship
deals directly with the captain, everyone has an eye and ear on the captain. The captain leads by
example and sets the tone for the rest of the company. Not all captains are up to it. I’ve seen
captains that organize meetings, maintain the status quo, always seek consensus, stabilize the
environment, retain tight control, and remain hidden in the background. But isn’t this more like
a caretaker or administrator? Surely there must be something more. A captain leads, challenges,
and inspires. A captain shouldn’t make dangerous decisions, but if no risks are taken to push
forward, then I don’t think that’s leadership. I think most employees understand that not every
decision made will be perfect or correct, but they expect the captain to show leadership.

???

You’re an entrepreneur who wants to build a beautiful company. You’ve defined a Beautiful
Purpose.

How can you grow and maintain a challenging and nurturing environment?

I look back at the leaders I admired and they all had hearts as big as houses. It’s the heart that is
the essence of leadership. Create an atmosphere where healthy interactions have their best chance
to happen. You do that in various ways. Maybe you make a cult of quality work or you instill in
people the sense that the group is, in some sense, at least, an elite, the best in the world. You get
them to think about integrity and all the baggage that word carries. Whatever it is, there has to be
something that unifies the group. I think of it as soul. The human creature has built into its
firmware a need to be part of a community. People who feel part of a community do better. And
in today’s sterile modern world, there isn’t much community to be had. For most of us, the best
chance of a community is at work. So building soul into the organization is really an exercise in
community building. The soul you foster in the organization is the seed around which
community begins to form. [DeMarco97]

The art of leadership is liberating people to do what is required of them in the most effective and
humane way possible. The leader removes obstacles that prevent them from doing their jobs. The
true leader enables his followers to realize their full potential. To do this, leaders must be clear
about their own beliefs. They must have thought through their assumptions about human nature,
the role of the organization, the measurement of performance, and a host of other important
issues. Leaders must have the self−confidence to encourage contrary opinions, an important
source of vitality. The true leader is a listener. The leader listens to the ideas, needs, aspirations,
and wishes of his followers and then, within the context of his well−developed system of beliefs,
responds appropriately. That is why the leader must know his own mind. That is why leadership
requires ideas. [DePree89]

The first responsibility of a leader is to define reality. The last is to say thank you. In between,
the leader must become a servant of his followers and a debtor. That sums up the progress of an
artful leader. Leadership is learned over time, a belief, a condition of the heart, much more an art
than a set of things to do. [DePree89]

There’s a terrible defect at the core of our thinking about people and organizations today. There
is little or no tolerance for the character−building conversations that pave the way for meaningful
change. We’re stuck, lost, riveted by the objective domain. That’s where our metrics are; that’s
where we look for solutions. It’s the come−on of the consulting industry and the domain of all
the books, magazines, and training programs out there. That’s why books and magazines that

324

Patterns for Building a Beautiful Company

have numbers in their titles sell so well. We’ll do anything to avoid facing the basic, underlying
questions: How do we make truly difficult choices? The problem is, when you’re stuck, you’re
not likely to make progress by using competence as your tool. Instead, progress requires
commitment to two things. First, you need to dedicate yourself to understanding yourself better−
in the philosophical sense of understanding what it means to exist as a human being in the world.
Second, you need to change your habits of thought: how you think, what you value, how you
work, how you connect with people, how you learn, what you expect from life, and how you
manage frustration. Changing those habits means changing your way of being intelligent. It
means moving from a non−leadership mind to a leadership mind. [LaBarre00]

Real leadership conveys vision, engenders confidence and encourages striving toward common
goals. Leadership is the ability to enroll people in your agenda. Meaningful acts of leadership
usually cause people to accept some short−term pain to increase the long−term benefit. We need
leaders for this because we all tend to be short−term thinkers. [DeMarco01]

Therefore:

Lead from the heart and create a happy family within your workplace.

Real leadership needs the following:

− Clear articulation of a direction.
− Frank admission of the short−term pain.
− Follow−up.
− Follow−up.
− Follow−up.

When we’re presented with the first of these and none of the others, it’s not leadership; it’s
nothing more than posturing. [DeMarco01] The follow−up, of course, should include a
committed action plan that will produce what you want to produce.

The people at Herman Miller have become my second family. [DePree89]

325

Patterns for Building a Beautiful Company

It’s a Small World

Here’s how Erik’s Bike shop finds employees. There is a small pool of individuals who love to
tinker with bikes. It’s not a get−rich industry, so you have to love bikes to work in it. Where do
you find employees with those characteristics? They come into the store all day long! Erik has
hired so many customers that all the managers look at customers as potential employees. When
they get to know one who would fit into the company, they ask, "How would you like to work
with us?"[Dauten99]

???

You’re an entrepreneur who wants to create a beautiful company. You’re trying to practice
Beautiful Leadership.

How can you get what you need, acquire new insights, and connections to new people?

Organizations, like all human groups, operate through conversation. [Senge+99]

In the first issue of Psychology Today, back in 1967, Stanley Milgram described his "small
world" experiment. If you choose any two people in the world at random, how many
acquaintances would be needed to create a chain between them? He started from places such as
Nebraska and asked subjects to send a folder through the mail to a target person in cities like
Boston. The starters had to send the folder to someone they knew on a first−name basis. That
person was to send the folder to someone closer, and so on. Incredibly, Milgram reported that it
took only five people in six jumps to reach a random stranger. But Milgram’s startling
conclusion turns out to rest on scanty evidence. The idea of "six degrees of separation" may, in
fact, be plain wrong−the academic equivalent of an urban myth. There is some evidence that
Milgram might be right in spite of his own research. When we say, "It’s a small world," we are
not talking about the chances of connection between two people taken at random. We are talking
about the chances of meeting a person who can help us meet a goal. Over a lifetime, these
chances are high, especially for educated people who travel in similar networks. And when an
especially unlikely connection occurs, the world does feel small whether or not scientific
evidence supports it. [Kleinfield02]

Therefore:

Look for opportunities to share interests; look for connections.

The people you meet everyday are the quickest way to get what you want. If you’re unemployed,
they’ll help you find a job. Most jobs are found through friends or personal connections. If
you’re looking for an employee, personal contacts will help you find the right person.

When you make a connection, maintain it. Don’t be shy about making your interests and needs
known to friends and acquaintances. They may not have what you need now but if they know
what you’re looking for, they’ll pass your name along or refer you to a useful contact.

We had signed a lease to go into a new building but the tenants below blocked construction−so
we had to abandon the project. We had already told our landlord that we were moving, so from
August through November we were without office space. The first thing I did was to call
everyone I knew. One friend didn’t use her office on Fridays. Another let me work on Tuesday
and my partner work on Wednesday and then we both worked at another office on Friday. The
patients really got involved. It was a real test. If we hadn’t been well established and well

326

Patterns for Building a Beautiful Company

connected, patients would have gone somewhere else. I guess it says a lot about who we are and
a lot about our friends. [Price02]

It never fails to amaze me how so many opportunities and problems are resolved in a
serendipitous fashion. I talk to people about some problems we’re facing or what we’re doing in
our company. Invariably, someone will say, "I know about this" or "Maybe I know someone who
may be able to help." It’s uncanny how often problems are solved and new ideas, contacts, and
opportunities are created in this way. You don’t always end up in the place that you thought you
would, but you end up learning some valuable things and meeting interesting people−sometimes,
new partners and employees in your company. Someone once said that a company is really just a
set of conversations; I think there’s some truth in that. Daniel May

327

Patterns for Building a Beautiful Company

Know Your Limits

I rarely have all the answers or knowledge to do everything myself but I believe that if I
recognize that I don’t know something or can’t do it then I can find someone who does and give
it away to them. I still hold the responsibility for the result but it creates a kind of unlimitedness
for me. It is from this place that I now manage my company. Steve Sanchez

???

