

Proceedings of the
Fifth Nordic Conference on
Pattern Languages of Programs

Edited by Aino Vonge Corry, Pavel Hruby and Kristian Elof Sørensen

Published by REA Technology
ISBN 978-87-92411-00-6

Viking PLoP 2006, Proceedings of the Fifth Nordic Conference on Pattern Languages of Programs,
edited by Aino Vonge Corry, Pavel Hruby and Kristian Elof Sørensen.

Copyright © 2007 Aino Vonge Corry, Pavel Hruby and Kristian Elof Sørensen. All rights reserved.
Authors retain copyrights of their respective papers.

PLoP is a registered trademark of Hillside Group.
The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

For more information about Viking PLoP please visit http://vikingplop.org or http://vikingplop.net.
For more information about Hillside Group and patterns in general please visit http://hillside.net.

Published by REA Technology
ISBN 978-87-92411-00-6

Table of Contents

Introduction .. 5

Conference Organization .. 7

Shepherding Award... 9

Applying Patterns .. 11

Formalizing Architectural Patterns with the Goal-oriented Requirement Language
Gunter Mussbacher, Michael Weiss and Daniel Amyot... 13

Using Patterns to Create a Service-Oriented Component Middleware
James Siddle ... 37

Software Patterns.. 63

Credential Delegation: Towards Grid Security Patterns
Michael Weiss .. 65

Security Pattern for Input Validation
Lars Helge Netland, Yngve Espelid, Khalid Azim Mughal... 71

Software Architectures for Web Content Management
Andreas Rüping .. 81

Hybrid Parser
Jürgen Salecker... 111

Patterns in Other Fields ... 123

Patterns for Tailoring E-Learning Materials to Make them Suited for Changed Requirements
Birgit Zimmermann, Christoph Rensing, Ralf Steinmetz .. 125

Not Just Another Conference: Pattern Language for Conducting a Successful Niche Conference
Cecilia Haskins.. 145

Introduction

Patterns and pattern languages are ways to describe best practices, good designs, and capture
experience in such a way that it is possible for others to reuse it.

Building upon the traditions and values of the patterns community, a Nordic Conference on Pattern
Languages of Programs is held in Scandinavia every year to enable people in Scandinavia, who might
otherwise not attend another PLoP conference, to learn about patterns. The First Nordic Conference
on Pattern Languages of Programs, Viking PLoP 2002 was held in Højstrupgård, Denmark, followed by
Viking PLoP 2003 in Bergen, Norway, Viking PLoP 2004 in Uppsala, Sweden, and Viking PLoP 2005 in
Helsinki, Finland.

Viking PLoP 2006, the Fifth Nordic Conference on Pattern Languages of Programs was held from
September 28 to October 1 at Højstrupgård Castle near Helsingør, 60km north of Copenhagen,
Denmark.

At writers’ workshops 9 papers were discussed, from which 8 have been selected for these
proceedings: 5 software patterns, 2 patterns in other fields and 2 papers on applying patterns.

We would like to express our thanks to participants of the writers’ workshops for providing useful
feedback to the authors and thus helping to improve their papers for these proceedings; Rebecca
Rikner for managing the Nordic Design Patterns Association, the legal entity behind the conference;
Jim Coplien for being a game master at Viking PLoP 2006, and the personnel at Højstrupgård Castle
for fulfilling our culinary wishes.

In February 2007,
Aino Vonge Corry, Pavel Hruby and Kristian Elof Sørensen

5

Conference Organization

Program Chair
Aino Vonge Corry

Conference Chairmen
Kristian Elof Sørensen and Pavel Hruby

Program Committee
Juha Pärssinen, Uwe Zdun, Kevlin Henney, James O. Coplien and Klaus Marquardt

Shepherds
Jorje Ortega Arjona , James O. Coplien, Richard Gabriel , Neil Harrison, Cecilia Haskins, Michael Kircher,
Andreas Rüping, Peter Sommerlad, Michael Weiss, and Uwe Zdun.

Writers’ Workshops Participants
Aino Vonge Corry, Andreas Rüping, Birgit Zimmermann, Cecilia Haskins, Eric Evans, James Siddle,
Jayashree Kar, Jim Coplien, Juergen Salecker, Juha Pärssinen, Klaus Marquardt, Kristian Elof Sørensen,
Lars-Helge Netland, Met-Mari Nielsen, Michael Weiss, Pavel Hruby, Rebecca Rikner, Susanne Hørby
Christensen, Yngve Espelid

7

Shepherding Award

Shepherding award is given to the reviewer, or shepherd, who helped most to improve the quality of
a patterns paper, before the paper was presented at the conference.

The trophy at Viking PLoP 2006 was a book Short Grooks, Viking Vistas, by Piet Hein, Danish scientist
and poet with wide ranging interests. He is known for building a bridge between the hard technical
and natural sciences, and the soft social subjects, and contributed to making Danish design become
an international concept.

Andreas Rüping was the winner of the shepherding award at Viking PLoP 2006, for being the most
exceptionally observant, helpful and insightful reviewer, and one whose mix of constructive criticism
and encouragement was a great source of inspiration for the authors.

9

Applying Patterns

Formalizing Architectural Patterns

with the Goal-oriented Requirement

Language

Gunter Mussbacher
1
, Michael Weiss

2
 and Daniel Amyot

1

1
SITE, University of Ottawa, Ottawa, Canada

2
SCS, Carleton University, Ottawa, Canada

Abstract. Many pattern descriptions put their emphasis on the solution to

a problem rather than on often conflicting forces and how patterns balance

such forces. This work uses the Goal-oriented Requirement Language

(GRL) to formalize the forces of architectural patterns in a way that en-

ables rigorous trade-off analysis while allowing the pattern user to deter-

mine the applicability of a pattern to the problem in a given context. The

formalization of forces does not replace other pattern descriptions but

rather complements them and relies on them to provide descriptions of the

problem and solution. This work presents a description of the forces appli-

cable in the context of architectural design, introduces how to represent

patterns and forces with GRL, and then formalizes a subset of a recently

published architectural pattern language.

INTRODUCTION

Patterns enable an efficient transfer of experience by documenting common solutions

to recurring problems in a specific context. Much of the work on pattern documentation

such as the Pattern Almanac (Rising, 2000) and pattern formalization (Taibi and Ngo,

2001) focuses on the solution domain. However, they seldom formalize the problem do-

main and relevant trade-offs between the various (and often conflicting) forces involved.

Still, patterns need to be described and formalized in ways that enable the reader to de-

13

termine whether the particular solution presented is useful and applicable to his or her

problem in a given context

To address this issue, we use the Goal-oriented Requirement Language (GRL) (URN

Focus Group, 2003a) to formalize pattern forces and problem domains in a way that sup-

ports a rigorous trade-off analysis. We apply this GRL-based formalization to a recently

published pattern language (Avgeriou and Zdun, 2005). The pattern language covers 23

architectural patterns categorized into eight groups according to their applicability to a

specific architectural view.

In the following sections, we first present the background for patterns and the formal-

ization of patterns. Then, we introduce the GRL as part of the User Requirements Nota-

tion and our explicit model of pattern forces which provides the basis for the trade-off

analysis. This is followed by the formalization of a subset of the architectural pattern lan-

guage to which we have applied our approach, including a brief description of the forces

applicable in the domain of architectural design. Future trends and remarks conclude this

paper.

FORMALIZING PATTERNS

Patterns describe a recurring problem that occurs in a specific context and its solution

(Alexander, 1979). One of their most significant contributions is that they intend to make

explicit the trade-offs between the forces involved. Each pattern describes the situation

when the pattern can be applied in its context. The context can be thought of as a precon-

dition for the pattern. This precondition is further refined in the problem description with

its elaboration of the forces that push and pull the system to which the pattern is applied

in different directions. Here, the problem is a precise statement of the design issue to be

solved. Forces are design trade-offs affected by the pattern. They can be documented in

various forms. One popular approach is to document the trade-offs as sentences like “on

one hand …, but on the other hand …”.

The solution describes a way of resolving the forces. Some forces may not be re-

solved by a single pattern. In this case, a pattern often includes references to other pat-

terns, which help resolve forces that were unresolved by the current pattern. Together,

patterns connected in this way are often referred to as a pattern language. Links between

Applying Patterns

14

patterns can be of different types, including uses, refines, and conflicts. Patterns that need

another pattern link to that pattern with uses. Patterns specializing the context or problem

of another pattern refine that pattern. Patterns that offer alternative solutions conflict.

Current pattern representations are textual. They include the Gang-of-Four (GoF)

form, the Coplien form, and the Alexandrian form. The GoF form (Gamma et al., 1994)

includes sections for intent, motivation, structure, participants, and collaborations. The

emphasis of this format is on the structure of the solution. However, the discussion of the

forces is spread out over multiple sections, which makes it challenging for a developer to

get an overview of when to apply a particular pattern and the consequences of using it.

Motivated by this drawback of the GoF form, the Coplien form (Coplien, 1996) de-

fines a more rigid pattern structure. It includes explicit sections for forces and conse-

quences, in which the forces and the implications of using the patterns are presented in

bullet form. This provides quick access to the reasons for applying a pattern. Variations

of this format have been proposed that present the forces/consequences as tables.

Recently, many pattern authors have returned to the Alexandrian pattern form (Alex-

ander, 1979). It resolves the trade-off between the needs to have structure on the one

hand, and the desire to create more easily readable pieces of literature, on the other. In

practical use for documenting software designs, the Alexandrian form has been adapted

to include the concept of explicit lists of forces and consequences from the Coplien form.

Nonetheless, with these formats there are still open issues: how to recognize under

what conditions a given pattern should be selected, how to compare between different

patterns that address the same problem, and how to integrate the consequences of apply-

ing a pattern or a combination of patterns into an integrated model. It is with these issues

in mind that we propose a formalization of patterns using the Goal-oriented Requirements

Language in a way that supports a rigorous trade-off analysis during the application of

design patterns while maintaining the generality of the solution description.

Previously, (Araujo and Weiss, 2002) have proposed an explicit representation of the

forces involved in a pattern and their inter-relationships. This representation suggests in-

terpreting forces as functional and – mainly as – non-functional requirements, and uses

the Non-Functional Requirements (NFR) framework (Chung et al., 2000) to analyze

forces and the trade-offs made by a pattern.

Formalizing Architectural Patterns with the Goal-Oriented Requirement Language

15

In related earlier work, (Ong, Weiss, and Araujo 2003) derived the forces affected by

a pattern through a close reading of the textual pattern description. The extended pattern

representation enabled them to discover contributions made by the patterns to overall sys-

tem concerns that were only implicit in their textual descriptions. Their main finding was

that the contributions of each pattern to overall system concerns became much more ap-

parent than what could be gleaned from reading the pattern descriptions alone.

Our approach is similar, at the level of individual patterns, to the work by (Gross and

Yu, 2001), as well as (Chung et al., 2002). Both present ways of reasoning about patterns

using NFRs. However, there are important differences. We are also concerned with the

connections between patterns at the pattern language level, as well as with establishing

models of the forces and their trade-offs that exist in a particular domain. As a result, we

feel that our results are farther-reaching, and will lead to a more objective approach.

USER REQUIREMENTS NOTATION

The User Requirements Notation (URN) is a standardization effort of the Interna-

tional Telecommunications Union (ITU) and published in the Z.150 series of Recom-

mendations (ITU-T, 2003). URN is a high-level modeling notation that makes use of

goals and scenarios to model and analyze user requirements in a more formal way. The

notation is generally suitable for the description of most types of reactive, concurrent, and

distributed systems and services; e.g. telecommunications systems, e-commerce systems,

agent systems, operating systems, and health information systems. URN is also a conven-

ient notation for business process modeling and evolution (Weiss and Amyot, 2005). An

overview of URN with a tutorial example from the wireless communication domain is

presented in (Amyot, 2003).

URN consists of two complementary notations. Use Case Maps (UCMs) (URN Focus

Group, 2003b) allow the specification of behavior and structure. The Goal-oriented Re-

quirement Language (GRL) (URN Focus Group, 2003a) represents goals and stake-

holders. Both notations are useful in the context of formalizing pattern forces and solu-

tions, and for trade-off analysis. UCMs are particularly useful for modeling structural and

behavioral aspects of the solution part of patterns (e.g. the consequences of applying pat-

terns in terms of the architectural design of a system), whereas GRL is a valuable tool to

Applying Patterns

16

model pattern forces and their interactions. This work focuses on the later. GRL comple-

ments the NFR (Non-Functional Requirements) framework published in (Chung et al.,

2000) with agent modeling concepts from the i* framework (Yu, 1997). GRL captures

business or system goals, stakeholder concerns, alternative means of achieving goals, and

the rationale for goals and alternatives. Alternatives are evaluated in terms of their impact

on goals and stakeholder concerns. The notation is applicable to functional requirements,

but it is especially good for capturing and reasoning about the interaction of non-

functional requirements. See Figure 1 for a summary of the main notation elements of

GRL.

Satisficed

Weakly Satisficed

Undecided

Weakly Denied

Denied

Conflict

(b) GRL Satisfaction Levels

Satisficed

Weakly Satisficed

Undecided

Weakly Denied

Denied

Conflict

Satisficed

Weakly Satisficed

Undecided

Weakly Denied

Denied

Conflict

(b) GRL Satisfaction Levels

Dependency

Contribution

Correlation

Means-end

Decomposition

(d) GRL Links

Dependency

Contribution

Correlation

Means-end

Decomposition

DependencyDependency

ContributionContribution

CorrelationCorrelation

Means-endMeans-end

DecompositionDecomposition

(d) GRL Links

?
Break Hurt Some- Unknown

Make Help Some+ Equal

(e) GRL Contributions Types

?
Break Hurt Some- Unknown

Make Help Some+ Equal

??
Break Hurt Some- Unknown

Make Help Some+ Equal

(e) GRL Contributions Types

OR

AND

(c) Link Composition

OROR

ANDAND

(c) Link Composition

Goal

Softgoal

Belief

Actor

Actor

Boundary

Resource

(a) GRL Elements

Task

Goal

SoftgoalSoftgoal

BeliefBelief

ActorActor

Actor

Boundary

Actor

Boundary

Resource

(a) GRL Elements

Task

Figure 1. Summary of the GRL notation

FORMALIZING FORCES FOR TRADE-OFF ANALYSIS

We use GRL graphs to explicitly model the forces addressed by a pattern, the ration-

ale behind them, the relationships between patterns, the contribution of a pattern to the

system, and the stakeholders’ interest in various aspects of the system. The GRL graph in

Figure 2 shows the contributions of an individual pattern to its forces.

Forces are represented as softgoals (clouds), indicating that these cannot be achieved

in an absolute manner. Patterns are modeled as tasks (hexagons), representing ways of

Formalizing Architectural Patterns with the Goal-Oriented Requirement Language

17

achieving a softgoal. The nodes of this goal graph are connected by different types of

links. Direct contributions of a pattern to softgoals are shown as solid lines. Side effects

(indirect contributions called correlations) are shown as dotted lines. The kind of contri-

bution is determined by labels, indicating various degrees of positive (+) or negative (-)

contributions (see Figure 1e for the complete set of labels). The complexity of the system

dictates the number of levels of forces (e.g. two in Figure 2), but there is at least one level

of forces.

Figure 2. Modeling individual pattern – Alternative 1

Observation 1. There is only a subtle difference between forces and non-functional

requirements. This difference manifests itself in non-functional requirements being at the

top of the hierarchical structure of forces (i.e. at the bottom of Figure 3). The reason for

this arrangement is that forces push or pull the system towards or away from non-

functional requirements (e.g. better performance or greater security). As forces connect

patterns and non-functional requirements, they provide an explanation of why a pattern

impacts a non-functional requirement the way it does.

Therefore, model non-functional requirements also with softgoals. Show them on the

same GRL graph in order to provide a visual connection between a pattern and the non-

functional requirements addressed by the pattern. There is always one level of non-

functional requirements in the GRL graph of an individual pattern. With tool support, the

relationships between forces and non-functional requirements could be defined on a sepa-

rate GRL graph and then automatically added to the GRL graphs for individual patterns

in Figure 2.

Applying Patterns

18

Observation 2. A functional requirement can be addressed by many different alterna-

tive patterns. Each one of these patterns is described on its own GRL graph. Furthermore,

functional requirements should be included in the goal hierarchy defined by patterns,

forces, and non-functional requirements in order to assess impacts of patterns on func-

tional as well as non-functional requirements.

Figure 3. Modeling individual pattern – Alternative 2

Therefore, show the functional requirement on the GRL graph for individual patterns

and always model the relationship between a pattern and the functional requirement to

which it contributes as an OR decomposition link (barred lines). This is required due to

the following reasons. On each GRL graph, the functional requirement references the

same model element in GRL. Therefore, an OR decomposition has to be used instead of

an AND decomposition because any one of the individual patterns can satisfy the func-

tional requirement. An AND decomposition (even if it is distributed over many GRL

graphs), on the other hand, would mean that all patterns are required in the system design

before the functional requirement is satisfied. This is often the case as only a pattern

combination may achieve a particular functional requirement, but it is modeled in a dif-

ferent way in our approach as explained later in this section.

Functional requirements are represented as (hard) goals (rounded rectangles) in order

to indicate that the functional requirement can be satisfied in an absolute manner. Goals

Formalizing Architectural Patterns with the Goal-Oriented Requirement Language

19

allow us to reason about the functional requirements to which a pattern contributes. Func-

tional requirements are shown at the top of Figure 4.