You’re an entrepreneur who wants to build a beautiful company. You’re trying to exercise
Beautiful Leadership.

In a small organization, you think you have to know everything.

When you’re an entrepreneur, you think you know everything already, and you’re nervous about
letting go. But that’s what you have to do to build the company. Some leaders won’t understand
the day−to−day details of what their people are doing and might worry that their lack of
understanding will undermine their ability to manage. Any job has numerous facets. Don’t
despair. You achieved your position because of your strengths, not in spite of your weaknesses.
Those who are successful are honest about what they know, use their skills to their fullest, and
actively seek to grow their skills in new directions. Not understanding the details doesn’t get in
the way if you use your strengths well. [Kruger99]

The hallmark of great leadership is knowing your limits. That’s the essence of where I go wrong.
I get so convinced of my knowledge that I blind myself to evidence proving that what I seem to
know is wrong. [DeMarco97]

If you’re too busy hiding your lack of knowledge, you won’t feel comfortable asking questions.
You’ll think you should already know the answers. Let me tell you a secret: no one knows all the
answers. No one. Not knowing the answers isn’t a sign of weakness−not asking the questions is.
Even if you don’t understand the answers to your questions, keep asking questions until you get
the answers in terms you can understand. Asking questions helps you understand what your staff
does on a day−to−day basis. It also enables you to gauge the effort your staff puts into solving a
given problem. Finally, asking questions causes your staff to questions their own assumptions−
and that helps them improve their own work. [Hendrickson02]

It is inefficient to make up for the "imperfections" of others by working harder or longer hours
yourself. By doing so, you may increase your output by 25−30% over a limited period. You
might gain 1/3 of a man−year. If you create the conditions under which 10 people will each
produce 10% more you will have gained one full man−year. [deGeus97]

Therefore:

Know your limits. No one can do everything.

The first thing to do is admit what you don’t know. Misrepresenting your skills to your staff will
always backfire. Learn something about the work your people do. You don’t need to become so
proficient that you could take over for any one of them. You just need to understand the ins and
outs of the job well enough that you can anticipate what your people need and understand the
importance of what they’re saying. If you’re unsure about where to start learning, ask your
people. Not knowing where to put the semicolons isn’t a big deal. Knowing how to lead people,
now that’s a big deal. [Hendrickson02]

328

Patterns for Building a Beautiful Company

One clue for recognizing limitations: when you’re taking too long to decide something. When the
issue is well within your expertise, decision−making is faster. Long deliberations usually mean
that you lack information. Ask for Help [Manns+02].

Embrace the fact that there is an entire body of knowledge that you don’t know. You might have
looked at not knowing something as a weakness or that something is wrong. Two sides of the
same coin. Acknowledging that you are keeping an "open mind" gives you a sense of freedom
and power. Exactly the opposite of how you feel when you don’t know the answer.

By acknowledging the areas where you need help and delegating to an expert you become
unlimited. You retain responsibility for the outcome but your limitation does not become a
hindrance. You have room to move.

In the early years I would hang on tooth and nail to every micro management decision and then
get all worked up when things went wrong. I couldn’t see that I was afraid of not looking good
or that something would happen in the company that would not live up to my inner vision. I tried
to force everyone to do things my way. I spent more energy making sure they did it my way than
on the result. In the product and company I produced, I was scared something would go wrong
that would make me look bad, so I got mad at my staff to scare them too! That’s how I started. It
only took about 10 years to get it. I never said I was smart. Steve Sanchez

Here’s something that trips up a lot of entrepreneurs: You can’t do it all. I made a list of my
strengths and weaknesses to determine where I should devote my energies and whom I should
hire to help. [Kurtzig91]

My manager didn’t know a macro from a make file, but he knew what the customers needed and
how to motivate the developers to give it to them. He helped us understand what the customers
needed and improved the relationships between sales and development. [Hendrickson02]

329

Patterns for Building a Beautiful Company

The Right Coach

When I started my business, I worried about being on track in the whole scope of the business. I
heard about SCORE, the Service Corps of Retired Executives, a resource partner with the U.S.
Small Business Administration. They paired me with a mentor, a great guy who had owned a
steel fabrication company. He tried to compare our companies’ products but the analysis didn’t
fit. We were talking about widgets. We worked for 6 months until we both lost interest. A friend
introduced me to Caroline. When she came in, she asked for different information. She asked me
who I was trying to be and what was working and what wasn’t working. We started by
transforming me and translating that to the business. She still continues to coach me−even after
7 years. I still have breakthroughs. Now I understand that widgets don’t matter. It’s the
organization, the management, the environment, and most of all, the people that matter. Steve
Sanchez

???

You’re an entrepreneur trying to build a beautiful company and exercise Beautiful Leadership.

You don’t understand what’s holding up progress. You are worried about whether you are
on the right track.

Mastery is a three−stage process. The first is superficial understanding. (This seems logical
enough. I get the idea. Let’s give it a try.) The next stage comes when practice is attempted. This
can cause stress and apprehension. (I didn’t understand the full implication of this. I’m not sure
we’re up to it.) The third stage causes introspection, personal distress, and, if you are persistent,
inner change. (This is not just about the organization; it’s about me.) This third stage is difficult
because the focus is on you. It is demanding but holds the most promise. When your organization
faces a challenge and you’re part of it, you’re always the part that’s easiest to change−as hard as
that is! [Pascale+00] Entrepreneurs have problems due to their lack of experience and expertise in
running a company. They get to a certain point and cannot go beyond it.

A coach is like a mirror. You could dress yourself without a mirror but you’d risk not getting it
right. Tiger Woods has several coaches. Michael Jordan said he would leave the game if he lost
his coach. Even Pavarotti has an acting coach, a voice coach, a music coach, a language coach,
and a personal fitness coach. Pavarotti wears 50−100 pounds of costume, sings for 2 hours, raises
his voice to be heard in perfect pitch without amplification by 5,000 people, while acting in a
very demanding role, frequently in a language other than his native Italian. Coaching took
Luciano Pavarotti from just a good voice to legendary operatic status. A coach enables progress
by helping you realize where you are and how you are behaving and then moving you to make
new choices.

Therefore:

Find the right business coach.

Ask people at other companies for recommendations. Interview several coaches and find The
Right Person for the Job, for you and your business. Set up an Audition: enter into a short−term
agreement−6 months to a year, set some strategic goals and see what you accomplish in that time
frame.

Master Marble has spawned six entrepreneurs that set up competing businesses. These were not
friendly competitors. Of the six, none had coaching, and only one survived. All the other

330

Patterns for Building a Beautiful Company

businesses died within 2 years. The lone successful entrepreneur had been with Master Marble a
long time and had received coaching while an employee. It is important to get the correct
support, a coach is not the same as a mentor or casual advisor. Remember that I went through
many, many advisors and others before Caroline was able to open up the possibilities that finale
transformed Master Marble. I believe nothing takes the place of a coach. Just getting "help"
could just be more of the same old meatloaf especially if the person seeking assistance doesn’t
go outside of their comfort zone to find "unattached" input. Steve Sanchez

CK had a client who worked with her for 3−6 months but let her go because he felt he couldn’t
afford her fee. Six months after she left, he closed his business and went to work for another
employer. He didn’t fail because of not making profit, he just was not willing to do the things
that were needed to make his business a success. Some clients shrink right up, once they leave
coaching. Coaching is confrontational − you confront yourself. You have to be willing to leave
yourself behind for who you can become. I think coaching is valuable for any business large,
small or in between, and essential for all entrepreneurs. I think it’s not just "get a coach," but
find the Right coach. All coaches don’t fit all companies or all small business owners and
different coaches can work at different times for the same company. Caroline King