Even though our examples only show one functional requirement on the GRL graphs

for individual patterns, our pattern representation is not at all limited to just one such

goal. Many different goals describing many different functional requirements may be

shown on a GRL graph and may be connected with decomposition links to individual pat-

terns.

Figure 4. Modeling individual pattern – Alternative 3

Observation 3. Often, an individual pattern makes use of other patterns. The contri-

butions of these patterns to functional and non-functional requirements have already been

defined on their individual GRL graphs. They should only be created once.

Therefore, show the composition of pattern with decomposition links on the GRL

graph of the individual pattern. Figure 5 constitutes the complete structure of the GRL

graph for an individual pattern.

Decomposition links between tasks allow various relationships between patterns to be

modeled (e.g. uses, refines, and conflict relationships). Figure 5 shows that “Pattern” uses

“Pattern A” and “Pattern B”. The impact of “Pattern A” and “Pattern B” on forces, non-

Applying Patterns

20

functional requirements, and functional requirements is shown on their own individual

GRL graphs. Therefore, GRL graphs for an individual pattern establish reusable models

of forces applicable to many domains.

Figure 5. Modeling individual pattern

Observation 4. If a pattern combination is a pattern in itself, then the GRL graph for

individual patterns is used to describe the pattern combination (see Figure 5). A pattern

combination, however, may not be a pattern in itself, but may just represent the usage of

several patterns together. Considering the composite pattern, there should not be a differ-

ence in our representation between an actual pattern and a pattern combination. Patterns

and pattern combinations should be used interchangeably, allowing both to be considered

as alternatives for a functional requirement. However, if a pattern combination is not a

pattern, then there is no need to model forces and the impact of forces on non-functional

requirements.

Therefore, simplify the GRL graph for an individual pattern into the GRL graph for a

pattern combination (see Figure 6). Figure 6 addresses the point in observation 2 regard-

ing AND decompositions of a functional requirement into many patterns (“Pattern A”

Formalizing Architectural Patterns with the Goal-Oriented Requirement Language

21

and “Pattern B”) by explicitly modeling the pattern combination as a task (“Pattern Com-

bination”).

Figure 6. Modeling pattern combinations

Observation 5. A GRL graph for an individual pattern shows all forces and non-

functional requirements impacted by the pattern, irrespective of the current system to be

designed. Not all non-functional requirements, however, may be of interest to stake-

holders in the context of any specific system design task. As it should be possible to reuse

these graphs as is for each system to be designed, the stakeholders’ interest in particular

non-functional requirements has to be modeled with additional GRL graphs.

Figure 7. Modeling stakeholder concerns

Therefore, the stakeholders of a system and the system itself are modeled as GRL ac-

tors (dotted circles) with dependency links (lines with filled direction symbol) between

them identifying only the non-functional requirements of interest to a particular stake-

holder. The GRL graph for stakeholder concerns in Figure 7 shows that stakeholder A

depends on the system to provide “Nonfunctional Requirement A” and “Nonfunctional

Applying Patterns

22

Requirement C”. Note that dependency links may connect non-functional requirements

with subgoals instead of the main functional goal as shown in Figure 7.

Like most goal-oriented languages, GRL supports propagation algorithms to evaluate,

for a given strategy, to what degree the goals and softgoals in a model are satisfied (URN

Focus Group, 2003a). A strategy assigns initial satisfaction values to some of the ele-

ments in the model which are then propagated to the other elements connected by contri-

bution, correlation, and decomposition links. This enables one to make a qualitative,

rapid, and global assessment of the impact of a particular choice and hence to find the

most appropriate trade-off in a given context.

Observation 6. Our pattern representation consists of two hierarchies – one for non-

functional requirements and one for functional requirements. The top level of both hierar-

chies is shown on the GRL graph for stakeholder concerns. The main functional require-

ments are refined into subgoals until a subgoal can be addressed by a pattern or pattern

combination (e.g. one subgoal could be that the system needs to process streams of data

which is addressed by patterns in the Data Flow View group of the architectural pattern

language). This subgoal is then referenced on GRL graphs of applicable individual pat-

terns or pattern combinations, and decomposed with an OR decomposition into the pat-

tern or pattern combination, respectively. Non-functional requirements are also refer-

enced on the GRL graphs of applicable individual patterns or pattern combinations. They

are connected via contribution or correlation links to forces which in turn are eventually

connected to the pattern or pattern combination, respectively.

Therefore, patterns and pattern combinations are at the bottom of both hierarchies and

represent possible solutions to functional and non-functional requirements. Furthermore,

the patterns and pattern combinations are also the model elements to which initial satis-

faction values for the propagation algorithm should be assigned in order to evaluate alter-

nate solutions. The initial values are propagated upwards the hierarchies to the GRL

graph for stakeholder concerns where the final evaluation is shown. The two hierarchies

ensure that the chosen solution is evaluated in terms of its impact on functional and non-

functional requirements, avoiding cases where a solution satisfies only functional re-

quirements at the cost of non-functional requirements or vice versa. Note that the propa-

gation algorithm combines the contributions of several patterns or pattern combinations

to a particular non-functional requirement even if the contributions to the non-functional

Formalizing Architectural Patterns with the Goal-Oriented Requirement Language

23

requirement are shown on several GRL graphs. The combined result is global and shown

on each GRL graph.

Figure 8. Investigating the impact of a pattern

Figure 8 shows the evaluation of an individual pattern with regards to its forces, func-

tional requirements, and non-functional requirements. The evaluation results are indicated

for each node of the goal graph with various checkmarks (positive) and crosses (negative)

(see Figure 1b for the complete set of evaluation results) as well as numbers between

-100 (denied) and 100 (satisfied). Initial values are marked with a star (*) on the evalua-

tion diagram. Note that in order to assess the full impact of the individual pattern, all pat-

terns used by the individual pattern (i.e., “Pattern A” and “Pattern B”) must have their

initial satisfaction values set to 100. This ensures that the contributions of the patterns

used by the individual pattern are taken into account for the evaluation of forces, non-

functional requirements, and functional requirements. If the initial satisfaction values of

“Pattern A” or “Pattern B” are changed in Figure 8, the results for those forces, non-

Applying Patterns

24

functional requirements, and functional requirements that also occur on the individual

GRL graphs for “Pattern A” or “Pattern B” will be different.

Finally, Figure 9 shows the evaluation results from the stakeholder’s point of view.

The evaluation value of the main functional goal of the system is calculated (in this case

it is not satisfied because only one of the two subgoals is satisfied) and the evaluation

values of the non-functional requirements the stakeholder is interested in are shown. Note

that these values match the values on the GRL graphs for individual patterns or pattern

combinations.

Figure 9. Assessing evaluations from the stakeholder’s point of view

Observation 7. As with all modeling techniques, the usefulness of our technique pre-

sented in this section depends on how easily the technique can be included into general

software development processes. A pre-condition to our technique is that regular pattern

descriptions are extended to include our formalized, reusable description of pattern forces

as suggested in this section (see Figure 5). Note that the presence of our GRL models

does neither preclude the existence of other representations and formalizations nor does it

require a particular pattern template.

Therefore, indicate what changes are most likely required to incorporate our tech-

nique into a general software development process.

1. Compile a list of stakeholders for the system. This process step should already be

in place.

2. For each stakeholder, create a GRL graph for stakeholder concerns by identifying

the non-functional requirements of interest to the stakeholder (see Figure 7; space

permitting, more than one stakeholder may be shown on one GRL graph). The

Formalizing Architectural Patterns with the Goal-Oriented Requirement Language

25

identification of stakeholder concerns should already be a part of the process but

visual modeling is an addition.

3. Refine the system’s main functional goal into subgoals. This step also should be

in place and again is done additionally in a visual way. Two cases have to be con-

sidered at this step:

a. If the subgoal matches a functional goal identified in the pattern catalogue on

one of the GRL graphs for individual patterns or pattern combinations, it is

very likely that the subgoal does not need to be refined further. The list of

goals identified in the pattern catalogue can actually be used to guide the re-

finement of goals.

b. If the subgoal does not match a functional goal identified in the pattern cata-

logue, then again there are two choices:

i. Further refine the subgoal until the refinement produces a matching sub-

goal.

ii. Stop refinement of the subgoal and create a new pattern combination (see

Figure 6) that addresses the specific need of this subgoal. A recurring,

new pattern combination may even lead to a new pattern to be added to

the pattern catalogue.

iii. Stop refinement of the subgoal and address the subgoal with a solution

that does not make use of patterns. The impact of this particular solution

on functional and non-functional requirements can still be modeled. This,

however, is only necessary if we are concerned with modeling the com-

plete system regardless of whether patterns are used or not. If our goal is

to "only" compare alternative patterns, indicate the trade-offs, and pro-

vide assistance in choosing the best pattern for the given subgoal, then

we may not need to be concerned about non-pattern choices.

4. Connect the main goal or relevant subgoals with the stakeholder’s non-functional

requirements. In a general software development process, this is most likely not

done explicitly to the extent required by our technique.

5. Determine the most suitable pattern or pattern combination by using tool-

supported trade-off analysis based on GRL strategies. This is currently done in an

ad-hoc manner in the worst case and with tool support in the best case.

Applying Patterns

26

The focus of the suggested process is on comparing patterns. The comparison simply

shows the different impact the patterns have. It captures the information that is currently

provided in the forces and consequences sections of a pattern description. The visualiza-

tion, however, allows us to more readily see what impact the selection of a pattern or a

group of patterns will have. The context for the pattern is defined by prioritizing the non-

functional requirements (see step 2), thereby adapting the pattern to the environment. As

indicated earlier on, our approach does not model the solution part of a pattern which is

arguably the part where most of the variations happen when a pattern is used in a new

context. The approach focuses on the more stable part of the forces and relationships be-

tween forces. By understanding the interaction of forces, the user is given the ground-

work required to adapt the pattern in a new situation.

FORMALIZING ARCHITECTURAL PATTERNS

Observation 8. The bottom half of Figure 3 suggests that there are relationships be-

tween forces and non-functional requirements that are independent of patterns.

Therefore in this section, we formalize the relationship between forces and non-

functional requirements in the domain of architectural design based on the discussion of

eight non-functional requirements in chapter 2 of (Dyson and Longshaw, 2004):

1. Availability (see Figure 10) – the “working hours” of the system (the amount of

time the system is up and running).

2. Performance (see Figure 11) – ability of the system to provide a timely response.

3. Scalability (see Figure 12) – ability to ensure performance when the number of

users grows.

4. Security (see Figure 13) – ability to ensure access control and privacy of informa-

tion.

5. Manageability (see Figure 14) – ability to monitor and adjust the system’s runtime

behavior.

6. Maintainability (see Figure 15) – the ease with which problems are fixed.

7. Flexibility (see Figure 16) – the ease with which new functionality and new non-

functional characteristics are provided for a system.

Formalizing Architectural Patterns with the Goal-Oriented Requirement Language

27

8. Portability (see Figure 16) – the ease with which a system is migrated to a new

operating environment.

Figure 10 to Figure 16 depict the forces and how each force impacts another force or

non-functional requirement as mentioned in chapter 2 of (Dyson and Longshaw, 2004).

The set of forces is not necessarily complete as it only reflects the forces mentioned by

(Dyson and Longshaw, 2004). Other authors may want to add additional forces or rela-

tionships. The GRL graphs, however, make these forces and relationships more explicit,

allowing easier identification and addition of other forces.

Reflecting the nature of forces at play for architectural design, the forces in the GRL

graphs are at different levels of abstraction and cover very different things (e.g. “More

robust against failure” and “Average number of users increases with time”). The GRL

graphs do not prescribe a certain level of abstraction and can certainly cover very differ-

ent things, because the goal of GRL graphs is to show all issues that have to be consid-

ered in a certain situation and how these issues interact with each other. The degree of

contribution is used to show the importance of a force.

If the meaning of one force is not clear from its label, it is often helpful to look at the

forces that contribute to the force. Alternatively, a more elaborate description or defini-

tion can be attached to the force.

Figure 10. Forces of architectural design that impact availability

Reading the GRL graphs reveals the forces in the architectural domain. For example,

Figure 10 indicates that “Use redundant or replicated system elements HELPs availabil-

ity.” The whole sentence expresses an invariant, consisting of a force and, in this case, its

Applying Patterns

28

impact on a non-functional requirement. The invariant has to be considered and under-

stood for the domain in question. The wording of a force can be a matter of discussion.

Some styles prefer the force to be worded with a keyword (similar to requirements, e.g.

shall). Such styles can certainly be incorporated into our formalization. The main point is

that the GRL graphs clearly identify forces, enabling a discussion on wording, etc.

Figure 11. Forces of architectural design that impact performance

Figure 12. Forces of architectural design that impact scalability

Figure 13. Forces of architectural design that impact security

Formalizing Architectural Patterns with the Goal-Oriented Requirement Language

29

Figure 14. Forces of architectural design that impact manageability

Figure 15. Forces of architectural design that impact maintainability

Figure 16. Forces of architectural design that impact flexibility and portability

Applying Patterns

30

As an example, we have applied our pattern formalization to one of the architectural

views described in (Avgeriou and Zdun, 2005). The Layered View is concerned with how

interacting parts of a system remain decoupled. Two patterns are classified under the

Layered View: Layers and Indirection Layer (see Figure 17).

Figure 17. Layers (left) and Indirection Layer (right)

Figure 17 helps us conclude that the patterns impact performance more or less nega-

tively and maintainability, flexibility, and portability positively because it references the

softgoals “Isolate system elements through abstraction and generalization” and “Addi-

tional Processing” which also occur in Figure 11, Figure 15, and Figure 16.

Figure 10 to Figure 17 represent one complete view of the system in terms of forces

and non-functional requirements. Other views, however, can be created if they are

deemed useful by rearranging the forces and non-functional requirements. The relation-

ship between the pattern “Layers” and the non-functional requirements performance,

maintainability, flexibility, and portability is shown indirectly in Figure 17 with the help

of the referenced softgoal “Isolate system elements through abstraction and generaliza-

tion”. In this case, the organization of the GRL graphs favors reusability of the graphs in

Figure 10 to Figure 16 over directly showing, on a single GRL graph, the impact of the

Formalizing Architectural Patterns with the Goal-Oriented Requirement Language

31

pattern “Layers” on non-functional requirements. The latter view, however, can be easily

created from the presented GRL graphs.

DISCUSSION AND FUTURE TRENDS

This example demonstrates how GRL graphs capture pattern forces and can be used

to assess the qualitative impact of various solutions to a functional goal, in context. The

benefits of the proposed process become even more interesting as the system gets more

complex and trade-offs are more difficult to assess due to numerous interrelated contribu-

tions and side-effects.

The proposed process for URN-based trade-off analysis is not limited to individual

subgoals. It can easily be extended to pattern combinations addressing all subgoals at

once, hence providing for global impact analysis and guidance, at the system level. This

may go beyond the needs of designers and system architects who may only be interested

in solving a focused design problem, but this level of evaluation is nevertheless possible.

Obviously, in addition to having patterns formalized with URN, the more advanced

benefits require additional investments that not all modelers may be willing to make: a

system-level GRL model for assessing the global impact of selected patterns.

There is also a general trend towards formalizing aspects of patterns, whether they are

related to the relationships between patterns, or to properties of individual patterns. Often,

these efforts have been confined to certain domains, which are more amenable to formal-

ization, such as the area of security patterns. One example is the formalization of security

properties that are satisfied by application of a pattern (Wassermann and Cheng, 2003),

another is the formalization of security pattern properties in (Mouratidis et al., 2005),

which allows the authors of a pattern language to assess the completeness of the lan-

guage. In this work, the pattern solutions are modeled in agent-oriented models in the

Tropos modeling framework. A formal language for Tropos models is used to formalize

the problems, solutions, and consequences of these patterns. These properties are ex-

pressed in logic statements over the components of the solutions. Some of this logic-

based formalization could be added to GRL, although it does not appear essential in our

current trade-off analysis context.

Applying Patterns

32

Aspects, which are concerns that crosscut dominant decompositions, represent an-

other trend identifiable in the software community in general. Aspects have been studied

for a decade and are used to compensate several weaknesses of object-oriented program-

ming languages (e.g., scattering and tangling of functionalities and other concerns). Exist-

ing design patterns have been recast for new aspect-oriented languages, e.g. see (Hanne-

mann and Kiczales, 2002), whereas new patterns specific to such languages have started

to appear. More recently, aspect-oriented concepts have been included in modeling lan-

guages, closer to design and requirements. For instance, (Jacobson and Ng, 2004) present

an approach where aspects are derived from UML use cases, whereas (Yu et al., 2004)

present an approach where aspects are inferred from goal models. The impact of the

availability of such enhanced modeling languages requires further exploration. For in-

stance, we believe aspect-oriented concepts can easily be added to URN. This could help

close the gap between aspect-oriented modeling and programming languages and at the

same time open the door to new types of patterns that are more abstract or closer to re-

quirements than the current generation of design patterns.

CONCLUSION

In this paper, we have presented an approach where architectural patterns are formal-

ized with the Goal-oriented Requirements Language (GRL). Our main objective is to de-

scribe patterns in a way that the various and conflicting forces involved can guide, in a

given context, the selection of the most suitable patterns or combinations of patterns

amongst many alternatives.

Forces and contributions for individual patterns are captured using GRL. Combina-

tions and side effects (correlations) are described with AND graphs, and alternative com-

binations for a given (functional) goal are represented with an OR graph. With the help of

strategies (i.e. initial selections of candidate patterns) and propagation rules, designers

can assess the impact of their selection on the forces and find a suitable solution in their

context. This context can itself be modeled with GRL, first at the actor/dependency level

and then at the level of intentional elements (goals, softgoals, tasks, etc.) for the system.