When I started my company, I felt something inside but didn’t really follow it. Now I realize that
and that’s what creates beauty in our company. There’s something within us−you have to access
that−otherwise you’re just doing, doing, doing, and never getting anywhere. The business world
is about profit, forcing things, pushing. In the beginning the spiritual side and the business side
were separate. Now they are connected. It happened because I got the right coach. First there
was a lot of crying, then uncovering integrity and alignment with my greater self. Then there
was a lot of cleaning up of my business transactions to include personal integrity and honoring
my word. It affects every part of your business. If you take a stand, it’s going to affect
everything. I also thought about whether I’m doing what I love to do. When you look at the
service you’re providing, you have to decide whether or not it’s what you really love. You’re
always exploring and always learning and always in transformation. As you find new interests,
you need to incorporate them. Coaching can help you do that. [Rike02]

The controller of a company made a financial error in the company’s books. The owner of the
company was very angry and exploded at the controller but then forgot the incident. After this,
the controller felt the owner no longer trusted her and decided to quit her job. She turned in her
resignation, but did not discuss her decision with her employer. At this point, I was having a
coaching session with the owner, who was surprised and dismayed with the controller’s decision
to leave the company; but hadn’t talked to her about it. I brought all parties together and
encouraged them to talk about the incident. That allowed them to express their concerns. The
controller was reminded of how her father had treated her when she made a mistake−−he
withheld his love, but never talked about it. She had decided that it was easier to leave (home)
than to talk about it. The owner was not aware of treating her differently after the incident. He
knew that he hadn’t told her that he forgave her for the mistake and when he did, she withdrew
her resignation and stayed with the company. Until coaching allowed this incident to be
discussed, the owner did not realize that his reaction to the mistake had made such an impact on
the controller, so she felt she had to leave because she thought he was disappointed in her
performance. The controller didn’t know that the owner had forgiven her and he never would
have communicated without the coaching, because he felt it was "no big deal", since "everyone
makes mistakes." Caroline King

331

Patterns for Building a Beautiful Company

Changing Conversations

I gave a quote to an ongoing client−a general contractor. He presented the contract to his
client−the homeowner−and it was accepted. The next day the homeowner called to try to lower
the contract amount by demeaning our price. When I remained firm, she was not happy. She
wanted to quibble over $250 in a $13,000 contract. If she had asked for a reduction in the
contract, I would have agreed but not when she was nasty. The mirror operates this way. We can
reflect what an individual projects or replace it with something else. I chose to reflect the same
energy she sent out. I have since reconsidered and gave the general contractor a $350
concession. I called the homeowner to say, "I want to apologize for being rude the last time we
spoke. I also want to set an intention that when we are finished with this project, you will love
me, my company, and our product." I think she was a little taken back but said, "Thank you." I
have had several conversations with her about the project and we are communicating nicely. I
gave up having to be right and reflecting rudeness back to the client. I know that my company
will provide excellent service on time and on budget with fantastic quality and that this will be
the start of an exceptional relationship. Steve Sanchez

???

You’re trying to build a beautiful company and look for Beautiful People and Beautiful
Customers and Beautiful Outsiders but it doesn’t always happen.

Sometimes you have to deal with people whose values don’t seem to match yours.

"Inside−out" means to start first with self; even more fundamentally, to start with the most inside
part of self−with your paradigms, your character, and your motives. If you want to have a happy
marriage, be the kind of person who generates positive energy and sidesteps negative energy
rather than empowering it. If you want to have a more pleasant, cooperative teenager, be a more
understanding, empathic, consistent, loving parent. If you want to have more freedom, more
latitude in your job, be a more responsible, a more helpful, a more contributing employee. If you
want to be trusted, be trustworthy. [Covey89]

Therefore:

Change the conversations you have. Instead of reflecting unpleasantness, create a new
intention and let others know you are sincere.

Change your own point of view to see things in a positive light. There is always something good
to see in everyone. It isn’t necessary to be in perfect agreement to focus on the good. Our greatest
lessons come from those who push us and challenge us and force us to take a different point of
view.

You can say, "If a person of your intelligence and competence and commitments disagrees with
me, then there must be something to your disagreement that I don’t understand, and I need to
understand it. You have a perspective, a frame of reference I need to look at." When someone
disagrees with you, you can say, "Good! You see it differently." You don’t have to agree with
them; you can simply affirm them. And you can seek to understand. [Covey89]

You can’t win them all. Sometimes the best solution is to let the person in the mirror take
himself out.

332

Patterns for Building a Beautiful Company

When someone comes along who isn’t so nice−they just take themselves out. We had one patient
who didn’t like women. I don’t know why he chose a dentist that was a woman. You think that if
you’re nice then they’ll be nice but they just get nastier and nastier. I explained that dentistry
wasn’t his area of expertise and that I knew more than he did. We did one procedure on him and
he never came back. [Price02]

At patterns conferences, we have writers’ workshops, where small groups of people consider
papers. We follow a strict process in the workshop and, over time, I’ve come to see the wisdom
in it. After the introduction, the first step is to identify things you like about the paper. There
have been times when I have read through some very poor papers and had a real struggle
finding something to bring up at this point in the workshop. When I offer a meager positive
comment, I am always surprised to hear what others have to say. They always see something
good that I missed but that I agree with and, further, that causes me to see something else that’s
good about the work. Since everyone in the workshop has this experience, the positive comments
take on a life of their own and grow to easily fill the space allowed for this step. Even though
this is the rule, I’m always astonished and pleased when I see this happen. Linda Rising

My whole family worked for the company but I had just forced my brother out. We didn’t see
eye−to−eye. It wasn’t working. I told him he couldn’t be in sales−he could be in manufacturing
if he wanted and stay with the company. He wouldn’t have it and left. He was the top salesman
in the company. I really didn’t know what would happen when he left. He gave them deals they
couldn’t refuse. He was cutting prices. I worried that the company would go bankrupt. I was
struggling to make sense of the contracts he left behind. The phone rang and I snapped a nasty
"Hello!" It was Caroline. I’m afraid I was very short and, OK, I was nasty! Didn’t she know that
I was overwhelmed? What she told me brought me around. She said that if I saw myself as
overwhelmed and things as hopeless, well, that’s what they would be. She suggested that I say
"I’m challenged but I can handle it." It made a difference. If you want a better meatloaf, you’ve
got to change the ingredients. Steve Sanchez

333

Patterns for Building a Beautiful Company

No Ordinary Workplace

I always enjoyed coming to our office, seeing familiar faces. I knew that I could relax with a
drink in the conference room and catch up with the war stories from other people, or talk to
them about a tough technical problem or difficult client. Our cubicles had whiteboards so we
could express ourselves with diagrams (as consultants do!) and the open office space let you see
who was in. We had a library where you could find references, or hide with someone to talk
about something confidential. It was certainly more than just a working environment or an
office; it was a place and collection of people that I looked forward to seeing. Every time I
walked through the door, I’d be thinking: what’s up today? And it was always a bit exciting.
Daniel May

???

You’re an entrepreneur who wants to build a beautiful company. You’ve defined a Beautiful
Purpose, started to exercise Beautiful Leadership, and are ready to start hiring.

How can you attract and keep Beautiful People, Beautiful Customers, and Beautiful
Outsiders?

The environment should enable and empower people to do their best. The environment should
encourage a rising level of knowledge about corporate life: literacy about business, the
competition, relationships, and ownership. The environment must encourage lavish
communication. The environment should be a place of realized potential. It should be a "high
touch" place, a place where we connect persons to each other and to technology in an effective
and human way. [DePree89]

Therefore:

Create a space where people will feel like they’re part of a happy family, where they will
feel safe and free to grow.

The quality of the environment will be determined by Organizational Integrity.

We try to make work more fun: after−hours outings to baseball games and bowling alleys, a
basketball tournament, and floorwide "super loader" contests. We know that these are
monotonous jobs. We want to make it less mechanical and more social. People don’t want to feel
like robots. And if they’re happy, they’ll take the missorts seriously. They’ll treat other people
right, and the quality will go up. Because, hey, they know that guy −− they played volleyball
with him. [Hammonds02]

In dentistry, people are afraid. What our patients tell us is that when they come into our office,
the environment makes them feel good. This is a "Cheers" kind of place−where everybody knows
your name. We try to build relationships with our patients. It starts in the front office. The first
time we do a procedure on a patient, the team goes the extra mile to make that person
comfortable. We customize things to take the edge off. [Price02]

334

Patterns for Building a Beautiful Company

Organizational Integrity

A small computer software company developed some software that they sold in a 5−year
contract to a bank. The bank president was excited about it, but his people weren’t really behind
it. A month later a new president took over. He was uncomfortable with the software conversion.
The software company was in deep financial trouble. The president of the software company
knew he had every legal right to enforce the contract but he had become convinced of the value
of integrity. He told the bank president, "We have a contract. Your bank has secured our
products and services to convert your organization to the new application but we understand
that you’re not happy with it. We will give you back the contract and your deposit. If you are
ever looking for a software solution in the future, come back and see us." Walking away from
this contract was almost financial suicide (loss of an $84,000 contract) but the president of the
software company felt that in the long run, if the principle held, it would have a payback. Three
months later, the bank president called and said, "I’m going to make some changes in our data
processing system, and I want to do business with you." He signed a contract for $240,000.
[Covey89]

???

How do we cope with business reality and still preserve human values?

The professional learns how to diagnose, how to understand. He also learns how to relate
people’s needs to his products and services, and he has to have the integrity to say, "My product
or service will not meet that need," if it will not. This requires a purpose, a clear sense of
direction and value, a burning "Yes!" inside that makes it possible to say "No," to other things. It
also requires independent will, the power to do something when you don’t want to do it, to be a
function of your values rather than a function of the impulse or desire of any given moment. It’s
the power to act with integrity. [Covey89]

When times are tough, integrity matters most. Four in five employees say their organization’s
integrity is an important reason to stay. Misconduct drops and satisfaction rises when leaders
model by ethical behavior. [Bentley]

By "alignment" we mean simply that all the elements of a company work together within the
context of the company’s purpose. Research shows that individuals pick up on all the signals in
their work environment as cues for how they should behave. People want to believe in their
company’s vision, but will be ever watchful for the tiny inconsistencies that allow them to say,
"Aha! See! I knew management was just blowing smoke. They don’t really believe their own
rhetoric." [Collins+94]

Therefore:

Your company and everyone in it must live by its values.

People are either committed to integrity or they’re not. When employees practice integrity in
their personal life, they will most likely perform with integrity at their job. However, even with
the best intentions, sometimes the integrity goes out of our business or personal life. We take our
attention off the details, we "go for the goodies"−a big contract, a shortcut that isn’t exactly
above board−and our integrity slips. If we are committed to keeping our integrity, we make the
correction as soon as we see that it has slipped out. Even when a company has integrity−high
quality products, good value for the price, excellent customer service, taking care of it’s

335

Patterns for Building a Beautiful Company

employees, paying all taxes and licensing fees−keeping that integrity is an on−going process
across the board, and from the top−president, CEO−to the bottom−mail room or janitor.

When coaching begins at a company, any lack of organizational integrity naturally surfaces. You
begin to separate the chaff from the wheat−those committed to integrity, and those committed to
something else−making a fast buck, sloughing off, shuffling papers, and collecting a paycheck.
The Right Coach can help you find out what’s working and what’s not, and who’s working and
who’s not. When people lacking integrity see that they will be uncovered, they usually quit
before they get fired, because they know about their lack of integrity before you discover it.

A team at one company decided at a "visioning" meeting that their values should include
"functioning with integrity." Someone asked, "Does ’integrity’ apply to us alone or does it
include customers?" "Of course, we’re not going to be honest with our customers," said another.
They looked at each other in silence. In their industry, vendors routinely promised customers
delivery dates they knew they could not meet. The team began a three−hour dialogue without a
break. When it ended they concluded, "If we’re putting up integrity as a value, we need integrity
in all aspects of our business." Current reality, however, presented them with a dilemma: if they
changed immediately, they would be unable to match their competitors’ delivery promises, and
they’d be out of business. So they developed a strategic migration plan. They visited key
customers and said, "This industry is based on exchanges of false promises. You know it. We
know it. Nobody likes it, but we all feel stuck with it. We would like to change that. We would
like to start by being honest with you." Thenceforth, every delivery date they offered those
customers was realistic−and honored. Within a year, their business was growing exponentially
and their profits skyrocketed. [Senge+94]

Shared ideals, shared ideas, shared goals, shared respect, a sense of integrity, a sense of
quality, a sense of advocacy, a sense of caring−these are the basis of Herman Miller’s covenant
and value system. [DePree89]

The key to beauty is mastery. You can’t skip levels. There’s an entry level and each level is a
pre−requisite for the next. If you think you can skip a level, it will come back to haunt you. You
can fake integrity but it will come back to haunt you. You won’t make it. You can’t go on to the
next step until you’ve mastered the current one. [Rike02]

336

Patterns for Building a Beautiful Company

Beautiful People

If I had to say what it is about our company that makes it beautiful I would have to say that it’s
fairness. It’s the way we treat people in this company. We have a high respect for the individuals
in it. It happens all the time−a contractor or a vendor will take odds with a price or schedule
and I’m drawn into it. I always defend my people first. I’m not interested in winning and the
other side losing but I never want my own people to lose−even if they’re wrong. [Rike02]

???

You’re an entrepreneur who wants to build a beautiful company. You’ve defined a Beautiful
Purpose, started to exercise Beautiful Leadership, and established that you have No Ordinary
Workplace. You want to work with people with a passion for what they do, because you know
that people are your most important asset.

Many companies treat their employees as "heads." You know that’s not what you want to
do.

Business isn’t about shuffling numbers or rearranging organizational charts or tallying the latest
business school formulas. It’s about people. [Brown85] Whereas a management curriculum has
no place for human beings, the workplace is full of them. [deGeus97]

Control is an illusion. People never "do as they’re told." People get paid so they’re willing to
give some control to the boss but they don’t give up all control. You can’t pay them enough for
that. Many managers assume they have all the control−that it’s their job to control everything. To
manage the kind of person who forms the heart and soul of effective organizations, you have to
give up control to keep control. You have to use your authority so sparingly that no one notices
that it’s being used. You have to create a real sense that control is not completely centralized but
spread generously over the organization. Like a gifted helmsman, who knows that all use of the
rudder increases drag and holds the vessel back, you have to steer with the lightest possible
touch. The slack that you cut for your employees is essential to a healthy organization.
[DeMarco01]

The best people working for you are like volunteers. Since they could probably find good jobs
elsewhere, they choose to work for reasons less tangible than salary or position. [DePree89] As a
manager you have to work with people as you find them. Your role is to create the conditions in
which they will voluntarily give their best. [deGeus97]

Treat people as employees and that’s what you’ll get. They leave as soon as they can get fifty
cents an hour more somewhere else. Treat them as co−workers and everything changes.
[Dauten99]

Therefore:

Make employees part of the business. Give them a part of the operation to run. Put one
employee in charge of displays or men’s shirts or the check−in process. Involve them in
training others in what they know.

The people you groom and train in your business stand on your shoulders. They will be more
creative and more productive and more successful because they learn from you and add their own
creative juices. This is markedly different from those who look for people to control. Instead,
look for people you can partner with−people you can "dance" with.

337

Patterns for Building a Beautiful Company

Management is based on attaining predetermined objectives with and through the voluntary
cooperation and effort of other people. Too many managers fall into the trap of believing that
their employees are there to serve them, when in reality employees want to fulfill their own
needs. Communicate to your employees that you do not want slaves. Rather, you want to work
together in a mutual relationship so that everyone involved can fulfill his own needs. Effective
leadership requires that your people cooperate voluntarily, not as a result of manipulative action
on your part. [Brown85]

Treat employees as volunteers just as you treat customers as volunteers, because that’s what they
are. They volunteer the best part−their hearts and minds. [Covey89]

Give away control. Allow your employees to chart their course, while riding alongside to offer
support and reassurance when needed. The shared purpose and culture that binds the company
together will encourage your employees to perform, driven from within.

Try being a coach of a Little League team or Girl Scout troop. Most people think of management
as control but in a volunteer situation you can’t discipline a volunteer and you can’t offer
monetary rewards. You’re forced to be a leader.

A potential client and his general contractor came to our plant. We went over their blue prints
and specification for a large custom home. During their visit several of our staff came by. Our
receptionist came in to give us information and make copies. Our production coordinator gave
the visitors a virtual tour of the production schedule and explained how we do things. As the
visitors were leaving, I introduced them to my dad, who has been with the company almost from
the beginning. As we were walking out together, the general contractor turned to me and said,
"You know, everybody here is so nice." It took a moment before I realized what a wonderful
compliment he had paid my company. Steve Sanchez

I once had an employee who had a gift for turning returns into new sales. If someone wanted to
return an item, they’d always walk out with more than they brought back. I told her I wanted her
to teach everyone else. That meant she had to figure out what she was doing in order to teach it.
She helped make us all better at our jobs. [Dauten99]

Why would I say we have a beautiful company? The thing that sets us apart is the way people
are treated−we respect our employees and our clients. That’s really the biggest thing−respect−
it’s about the Golden Rule−how you want to be treated. We don’t treat some better than others.
[Price02]

338

Patterns for Building a Beautiful Company

The Right Person for the Job

Word of mouth is a powerful thing. The people who seemed to work out best with our company
were those who were recommended by existing employees or close associates of the company.
Because they knew about the needs of our company, they acted as a reputation filter for potential
employees. It was in their interest to make sure that these people have a good fit−after all, they
don’t want to come off as passing off bad people to you! These potential employees also judge
you from what they hear about you out there in the marketspace; your good reputation will
attract and your bad reputation will repel. People talk.

???

You’re an entrepreneur who wants to hire Beautiful People. You have a clear idea of the person
you want.

You know the right person is out there but you don’t know how to find him.

Word of mouth is still the most important form of human communication. Many advertising
executives believe that because of the tremendous marking efforts these days, word−of−mouth
has become the only kind of persuasion most of us respond to anymore. One study showed that
most job connections are made through acquaintances or weak ties, not close friends. Masters of
the weak tie understand what word of mouth is. It’s not me telling you about something and your
telling a friend and that friend telling a friend. Word of mouth begins when somewhere along that
chain, someone tells a Connector. [Gladwell00]

Resumes are the wrong way to hire. They cause both those who apply and those who hire to
focus on the wrong things like degrees and certifications and number of years of experience.
Hiring ought to be based on knowledge and experiences, on dreams and passions, on courage and
curiosity; in other words, on things that can’t be quantified and set forth on a piece of paper.
[Dauten02b]

Therefore:

Advertise−but not in the usual channels. Remember, It’s a Small World. Let everyone
know the kind of person you want. When you finally meet a potential candidate, listen to
your guts. You need people with heart. You better hire it, because you sure can’t put it in.

Don’t go through the haystack looking for another needle. Become a magnet to draw the needle
to you. Have a clear image of the person you want, so you’ll be able to describe him to others.
Imagine you had a magic wand and could instantly create the person you wanted. Articulate these
things in your description so everyone can understand what you’re talking about. When you are
clear about what you want and what you can offer, you have a better chance of meeting the
potential employee’s expectations.

When you finally meet a potential candidate, listen to your guts. Give some credibility to your
intuition. The interviewee who makes you say, "Aha!" is the one for the job. This person may not
be the best qualified on paper or have the most impressive credentials.

How do I attract beautiful people? People come to me. I never run an ad. I pray and then just
talk to everyone. I have a picture in my head of the person I want. The old Jim would want to do
the elaborate interview thing but the new Jim would want to ask a few appropriate questions and
then take it to a quiet place and trust his intuition. [Rike02]

339

Patterns for Building a Beautiful Company

It isn’t about hiring the person with the best credentials it’s more about the attitude of that
person. You could overlook a lot of things but not attitude. We have a technical person who has
a lot of technical knowledge but it goes by the way when they deal with the customer. All the
technical skill in the world won’t help if attitude turns off a customer. Steve Sanchez

Intention. You "intend" to have the perfect staff show up. I feel there is something you have
inside that makes it happen. Somehow there’s a mutual attraction when you both have needs and
you meet the needs of the other. Even when you hire someone you have reservations about they
just hold the spot until the right person comes along. [Price02]

At Master Marble we’re searching for the perfect receptionist. In the past we used the
"meatloaf" approach. This was our recipe for "meatloaf receptionist."

− Send job description to personnel staffing company with more detail than the last−
necessary because we didn’t get the person we wanted last time.

− Write clever ad for classifieds. Use current buzz words.
− Conduct numerous multi level interviews with every conceivable person on staff and

some from other companies.
− Hire the person with the best match of their buzzwords to our buzzwords.
− Cook in the Master Marble oven for 4−6 months at medium stress. Vuwella! Meatloaf!
− Reconsider, reload, and repeat once a year for ten years or until sick of the loaf.

We noticed something. We are tired of meatloaf. Now we create a new dish. Keep the job
description, the clever ad with buzzwords, and add a magic wand, "If you could have anything
you wanted in that position what would it be?" The person would:

− Have the attitude that anything is possible.
− Be resourceful.
− Be flexible.
− Work well with our clients.
− Have a good sense of humor. Have them tell a joke during the interview?
− Get something personal from what they are doing.
− Of course, have all the other stuff, job history, accomplishments, blah, blah, blah.

How do we find out if the interviewee has these qualities? Ask them on the spot for examples and
to provide someone to corroborate the information. Get the answers in a fun way. We can’t keep
making meatloaf from the same old ingredients−wanting different outcomes but not willing to
change the way we do things. Steve Sanchez

340

Patterns for Building a Beautiful Company

Audition

It’s hard to catch everything about a person in an interview. There are so many courses,
mentors, and books that can train you to ace an interview. It’s like testing something in a lab: it
might work in an artificially constrained environment, but the real world is much more volatile
and unpredictable, so you’d better test it there too. You see a lot from a person when they’re
working, in the little things they say and how they respond to problems. Do they rub everyone
the wrong way? Do they understand what the company’s really about? Maybe the new employee
just doesn’t feel like it’s working out for him. Neither of you can see all of this in an interview.
We always had a one−month probationary period for our new employees during which they
could be asked to leave. And people were asked to leave. Daniel May

???

It’s hard to tell in an interview whether the person you hire will work out.

What’s the hardest job in management? People. Getting the right people for the right job. That’s
what makes the difference between a good manager and a drone. Get the right people. Then, no
matter what all else you may do wrong after that, the people will save you. That’s what
management is all about. People selection, task matching, motivation, team formation−the four
most essential ingredients of management. All the rest is Administrivia. [DeMarco97]

Hiring is rarely based on just a job interview or referral−both sides understand that these are
artificial. They want to see the other person’s work, and the person at work, to see if they are
talent "kin." [Dauten99]

Therefore:

When you decide to hire someone, let him work for a short time to see if you have the right
fit.

You’ll learn about the new hire and he will learn about you. The time frame and the tasks depend
on the position. Sometimes a day is enough; sometimes it takes several months.

Consulting Co was a boutique consulting company that only hired senior consultants (8+ years
experience). In partnership with universities, it created a one−year internship program for
high−performing graduates. These graduates would combine their intellectual capability with
real−life senior experience during this year, after which they would return to complete further
studies. Over the course of this year, Consulting Co put itself into the position of intimately
knowing these graduates, so that they could occasionally draw on their expertise for consultancy
assignments or employment. Daniel May

Master Marble hires individuals and lets them work in the shop for a day to determine their
skills. The shop foreman reviews their performance. Steve Sanchez

I was a consultant for a small software company where new hires were given a mentor and a
task and a few months to evaluate the fit. This provided the employee a chance to evaluate the
company and the company and the rest of the team a chance to evaluate the programmer’s skills.
Linda Rising

341

Patterns for Building a Beautiful Company

Southwest Airlines is famous for its hiring practices but no one says much about its firing
practices. They consider the first six months a trial period, in which any employee can be fired
at will−including union employees. [Dauten99]

Nordstrom loses nearly a quarter of its salespeople each year. The leaders of the company
accept this turnover−maybe even welcome it−regarding it as a natural selection process. At
Nordstrom’s, they say, "Your performance is your review." Given that much of the employee’s
income is from commissions and that expectations for hard work are very high, the employees
tend to select themselves out. [Dauten99]

342

Patterns for Building a Beautiful Company

Be All That They Can Be

My father was the founder of Herman Miller. In the furniture industry of the 1920s, the
machines of most factories were run by pulleys from a central drive shaft, which was powered by
a steam engine. The boiler for the steam engine was fueled by sawdust and other waste from the
machine room−a beautiful cycle. The millwright oversaw that cycle. He was a key person. One
day the millwright died. My father, a young manager at the time, thought he should visit the
family. The widow asked my father if it would be all right if she read aloud some poetry.
Naturally he agreed. She went into another room and came back with a bound book and for
several minutes read selected pieces of beautiful poetry. When she finished, my father said how
beautiful the poetry was and asked who wrote it. She replied that her husband, the millwright,
was the poet. I learned from that that it is fundamental that leaders endorse a concept of
persons. This begins with an understanding of the diversity of people’s gifts and talents and
skill. [DePree89]

???

You’re trying to build a beautiful company and keep the Beautiful People you’ve hired.

Sometimes people are in disguise−their talents are hidden, even from themselves.

Everyone comes with certain gifts, but not the same gifts. True participation and enlightened
leadership allow these gifts to be expressed in different ways and at different times. [DePree89]

In a living company, cohesion and diversity exist together. The company is clearly a unit, with a
single identity; but the people and substructures within that unit show a rich variety. The
substructures do not need to be uniform for the whole to keep together. On the contrary, there is
value in diversity. It is the manager’s duty to that organization to find the employee’s strong
points and help bring the most out of that employee. [deGeus97]

The Golden Rule says to "Do unto others as you would have others do unto you." While on the
surface that could mean to do for them what you would like to have done for you, I think the
essential meaning is to understand them deeply as individuals, the way you would want to be
understood, and then to treat them in terms of that understanding. As one successful parent said
about raising children, "Treat them all the same by treating them differently." [Covey89]

The more we can see people in terms of their unseen potential; the more we can use our
imagination rather than our memory when interacting with them. We can refuse to label them−
we can see them in new fresh ways when we’re with them. We can help them become
independent, fulfilled people capable of deeply satisfying, enriching, and productive relationships
with others. Goethe taught, "Treat a man as he is and he will remain as he is. Treat a man as he
can and should be and he will become as he can and should be." [Covey89]

My experience with people is that they generally do what you expect them to do! If you expect
them to perform well, they will; conversely, if you expect them to perform poorly, they’ll
probably oblige. I believe that average employees who try their hardest to live up to your high
expectations of them will do better than above−average people with low self−esteem. Motivate
your people to draw on that untapped 90% of their ability, and their level of performance will
soar! [Brown85]

343

Patterns for Building a Beautiful Company

If you want to be a leader, you must realize that a manager is not God. A manager does not create
people in his own image. As a manager you take people as they come, the way God created them,
and you learn to work with them. [deGeus97]

Therefore:

Make sure that each of your employees has a meaningful job −−one that is challenging and
requires his full attention all day long.

Assess each individual in terms of experience, ability, personality type, and interest and then
match each person with a particular job. Don’t assume too much. Make sure you talk to each
person. Use common sense.

This enables you to think in a new way about the strengths of others. Not just "expert" others−
world−class designers and people with university degrees−but all your employees.
Understanding and accepting diversity means that everyone feels needed and accepted.
Recognizing diversity helps connect the great variety of gifts that people bring to the work and
service of the organization. Diversity allows us all to contribute in a special way, to make our
special gifts part of the corporate effort. [DePree89]

Recognizing diversity helps us to understand the need we have for opportunity, equity, and
identity in the workplace. Recognizing diversity gives us the chance to provide meaning,
fulfillment, and purpose. These must not be relegated solely to private life any more than such
things as love, beautify, and joy. [DePree89]

Make sure that these diverse gifts are involved in your company from the beginning. If you wait
too long, they may become integrated into your organizational culture and you’ll find they’ll start
thinking more and more like everyone else.

In each person is a range of personae. How you treat them will determine which of these
personae you see−and whether you bring out the best or the worst in that person.

I met a man who hired troublemakers−people other managers were ready to give up on because
they were difficult to manage. He established his department as a place for ’difficult people.’
They weren’t difficult for him because he’d set them loose instead of trying to manage them and
they turned out amazing work. [Dauten99]

During an interview, I like to ask prospective employees what is the "gift" they bring? Who are
they going to be? I share my vision of a beautiful company and ask, "How will you contribute?"
This is a real tool! I think it gives a person a moment to consider what he’s up to, and perhaps
bring up something that would not have otherwise come up. Steve Sanchez

344

Patterns for Building a Beautiful Company

Graceful Exit

One gifted boss tells them, "I know you’ve done your best, but you haven’t found what you were
meant to do." Then he helps them focus on their strengths and weaknesses and uses his network
to help them find a new job. [Dauten99]

???

You’re building a beautiful company that’s No Ordinary Workplace and hiring Beautiful People.

Organizations are made up of people and people are constantly changing.

Working with employees is like dancing with them. When they decide to leave, we both know it.
That’s when I sit down and talk to them about it. Some employees decide to change their
behavior after I called the game, and others decide to leave. [Price02]

Failures in the employee relationship occur not because the image in the initial interview was
wrong or the interviewee was faking it but because some life circumstance changed: marriage,
falling in love, family problems. As a result, the focus goes away from the job and the employee
relationship is changed.

My father was a doctor. He had employees that had been with him forever. I think sometimes
you need to let them go. He had a lot of loyalty but sometimes they abuse it. The people you
have in your company are a reflection of what’s in your head. They unconsciously know when
things are changing and will decide on their own not to move with you. Last year I went to San
Francisco to get cosmetic training, and when I came back I discovered that some of the staff were
thinking of leaving−they couldn’t move with the changes. [Price02]

When you first begin to define your company as founded on integrity, some employees can’t
align with the integrity and they have to leave. If they don’t it’s only a matter of time before they
are asked to leave. Beauty is in the eye of the beholder. For a company to be beautiful, it must be
seen that way by everyone in the organization. Over time, the goals of individuals in the
company and the goals of the organization will shift and when there is a mis−alignment, the
beauty goes away.

Firing can be an important management tool. You can use firing and hiring to set new standards,
to demonstrate to other employees what you are looking for. People are smart. They pick up on
it. Employees see what you do and think "I understand−here’s the performance and work ethic
that’s rewarded." They see the person who left and think, "That’s the performance and work ethic
that’s unacceptable." It’s part of the process of getting people to understand what the company
wants. You have to accept the need to fire people. But that doesn’t mean you jump to it. If it’s
easy to fire someone, it’s probably the wrong decision. If it’s easy, you’re not caring enough.
Treating people with dignity sends another message: Employees want to know that if they have
to leave, they’ll be able to feed their families and have time to find a new job. [Dauten99]

Therefore:

Understand and help your employees understand that separation is a natural occurrence.

The Right Coach can help uncover the problem and where the breakdown occurred. Most issues
can be resolved if the employer and employee are willing to talk openly about what happened to
the relationship, which must have been good or the employee would not have been hired in the

345

Patterns for Building a Beautiful Company

first place. Try to discover what happened, where the problem began. Is there a
misunderstanding, a withholding, an undelivered communication, an unfulfilled expectation? Is
there out integrity on the part of the employee or did the employer promise something that was
not delivered? Are there hurt feelings, or does one person feel the other one doesn’t care
anymore? These questions must be answered before you consider firing a beautiful employee.

Sometimes it is necessary to end a relationship, but only when both parties are clear that it is for
the best for all concerned. If the relationship with the employee is built on trust, the exit should
not be painful. No bridges should be burned and a win−win situation should result.

When you find The Right Person for the Job, you can begin with the Graceful Exit already in
place. This transforms the entire context of the relationship. It is a promise between both parties
that establishes the level of integrity for the time when it is usually at its lowest. Defining high
integrity for the exit means an even higher level during the course of the relationship.

No one stays with a company forever. When someone leaves, especially valuable contributors,
we worry about how we will get along without them. Start that conversation when they come in.
Tell them not to be concerned about moving on. If you think of your small company as an
environment for growth, then when they’ve outgrown that, they can move up in your company or
they can leave perhaps to create their own companies. It provides a lot of freedom when people
know that whatever happens, if they outgrow their jobs, that’s OK. As people grow they’re ready
for a bigger challenge and if your company doesn’t have that challenge that’s OK.

Ask the potential employee to agree to consider only a Graceful Exit should the time come. Ask
them to describe what this would be for them. Some of the components might be: not leave in a
huff, training their replacement, or even finding a new employee. This changes the context for
the exit to one of leaving on the best possible terms. Leaving everything complete, perhaps co−
creating a referral for the next job.

This approach removes the fear. The company doesn’t feel it owns anyone and isn’t afraid when
the employee thinks of leaving. The employee isn’t afraid to consider leaving and the experience
is complete.

Instead of making enemies, make allies with those who have been fired. If you care you attract
quality people. Winners attract winners and leaders attract leaders. But sometimes people aren’t
performing and they’ve got to go. Deal with it kindly and with compassion. Help them to do
better in the next job. Many fired employees are hired back. They leave and try something new
and come back grateful and recharged. [Dauten99]

The expression, "I had to fire him" is the right one. When there is no other option and everybody
knows it: boss, employee, coworkers−that’s the right time. When it’s that time, the gifted boss
and great employee alliance need not end, just be suspended. [Dauten99]

One employee was moody and acting out little dramas. She was playing a game. It would go on
and gain momentum unless I "call it." If you let one kid stay up late, then they all want to do it! I
say that I "call the game"−we’re both playing a game and we need to talk. I asked her if she was
aware of what her behavior was saying and I told her that I needed to have things be different. I
suggested we meet again in two weeks. She came in ten days later and quit. [Price02]

346

Patterns for Building a Beautiful Company

Beautiful Customers

In January 2001 I was skiing with friends in Northern Arizona. I fell and seriously injured my
knee and had to see an orthopedic surgeon, Dr. Dave. We started off like old friends. He has
taken great care of my rehabilitation and me through two knee surgeries. Dr. Dave became a
customer, buying granite kitchen countertops for his mountain home. I worked out all the details
with his wife and completed the project but Dr. Dave was never able to see the material before
we installed. It was 2 months after it was completed before he saw the finished product. I had an
appointment with him just as we were submitting the final invoice. When he came into the
examination room he said, "I have something for you." He left the room and returned with a
check and handed it to me. It was signed but the amount was blank. He said, "I’m not sure of the
balance, so you fill it in." When I returned to the office I took the check around to my employees
to see their response. They all understood what it said about our beautiful company. Steve
Sanchez

???

You’re trying to build a beautiful company. You have a Beautiful Purpose and are trying to
exercise Beautiful Leadership. You’ve hired Beautiful People.

How do you get and keep beautiful customers?

In business, you want a vendor you can forget about−where you don’t have to follow up and you
know the specs are going to be right. We want customers to feel that way about us, who light us
up, are fun to do business with, stretch us and make us grow, pay their bills on time, and we’re
proud to be associated with.

Therefore:

Be authentic and expect your customers to be authentic.

How do you do that? Make a promise that is a powerful statement, for example, I tell new
clients: once you make a contract, you can forget about the rest. We will take care of all the
details. Then we live up to it. This generates the relationship that creates beautiful customers.
Even if you make a mistake−when the trust is high−they just say, "OK, you made a mistake."
They know we will never stop until they are satisfied. I’ve never left a client swinging in the
wind. Steve Sanchez

It happens all the time in my office. People will say, "I was afraid but now I feel OK." The
biggest thing is the painless shot. People write notes. I’ve saved them over the past twenty years.
I call this huge notebook my "Office thank you." [Price02]

One of my clients is a general contractor who builds multi−million dollar homes. We don’t bid
his jobs. We negotiate them. He comes up with a budget and then we figure out how we can do
what he wants within his budget. Steve Sanchez

347

Patterns for Building a Beautiful Company

Beautiful Outsiders

Our vendors are all personal friends. They’re almost more important than our patients. Kevin
has been our equipment guy for 15−16 years. We buy all our supplies from him. He repairs all
our equipment. We have total trust. I don’t have to shop prices. I don’t have to check his invoice.
I don’t like to do business with people I don’t like−when I don’t trust their integrity. I make sure
they really like me and I really like them. I pay their bills on time. I take care of them and their
families. No matter what, we take care of each other. We can resolve any issue. [Price02]

???

You’re trying to build a beautiful company. You’ve defined a Beautiful Purpose and you’re
trying to exercise Beautiful Leadership. You hire Beautiful People to work in your company but
you also have relationships with individuals and companies outside your company who are not
customers.

How do you treat those your company will interact with who are not your employees or
customers−vendors, partners, consultants, sub−contractors?

"Trust, but verify," is a Russian proverb, "Doveryai, no proveryai" that was often recited by
President Ronald Reagan concerning nuclear weapons control during the peak of the Cold War.
When asked how he could be sure that the Soviets were going to abide by the agreement, he said
he would trust them−but also verify. Profound mistrust of the Soviet Union led him to demand
strict measures for confirming that arms reduction had, in fact, been carried out.

In the Greek poet Hesiod’s Works and Days, "Let the wage promised to a friend be fixed; even
with your brother smile−and get a witness; for trust and mistrust, alike ruin men."

Trust is a process, not a product. It’s an endless, arduous, thankless process. We only notice
when something goes wrong.

Therefore:

Negotiate an agreement with outsiders, and then live it.

The agreement aligns with your Beautiful Purpose. Once you know what you want, you simply
tell them and set the intention. If you know what you’re looking for you can identify it when you
see it. They can decide they like it or they can do business elsewhere.

You want to do business with companies that are professional, fun, pay their bills on time,
stretch you and work with you as partners. If they break the agreement, let them know something
is not working and ask if the problem is on your side. Ask them if they want to change the
agreement, and if so, negotiate a new one. Keep in mind what you want to happen, quid pro quo−
give something in return for something of equal value−tit for tat. If the relationship continues to
deteriorate, realize that you are only as good as your weakest partner and take steps to ensure you
deliver on your agreement to your clients. This could mean that you replace the outsider. Always
go back to the agreement; this keeps it clean, simple, and professional.

Over time a relationship is built on trust with an outside partner. After working with some
outsiders the need for vigilance could be reduced. There’s a lack of fear. That’s a component of a
beautiful company. You know it’s going to get done.

348

Patterns for Building a Beautiful Company

If you replace an outsider, you might consider giving them another chance in the future based on
their performance record with other companies that were verifiable but maintain a high degree of
vigilance.

In one company that developed a large piece of software with multiple teams, each team defined
an interface document with teams that defined shared data and access routines. We were always
careful because some teams would violate this document and try to go their own way. In some
cases we had regular meetings with the rogue teams, since we didn’t have a choice about
working with them! Linda Rising

Chris, our computer guy, has been taking care of us for about 6−7 years. We installed a new
software system−anytime you change the software you have to change the settings. Our network
had some problems with the new server. Chris spent a lot of time to reconfigure it. He sent me
the bill and then called and said he would reduce the price because he felt some responsibility
for it. I didn’t have to say anything. That’s the kind of relationship you want. [Price02]

349

Patterns for Building a Beautiful Company

References

[Bentley] Bentley College Center for Business Ethics
http://ecampus.bentley.edu/dept/cbe/newresearch/2.html

[Brand99] Brand, S., The Clock of the Long Now, Basic Books, 1999.

[Brown85] Brown, W.S., 13 Fatal Errors Managers Make and How You Can Avoid Them,
Berkley Books, NY, 1985.

[Carbonara97] Carbonara, P., "Wealth and Poverty," Fast Company, December 1997, 60.

[Collins+94] Collins, J.C. and J.I. Porras, Built to Last: Successful Habits of Visionary
Companies, HarperBusiness, 1994.

[Dauten99] Dauten, D., The Gifted Boss, William Morrow and Company, 1999.

[Dauten02a] Dauten, D., "The Best Companies are Best to Employees," The Arizona Republic,
February 12, 2002.

[Dauten02b] Dauten, D., "Devil curses resume dependents, falsifiers," The Arizona Republic,
Tuesday, August 13, 2002, D2.

[Davenport+98] Davenport, T.H. and L. Prusak, Working Knowledge: How Organizations
Manage What They Know, Harvard Business School Press, 1998.

[deGeus97] deGeus, A. The Living Company, Harvard Business School Press, 1997.

[DeMarco97] DeMarco, T., The Deadline, Dorset House Publishing, 1997.

[DeMarco01] DeMarco, T., Slack: Getting Past Burnout, Busywork, and the Myth of Total
Efficiency, Broadway Books, 2001.

[DePree89] DePree, M., Leadership is an Art, Dell, 1989.

[Edler95] Edler, R., "If I Knew Then What I Know Now: CEOs and other smart executives share
wisdom they wish they’d been told 25 years ago," G. P. Putnam’s Sons, 1995.

[Gilbreath93] Gilbreath, R.D., Escape from Management Hell, Berrett−Koehler Publishers, 1993.

[Gladwell00] Gladwell, M., The Tipping Point, Little, Brown and Company, 2000.

[Hammonds02] Hammods, K.H., "Handle With Care," Fast Company, August 2002, 102−107.

[Hefferman02] Hefferman, M., "The Female CEO," Fast Company, August 2002, 58−66.

[Hendrickson02] Hendrickson, E., "Managing Technical People (When You’re No Techie),
STQE, May/June 2002, 58−60.

[Jr02] The Arizona Republic, Friday, June 28, 2002, D2.

350

Patterns for Building a Beautiful Company

[Kleinfeld02] Kleinfeld, J.S., "Six Degrees of Separation: An Urban Myth?" Psychology Today,
Mar/Apr2002. http://www.uaf.edu/northern/six_degrees.html

[Kurtzig91] Kurtzig, S.L. with T. Parker, CEO: Building a $400 million company from the
ground up, Harvard Business School Press, 1991.

[LaBarre00] LaBarre, P., "Do You Have the Will to Lead?" Fast Company, March 2000, 222.

[LaBarre01] LaBarre, P., "Who’s Fast 2002: Feargal Quinn," Fast Company, November 2001,
88−94.

[Manns+02] Manns, M.L. and L. Rising, Patterns for Introducing Patterns (or any Innovation)
into Organizations, Addison−Wesley, in press.

[Mariott+97] Marriott, J.W., Jr. and K.A. Brown, The Spirit to Serve: Marriott’s Way, Harper
Business, 1997.

[McMahon02] McMahon, J.T., "Enron’s leaders still don’t get it," Houston Chronicle, February
1, 2002. http://www.chron.com/cs/CDA/story.hts/editorial/outlook/1236695

[Overholt02] Overholt, A., "True or False: You’re Hiring the Right People," Fast Company,
February 2002, 110−114.

[Pascale+00] Pascale, R.T., M. Millemann, and L. Gioja, Surfing the Edge of Chaos, Crown
Business, 2000.

[Price02] Interview by Caroline King, Linda Rising, and Steve Sanchez of Ginger Price, D.D.S.,
July 30, 2002.

[Rike02] Interview by Caroline King, Linda Rising, and Steve Sanchez of Jim Rike, President,
CalibeR Construction, Inc., June 26, 2002.

[Rothman01] Rothman, J., "Other People’s Problems," Software Development, September 2001,
Project and Process Management Column, 49−50.

[Senge+94] Senge, P. and A. Kleiner, C. Roberts, R.B. Ross, and B.J. Smith, The Fifth
Discipline Fieldbook: Strategies and Tools for Building a Learning Organization, Doubleday,
1994.

[Senge+99] Senge, P., Kleiner, A., Roberts, C., Ross, R., Roth, G. Smith, B. The Dance of
Change: The Challenges to Sustaining Momentum in Learning Organizations, Doubleday, 1999.

[Waldrop96] Waldrop, M.M., "Dee Hock on Management," Fast Company, October 1996, 79.

[Webber02] Webber, A.M., "Are All Consultants Corrupt?" Fast Company, May 2002, 130−134.

	3. Table of Contents
	5. Introduction
	9. Shepherding Award
	13. A Software Metric Pattern Dialect
	35. Framework Patterns for the Evolution of Nonstoppable Software Systems
	55. The Executor Pattern, Decoupling Tasks from Execution
	65. Automated Determination of Patterns for Usability Evaluations
	81. Transformational Pattern for High-Level-Architectural Connectors
	91. Methods for States
	105. Universal Enterprise Model: Business Pattern Language
	137. A First Approach to Design Web Sites by Using Patterns
	159. Using Watchdog Timers to Improve the Reliability of Single-Processor Embedded Systems: Seven new Patterns and a Case Study
	201. Object-Oriented Remoting - Basic Infrastructure Patterns
	227. Design Patterns for Evolutionary Robotics
	241. Patterns for the Role of Use Cases
	259. Agile Environments - Some Patterns for Agile Software Development Facilitation
	271. Pattern Language for Conducting a Successful Niche Conference
	275. Patterns for the Practicing Software Architect
	303. A Language Fragment of Social Antipatterns in Systems Development
	317. Patterns for Building a Beautiful Company