This enables global and rigorous assessments to be made, even when many functional

sub-goals are considered.

Formalizing Architectural Patterns with the Goal-Oriented Requirement Language

33

To take full advantage of URN-based formalization of design patterns, a process was

briefly introduced and illustrated with a case study where many combinations of patterns

could be used to achieve the same functionality while leading to different trade-offs in-

volving non-functional aspects such as maintainability and performance. A prototype

Eclipse plug-in, which was used to create and evaluate the URN models presented here,

already exists to support such process, and is still evolving to support new types of analy-

ses and transformations (Roy et al., 2006).

We believe this formalization approach will provide means to get rapid and global

trade-off analysis results in context and make better use of current and future design pat-

terns.

REFERENCES

Alexander, C. (1979). A Pattern Language. Oxford University Press.

Amyot, D. (2003). Introduction to the User Requirements Notation: Learning by Exam-

ple. Computer Networks, 42(3), 285-301.

Araujo, I., and Weiss, M. (2002). Linking Non-Functional Requirements and Patterns.

Conference on Pattern Languages of Programs (PLoP). Electronic Proceedings,

jerry.cs.uiuc.edu/~plop/plop2002 (last accessed Nov. 2005).

Avgeriou, P., and Zdun, U., (2005). Architectural Patterns Revisited - A Pattern Lan-

guage. Tenth European Conference on Pattern Languages of Programs (EuroPlop),

Irsee, Germany, July.

Chung, L., Nixon, B., Yu, E., and Mylopoulos, J. (2000). Non-Functional Requirements

in Software Engineering. Kluwer Academic Publishers.

Chung, L., Supakkul, S., and Yu, A. (2002). Good Software Architecting: Goals, Objects,

and Patterns. Information, Computing & Communication Technology Symposium

(ICCT- 2002), UKC'02. Seoul, Korea, July 8-11.

Coplien, J. (1996). Software Patterns. SIGS. Available electronically: http://users.rcn.

com/jcoplien/Patterns/WhitePaper/SoftwarePatterns.pdf (last accessed March 2006).

Applying Patterns

34

Dyson, P. and Longshaw, A. (2004). Architecting Enterprise Solutions – Patterns for

High-Capability Internet-Based Systems. John Wiley & Sons, Ltd, 364 pages.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley.

Gross, D., and Yu, E. (2001) From Non-Functional Requirements to Design through Pat-

terns. Requirements Engineering, 6(1), 18-36, Springer.

Hannemann, J. and Kiczales, G. (2002) Design Pattern Implementation in Java and As-

pectJ, 17th OOPSLA, November, 161-173.

ITU-T (2003). Recommendation Z.150 (02/03), User Requirements Notation (URN) –

Language Requirements and Framework. Geneva, Switzerland.

Jacobson, I. and Ng, P.-W. (2004). Aspect-Oriented Software Development with Use

Cases, Addison Wesley Professional.

Mouratidis, H., Weiss, M., and Giorgini, P. (2005). Security Patterns Meet Agent Ori-

ented Software Engineering: A Complementary Solution for Developing Secure In-

formation Systems. Conceptual Modeling (ER). LNCS 3716, 225-240, Springer.

Ong, H., Weiss, M., and Araujo, I. (2003). Rewriting a Pattern Language to Make it More

Expressive. Hot Topic on the Expressiveness of Pattern Languages, ChiliPLoP. Care-

free, USA, March.

Rising, L., (2000). Pattern Almanac 2000. Addison-Wesley.

Roy, J.-F., Kealey, J. and Amyot, D. (2006). Towards Integrated Tool Support for the

User Requirements Notation. To appear in SAM’2006, Kaiserslautern, Germany.

Taibi, T. and Ngo, D.C.L. (2001). Why and How Should Patterns Be Formalized. Journal

of Object-Oriented Programming (JOOP), vol. 14, no 4, 8-9.

URN Focus Group (2003a). Draft Rec. Z.151 – Goal-oriented Requirement Language

(GRL). Geneva, Switzerland, Sept. 2003.

URN Focus Group (2003b). Draft Rec. Z.152 – Use Case Map Notation (UCM). Geneva,

Switzerland, Sept. 2003.

Formalizing Architectural Patterns with the Goal-Oriented Requirement Language

35

Wassermann, R., and Cheng, B. (2003). Security Patterns. Technical Report, MSU-CSE-

03-23, Michigan State University.

Weiss, M. and Amyot, D. (2005). Business Process Modeling with URN. International

Journal of E-Business Research, 1(3), 63-90, July-September.

Yu, E. (1997). Towards Modelling and Reasoning Support for Early-Phase Requirements

Engineering. Proceedings of the 3rd IEEE International Symposium on Requirements

Engineering (RE'97). Jan. 6-8, Washington D.C., USA, 226-235.

Yu, Y., Leite, J.C.S.P., and Mylopoulos, J. (2004). From Goals to Aspects: Discovering

Aspects from Requirements Goal Models. 12th IEEE Int. Conf. on Requirements En-

gineering (RE 2004), Kyoto, Japan, September, 38-47.

Applying Patterns

36

��������		
����	���
�	
���

�
����
����
�	
�������
�	������
���

����������	�
��

�����	�����
�����������		
�����

����������		
�����

������������	��
�

��������������������������
���������������
��������������
��
�������������������������

��������
�����������������
��
���

����������������������������
������������������������������������
����������

�����������������������
���������������������������
��
�����������
�������

������
�����������������
��� ��������
����

����������
�������������������
�����������
��
���������������
��������������
�������

��
�������������������

��
����������
������� ����������������
����
��������
����������
����������������

���������������
�������������
��������
���������������������
��
��������������
�

�!��
��������
�����
���������
�����
��������������������������������"
��
���

���
����
��
������������
��������������������������
�������#������$�����%��&'
��� ��

(����������
�)�������	�
��������*�������������	
��	�+������,�-$���./0�

�������
�	��

��
�����������1

���������
�
����������������
��������
��������������������������
�����������

��
�����
��� ��
��������
���

����������������
�����������������������
��
���������������
��������
���������
�������

�����������������
�����������������������������������
��
����������
���������������

�����
��
�����������������
��
�����������
��

����������
��������
�
�����
������"�����������
��������
���
��������������
���������

�
���������������������
�����
��� ������������

������������
������
�������
�������� ����������
��������������������
���������������

��
�����������������������������
���������������������������
�����
����������

����������
��
��������
�����2���

��������������������

37

2�������
��� ��
������������������
��
�������������
��
����������&	�������3��������

������������,���!�����
�4�!�������-42#	3�0��������)�

�������������	
����	��������
�	��
��������������������������������	�� �� �

��!�����!������������������������� �

��"�	����������
��������������"������#��� ����#����� �����������
����������	��������
� �

�����������	�
����������

�	�����	��������������	�������	����	����������
�����������	 �

������������!��
��������������������$�����%�

������
�����������
����������������
������
��	3�������������������

�������������

�
�!����
��������
��������������������������!�������������������
��	3������������

��
�������
��������
������������
���
������1�
������������������
�������
�������

����1�����������������������������
������������������������������
����������

&�������1
���������
�
��������������,��
�������������������������������������

���������
����������������������������������+�������
��������������
���
���
��

�����������������
���

���������������

������
���
�����������������
�������

����������������
������������
�������
������
����������
���
�������������
���

�����������������������
�������3���
�����������
����
��������
�������������������
��

���������
�������������������������������1
���������
��������
�
������������
����

����������
����������
������������
�������
�����������������
���������
���������
���

��������
����
��
��
�����������
��

������
���������������
����������������������
��������������������
����������������

��������
�����������������
������
����
��������
����������
������������������
��

�
������������������
���

	�����������������������
��1�
�������������&��������,����������������������������

�����������
��
��������
���������������
�������������������������������
���������

���������������+�������
�����
�����
���������������������� ������
��������+������

������������)�

� �����������
����
��������
���������
����

!�����
����
���������������������%��

����
����������
����������
�������������������������
������������
����

� �����������
���
�����&�����,�������������
����
���
��
����������
���

���������
���������
���
������������������������
����
���
���
��������������

���������
����

� ���������������
����
�������������������
��1�����������������
�������

���
���������������
�������+��������������������������������������

Applying Patterns

38

�����������������������
����������������
����
����5���������������������
������������

�������������������
�����
��� �)

� &���	����
����	� �
�������������!$�5�����

�����
�����
����������
��������������������
��������
�����������

�
�
������������!����
���

� ����
��������	��
�$����������� ����������������5���������������
�����
���������

����
�����������1����
�����������+���������
������
����
����� �����

���������������������
��������
�����������
�������

� ��� ������ �������������������$���	����	�������	��
�$�������	�
�5�
��������
�����

���+�����
�������������
�������������������������
����
!������������
����
������

������
��������������������������������+�������������������
���������������

�������������������������
������������������
����������� ������
�
����
��
��

������
���������������
������
���������
����
�����������
������������
��

� �������������������������!�������������!����������� �����'���������������������

�����������������������
�������������
������������������������
�������������

����
������������
�����������������������������������

� (�����������	����������������������!���������������������5��������������
��� �������

������
����
��������������������������������
������
������������!����

����
���������
��������
�������������������

� ��������
������������������������������
�����	��� ����������5������
�������

����������������+�����
������������������������������
�����������������������

���
���������������
������
����
���
����������
�1�
���������
����������

� �������
������������������
�������
��������
�����������������

�)�	����	���������������������������!��
��������5������
������������������������

����������
��������
�
�������������+�������
�������
��������������
��

������������
������������
����������������
���������������
��������������

Using Patterns to Create a Service-Oriented Component Middleware

39

�����
����
�������

���������
�������
��
��������
�����

���������������
�����������������
��	����-	�6�.70�����(�������
�������

-6���.80�����������������
�������������1��
����������������������
�������������1

������������������������������
����
���������������
��
��������������������������

�
��������������
����9���
�������������������
��������������������������

�����������������#*��������������	����������������������#��

!��:����-�3	�71;0<�

=�������������!��
��

������������
���������
��������+�����������������������������������
�������������
���2��

������
���
�������+���
�������������������
�

�������������������������
�������������������������������������
������������

�������
�����������+������
��������
��

�������
����
������������������1>������>����
���������'
�����
���2��������
���

������������������������
����������
���������������
�������������
�����
�������
�

�������������������������������
������������������
������������
��

��������������������������������������
���������������������������������
�!��

������������������
��
����������
���2����
��������
�����������������������������������

����������������������������
�����������
����������
����������
��������
��

��������������������1
���������
�
�������������������������������������

������
��������������������������
��������
�����
�������
���������'??�

Applying Patterns

40

�������� �!���
�	��
�����"	 	��

�����
������������������������
����+����������������
��
�����������1
��������

�
�
����������������
��������
��������������������������
������������
��
�����

������
������������!����
���������������������
�������������������
��������
�������������

�
��
���������������������
��������
����������������������������)

��� ��� @���������
�������������������������������������
�����

�����������
�
����
����������������������
�
�����������

�����������

��� ����+�������� A���������������������������
�������
����������
����
��

������������������
��
����
������������
����

��� ����)��������� ���������������� �
��

���
!���(��������
�

����
����
����
����������
������
����
��

��� ����,�� =�����������
������������
�������
����������

��
��������
����
������������������������������
��
��

������������
�������
��

*
������������������ ������
���������������
������������
���������������

�������������
������"������7�����������
���
��������
���
����������
������

�
�������������������
������������
�
�����
�����������������������������
��

&�!����-.��������������/������� �� ���

�������	���

�
����
�

���	����

���	���
������
�
�
�	�
�����"����������������������������������
��������������

������
	������

2���������1��
���
������	���
�

�
����

:6��������*
��� <

	������

2����������1���
��

	������

2���������1���
��

������	���
�

�
����

:6��������*
��� <

�
����
����

Using Patterns to Create a Service-Oriented Component Middleware

41

����	��

����������
���������������������������������
��������
��������������
���
��������

�������
���������������
����
������������������������
���������������������
���
��

������
�����������������
��������������������

��	� ���!�"�#
��

������#
���-�3	�70������������������
������������������������������
������
�������

����������������
������
�����
���������
����%����
����1����������
��������������������

�����������������
�����������������������
�������
�����
�����
������
���������������

����������������������������%��
�����6��!��
���%������������������������
�����
�����

���%������!������
�����
����

���1������������������������������������1

���������
��������
������������������ �����������������
����
�����!������
���
���

�����
��������
���������������������������������
�����*
���������������������
��������

�������
���������
����������
������������*
��������������� ��������
��������������
������

�
������������
��

����������
���������������
�����������
��������
�����������
�
����5��������
��
�����

����������
��������
���������������������������������������B���!��
���
������

�
��
��������������������������
���������
������
������������������������5�����������

�
���������������
��������������
�!��
�������
��
���������������
���

������������
��������
��
��������������������
������������������������������)�����

��
���������
���������������1��
���������������

6
���
���������������������
���
�

���
��������
�����������������

�
����������
����������������
����1����������
�����������������������������������

�������� ��������
����������������������������������
����������������������������

��
�!��
�������������������������������
�!��������!�����
��������������
�����������

��������������������������
���
���������������
�������
���������+����$0��1��%�

-'
����/C0�����������������
���������
������������������������!����������&�

��� �

������������%�-'
�����DE0���
�����������������������
��
����������������������������
�

�������������

2��������
��������������
��
���
���

�����������
�����������
��������������
���
������������������������
�������������������

���������
��������
������������������������
����������������������������
�����

�
���������
���������������1��
����5�������������������
��������
��������

���������1�������
�����
�����

���������������������������������
��������������

�������������������������������� ������������������
�
�������
�:��
��
���
��
��
<�

,����������� ������)����������������� ����������&�������"��F
���
����������������� �����

Applying Patterns

42

�
������
��������*
�������������������������1�����������������������
�����
�������

������������
�������
���
����������������	���������
�
����
���

!��������������

�������
������������������������������������
�������������&�������"������*������������

��������

�������
������������
��
������������������������������������1��
����
����������BA*�

&���!���,�����������
�����������������������������
����������������
������������
��

������������������������+�������������
�������
����!����������� �����������������

������������������������
��������
������������������������
���������������
������

��������������������������������

2����
��������
�����������������
�����
��
��������������
�������������
������

����
�������������������������
��������
�����
��������
�������
��������������

���
������������������
�������

������������������
����������������������������
����������
���������!��������

���
������������
�������������
�����������

����������
������

2��������������
��������
��
����������������������������������
���������������

�
��� ��
������&�������"��)����������������� ����������,����������� �������������� �����

�
�������
�������
���������������������������
��� ��
������*
��������������

� �	���	�	!
����	����

������ ������������
�����
����������
������������������������������������
���

�����
��������������������
������������������
��
��������������
�����
����������
���

����������
�����������������������
����������
�������
�-�3	�G0�����
����������!���

�
��������������
�1��������
��1���������������
���

�
�������������������������
���

6����������������������1�����������������������
��������
��������%����%�3	�

���������
���������
�����������������
�������������3���������	�������������������

������
�����
����������
�������������
�����������������������
��������
�
������

�������������������
�������
���������������!�
����
���������������������������������

������
��
���������1���������
���������
�
�������
��
��������������������
���
��� �

���������
�����������������������
�
��������������
���
������������������
�������

��
������������
�����
���������
�����������������
����������!����
����������������

�������
��������
�
������

����������� �����
����������
����
��������������������1���������������
���
��

��������
����������
��������
�����������������������
���������
��1�������

��������������
���3���������������� ����������������������������������
�!�

�������

6��������������
���
������������������

����
�!�
�������
�������������������������3����
���+������
�����������
����������

Using Patterns to Create a Service-Oriented Component Middleware

43

��+���������
������
������������
�����
���������������
����=�����������������������

������������������
��������
���������������
��������
����������������������
������

�������������
��
��������������
�������������
����
���������������������
������������

���
���
��
�����
������
�!����
���
��������������
������������
�������������������

2�������
�����������������
������������
������
�������
�����������
��������������������

�������������������
�����������
������������������
�����������������
������

���������
������
���
���������
�����

�����
��
����
�"��
�#��
�

4���������
��
�����
����������
������
��

������������
������������������
�������������
�����������������������
������������
��
��

���������������
�	����������	���-�3	�G0�������
������������������������
������

��
������
���

��������

����������������������
��
�������
�
������
��������
������������
����������������

������
������������������
�������������������
���
��������������
����
�!��
������

��1������������
�����������
���
����������������������������
������������� ������
��

������������
������
�����������������������
�������������
�
������
��������
��

����������
���������)�

� ������������
������

� ����������
���
�
���������������
���������
��������
���

� ��������������
������������������
��
�������
���������������������
�����������

�������
�!��
�!����
�������
�������
����
�
�
������!��

�����
�
������
��������
������������
�%���
�������������� ��������
���
�����

�
����������
����������������������
�������
������
���������������������3���
��

�������������������
����
��������
����������������
�������
�������������
������������

�
�������
������������������������
�������������
�
�
�����
����
���������������

����������
������� ��������
���
���������������

!�����������������
����

�����������������������
�����
����
���������������

��������������
��
�������
�
������
��������
�����������������������������������

&����
����,�����
�����������
���
����������������������������������
����������
�����

�����
������
��������
����������������
��

���
������
����������������������
��
��

�������������
�����������������������������
�
�������������
����������
������

�
�
������
��������
������������
�������������������
���������������
���

�����������
����������������
����������
������
����������������������
����������

����������������������������
����������
�������������������
������
�����������
����

�
�����������
�
������
��������
������������
���������������

Applying Patterns

44

"
������������������
��������
�����������������
������������
������������������

����
�������������
��������������
����������������������
��������	
�����	
$	�� %
�	�

�����
�����
�����	
$	���	
����
�:����-$���./0<��
������
�
������
��������
��

����������
���
�������������� �
�����������
��������
���������
�
�����

�
��������
������������
������
��������
�����������H	�������'
��� �H�

���������������������������
��������������������������������
�����
���	�����������

&"����
�!�'
��� �,�������������������������������������
�������������������

�����
�!����������������
�� �
��������������
���

3����������
����
�����������������������������
��
������&"����
�!�'
��� �,�

���������������

���
�����������������������
��

����������
�!����������������2��

�
����������������������
�����!�������
��� �������������
�������������������������

%���������%������������
�������
�!���������������

&�	�����
��
����
���������	���'�&�	�����
�"���	����(�������
��#

"
��
������������������
��
�����������
�����������������
��
����������������������������

������������������������ ����
������������������������������
��
��������

�����
�����
������������
������
�������������
�����
�����������
�������
����
��
��

��
�������������

6
���
����������
������������������������
����
����&	�������6��,��������������

����
�������
��������������
�������
������������������1�
��������������������

�����������!����������������������
�������
�������������������������������

����������������
������������������
�������	�������6������1�
������
���
�������
��

�����
������������������������
������������������������I��H'
�'������H���������

:J���
�������1�����-��('$0<��������� ��)
����������-�3	�70�

����������������������
��
��������
!�������������
�����������1����������1���
�����

�
�������
���3����
���+������
��������������������������
������������������
����

���
�������������
����������������
�
������
��������
������������
���������������

��
�������������������������������������
�������
���
�����������������
������
�������

"
��� �����������������
�����������������������
�����������
���������
������������

������������
������
������������
����������
�1��������������
�����������������

������
!�������������
������������� �������������������&6�����,���������������

��
����
�������
�����������������������
��������������
������������������������
��

���������������������������
!���������������������
�����
������������������������
����

���������������
���������������
�������
����������������������
���������������������

+�����
�����������������������
����
��
��������������
������
����������
���������������

��
������
��+������
����������������������
�����

�������
��������������������������
��������
!��������������
���������
���������

�
�������������������������

Using Patterns to Create a Service-Oriented Component Middleware

45

(������
����
������������
�����������
!��

�

���������������
����������������������������
���3���
���������������
����
��

��������������������
������
������
��������������������
�����

��	� ���!��
����
�&�	
���	����

2�����������������������������������
��������������������������
����!��
�
�����
������

���������������
���������������
�������������������������
���������

��

��
�	��
��
�����������
���:����-A3>��0<������������������������������������
�����

�������������
���
������������5������������������������������������� ��������
����

�
������������������������3�������������
�����������������������������
��

����������
���
���������
����� ��������
�������������

��
�������
��������1����������������
�����������
�����)��$��������������

��$���������������	�������6���������������
�����������
�������
���
���������
��

���������
���
���������������
��

�������
����������
��������
������������

����������� �����
����������
�
������������
���
�������������������
����+�������
�

������������
���
������������������+������������������+�����������������������
����

����������
�����
��������������+������������
��������
���������������� �����
��

�������
�
������������
��

2��������
���
�����������������������
��
��
��

������1����������
�����
�������������
��
��������������
�������
�����������������������

��������
����

3�����������
�
������������
���

��#��!������������
	����	�)
��-�3	�G0����������������������
����
�����������
�

���
�
�������
������2������
�����
����������

���������������������������
���������������������
���������������������������

�
�����������������������������
���
�������������������������
���������������������

����������������
���������������
������������������
�����������������������������

����
����������������������3����������
������������������������
��
�����������

������������
������
���
�����������������
�������
����
�������������������������

�������������1������������������
����������������

������������������
�������
�����

�������������
�������������������������
�������������������
���

� �	���	��$
��	���

F
���������������������������
��
��������������������������
�����
�������������

�
��
���� �����
�������������������������
���

��������

����
���
����������������������
��������	�������6���������������������

����
����������������������������
��������
������
������������
����������������

� �����
������������
���������������������� �����
��������������������� �������

Applying Patterns

46

����
$
��	���-'���.G0����������������������
���������������=�����������������������
���

������������������
��������
����������������	�������6�������
��������
�����������

���
���������������� ����
���
���������������������

!�+��������������
�������

	�������6��������������� �����
���
��� ���
������������������
���������������

��������������������������������
��������������
�����������

2������������������1���������� ����
����������������
���������������+���!���
�������

�
�����
�����������������������������������

��������������-�3	�;0�����������������

� ����
���������������
�����
����
���������� �����
��
������������"�������

��������
�����
�������
�������������������������������
��������
�����������������

�������
������1���������� �����
��
�����
����������������������
���������
��������

����������������!��������������������
���������
���������������
��� ����������

������������������������
�����
������������������+�������
����������������

��������
�����+�������
�����������������������������
����������

������
�*
���+
���
��&�	
����
�

3�������������
�������
������������
�������� �����
�����������
�����������

������������������� ��!�������������
��

���
�������+������

����������
���
��#�����������������
������

������������
�����������������
�������
��������������������������
����������

!����������
����������������������������������
$�����	���	
����
�-6��$��0�������������

���������
�������������
����
������1���

���$#�-=
"0����������������������
������������
�������
������������
������
�

�
�������
����������

'��������������+��
����

����
�����������������������
������������������������������H	�������'
��� �H�������

�!�����
��������������������	�������������������������������������
������
�

���+�������������������"
�����������������
����������
������
������������������	�������

�������
���
����
������������������
 ��
������

�
���������������2����
��������
�������������%�
���%����
����
��������������+���!���

���������������������������������&������������ �����
�,�������������
�����
���������

�������
���
������
������������������
��

����9���������������
����
���
������
����������
����������������������
�������

�������������
���������
��

����� ��1���������
���������
���

��
 �����������������������
����������������������������
��
����
����������

��������
�����������
����������
������
����
���(������������
����
 �����������
�����

�������������������+�������
�����������
��

�����������2��
������
������������
�����
�����������������������������1����������
�����
�

��������������������������!��
��

Using Patterns to Create a Service-Oriented Component Middleware

47

���
��������
����

2����������������������������
�������������������������'??��
����������
�������
����

�������������������������
�����
����������������
����������������������1�����������

�������$
���
����������
������������

����������
��������
������
������������������
�����
������

��������
������
����
����
���������������������������������������
���
�������
���

��������������������
������������!������������
��������������������������������

��+�������
��������
��
������
���������
���������
�����������������

	����+�����������������
���������
�����
��
���������������������
���������������

�
����
��������
���������������������������� ��

'??����������������������������
��������
������������������������
��
����������������

����������������
��������������1�������������
������
����������"
������������������

��
����������
����������������������
���
����������������������������
��
������

��
��
���
��������
��
��������������������

�
������3����������
������
��������������
�������
��������
���
�������������������

��������
������������
���������������
����
��� ������������&2���������>�������
��

�������,���������'3@6��2>�
��4	>*�

	�������������)
���
������������
���
 ��
�������������������������������

��������-=
"0��������������������
����������������������@�
��������������

-#�K�L
0����������������
�������
����
!������� ������������������
����
�������������

��
��1�
1
���������
��������������������������������
 ���������
!���
�������������

����� ����������������������������

�����
�����
��

����� ����
������������
������������������
���������������������������������������

�����������������������
!�����������������
��������������&"����
�!�'
��� �,������

� ����
����������������
�����������
�����
!�����������������
��������
!���
�������

��
�������������������������������
!���

�������������
�����������+����������������

6
�����
 ���������
!����
�
��������+��������������
���
������&"����
�!�

'
��� �,�
�������
��������������������
�������
����������������������	�������6���

�
����
����
�����������������

3����
���+������
������������� ��������������������
 ���������
!�����������������

������������������������
�������
����������������������
��� ����
����������

���������
�����������������
�������������
�������
�������
����������������������
�

�������������3�����13�������������
���������
�������������������������������

�����������������
�����+���������������������
����
�������
������3����������
������

�
������������������������������
 ���������
!�����������������������
���������

����������5�������������������&	�������=������
�,�����������������������������!����
��

�
����
����
 ������
!��������������������������
����� ������������������B��
����������

�����
���
���������������������������
���
��������
������
���������������

Applying Patterns

48

� �
��
��-=
"0�������������������
�����
����
��������
��
����������������
�
������
�

����������������������������1���������������������������������
��
���������������������

��
�������������
�
���������
�������
���������������1�����������������������

���������������
���������� ������������������F
��������
���������������
����������
�

�����������������1���!�� ���
 ���������
!���

�������

2�������������
��������������������������������
��������������2���������������
�

�
������������
��������������
������������
��������������
 �������������������

�
�����
����������
�����������
���
����

��
��������������
���
��
�������������������������
��������������������������

������1������������������������
�����������
������������������������
��������

�����������������������3����������������!������������
������������
��������
��
��

�������������������������������

�����
��
����
�(�������
��#

4��������1��
����
��

��������������������������
����������������������������������
�������������������������

�����������������������������������
���������������	������������������������

��+�������
��
�����������
�����

����&	�������'
��� �,���
�������
����
����������
�������
�����
�����������

����
��������+������� �������������������"��)���-�3	�;0��������������
���������������

��
��
������������
�������������������
�����5������
����&���
���
��,�
�����������

�������������������������
�
������
��������
������������
���������&	�������

@�������,�����������!�
����
����
��

2����������������
������������+������� ����������������������
������������
����

���
���
������������������������
�������������
�������
�����������������2���
���������

����
�������������������������
�����
�������
������
��������
���������������������

�������������&2���
�����4���1��������2���������,���
����������������������
�����������

�����
����������������
 ��������������������
����������
���������
����
�����

	������16�����������������������������
����
��
�����������������������
���������

&�!����2.���� ������ �������

��
 � 2��
!��(����
�
&	�����,

	������
&'�����,

	������
6�
!��

(���� ��

2��������

3�4����

�$����������3�������

(���� ��

2��������

#���1�BA*

Using Patterns to Create a Service-Oriented Component Middleware

49

��+����������������������������
�������
 ��
���������
����������	������16���
�������
�

���������
����������������������������

!����������������������������
��������

����� ����
������������
���
��

!������
!���
�������������
����������������������

���
!���

���������
��������������������������������������
��������������
�������
�������

����������������������������� ��������������������������
!����2�����
���������
�

��������������
 ���������
!���
�������������
�����
�������������������������
���

����������
���
��� ���������������������������������������
������������
��

������
��������
����
���
��������������
�������
���������1�������
��

3����������������
���+������
�����������
���������+���������������������������

���������
��������������� ��������������������
 ������
!���������
�
�����

�
��������
������������
������������������
��'??�@��1���������2��
����
��

:@��2<��+�������������������
���������������

��
��� ����������������
����������� �����������������

��
 ��
�������
���������������������������

������
��!������������+�������

�������+��������
��@��2��������
����������������������������������
���������

�����
���������������������
�������������������������������
��������
������3��

��������
�����������������
����������
��
�����������
�����������������
��

��+����������� ������������
��@��2����
������
���
���������
���+�������	���������������

�����������
�������
����������
�
������
��������
���������������
�����������

�
�������������
��������������
������������
����

������������������������
������������������������������
����+������������������

�
����������������
������������������������������
��������
��������
�� ���������������

����
�����
���
�����������&	�������'
��� �,��"
��� ����������
�������������������

�����������������&������
������
���������������������,�
��&��������������,��
�������

����
������

Applying Patterns

50

������
������$	
��� ���	#

�����
��������
�!�
�������
������������������
�����������5�����������������

�
�����������������������
������
���������
�
����������������
�
�����
��������������

��������
�������
����
�����������������������������
���
�������
������

� �����
���������������������������������
�����������
����������������������1��������

� �������������������������
 ���������
!���
�������

������	
��
�	�����������-�3	�G0�������������������
������������
�����
������
���
��

� �������������2��������������1�����������������������
�������������������
�������

�����������������
��������
��������
�����
������������������
���
���������������

%	�������6��%�5������
��������
�!���������������������
��������
��������
������

���

2��
������
������������������
���
��������������������������������������
���
���������

�������������
��������������
���������������������
����������1���������
��������
�������

����������
���
�����(
����	
��
	!���-=
"0��������������
��������������

��

���������
����������������������
����������
�������������������
�������

����������
��������
�������������������
�������������������
�����������������������

����������
���
�����

2��������
����������������������������
������
����������������������
�������������
�����

���������������������
�����������
�������������������
����������������

&�!����5.�+����������� �	�	��$�+���������+����!����������
����������

(����
�	������

'
�
����

'
��������
�

>��
�����

'
��� �

2���������

MM�*

!���
��������������NN MM�*

!������
!����NN

	������

'
��� �

"����
�!

'
��� �

(�����������

'
��� �

3�����

#���1�BA*

)����������� �	�	��$�0+���������

+����!��� ���0����	��� �"�	��$�

0��� ���0���	�06�������0

)��
������	��$�+���������

+����!��� �����7������	����0��� ���0�

��	�06�������0������� ��� ����

Using Patterns to Create a Service-Oriented Component Middleware

51

�
�
������
��������
���3����������
���
���������������
�����
��
����������������

����
������� ���������+���������
��

�����������������
�������#�����������������������������
���������������
��������

��������
�������������������
���
���

����
�������

����	�������6���������������������������
��������������
���������������
���
��������

�������������
��������� �������������������������������������
����������������

����������������������
��������������
�����������������������
����������������
���

�����������������$
������������+����������
����������������
���
���������
�����

��������������������������
���������
��������������������
�����
��������
����������

�����������������
�����'��������������
��
�����������
�������������+�������
��������

����
��
��������
������������
���

������������������������
����������������������������������
����������������
�

����

��
���
������%�
�����%����������
�������������������������
����������������
��

���������������������������������	�������6����������������������������
���
��������

����������
��������������
����
�������������
����
���������� ����
������������
�����

����
�����1���
���������������
����������
���������
������������������
�������

�����������
����
���������������
��!������
�����������������
���
�����	����������������

���������
�������� ��������
��������������������������

����&6�����,��
�����
����� ��)
���������������������������������������	
����	
�

�
	!��������������
������
�����
�����
��������������
����
��������������
��

����������������������
�������
�������
�
������������
����
���
���
����
!��

�����������
������������
����������������������
������	���������
���������
�������

���
!���������������
��������������
���������
���������������������
�
������

B>�O2������B	6���������
�� ���������������������
�������
���������
���������

�����������
����������
�������
���������
��������������������
���������
�����

������������
�����
������������
����������������
���

������������������������
�������������������

���
���
�������������������	�������

6���%�
�����%������������������������������������
����������
�����������������������

%
��������
���%��
����1�����������������������
����

���������
������
������������������
����������������1���������
������������������
��

� ��������
�������
���������������������������
�������������
���������������������
��

��������%��������%�����%� ������%����������
�������
�����������3����
���+������

���������������������������
���
��

����������������
�����������
���
�������
�������
�
��������������������������
��

������������
����������������+�����������
�
��������
����������
�
���������������

�����+�����������
�����������
����������������������������������3����������
�����

�
�������������
����������
����������������������������������
������� �������

�
�������
�������
�
����������������������
�������������������������
�����������

������������
�����������������������

Applying Patterns

52

�����
����
�	� �
��
��������

4���������
���
�������������������������
��� ����������������������������������

���������������
���������������������������
������������������������
�����������

��������������
����������������
�����������
��������
����������������������������
��

���������������������
�����5����������������������
�����������������������

�����
������������������������������
����������������
������������������������
������

���������
�������������������
�������������

��������-�3	�;0��������������������� ����
���
�����������������������
���������

���
������������������������
��
����#��!������������
	����	�)
��-�3	�G0��������
�

���
��������������
������������������������
����������������������������������
��

�������
�
�������
������
�����������������������!����
�������������

���

�������!������������-�3	�;0��������
�����
���
�����
 ���������
!���
��������
��

����������������������������
����
 �����������
!�����
�������+���������������

&"����
�!,�����&	������,��
��� ����2���������
���������������������
�������
������

��������
���������������� ����
����
��� ���������
�������������
!���
������

���
����������������������������������
��������������

�����
�������
����
��
���������������
������������
$�����	���	
����
��������$#�

�������������������������&��
�����4���1>�������2���������,���
����������
�

���
�����������
������������
���������������������
��������������������������������

�
�������
������� �����
�����������������

"���������,#���-����	����-�3	�;0��������������
�����������������
��
�����������������

����������������� �
������������������
����������&"����
�!�'
��� �,������������

�����
�
������
��������
������������
������
��������
������������������������

���������������
�����
���������
������������������
�����������������������
��

���
���������������������������������
������������������������
��� �������� ����
��

����������
������
��������
���

�������

����#�������		�������
���

$�����������������������������
����� �������������������������������������

����
���������������������������
���������
������������
��������
�����������

���������
	���-=
"0�������������
���������������������������������
���������������

&����1�������,�5���H�
�����������
�����������
������
������������H�������������������

4�!���������������
��
�������������
����������������������-42#	F=0��$
�������������

�������
���
��������������������
��
��������
����������������������
������������
����

�������5���
���
��*
����������(�����
��$���������B��
�����������������3��������

��
������������
���
������������������������������������
���������������

�
����
����
��������'??��

������������������3����������
������������
��

����������
���
����
���������
���
���������

Using Patterns to Create a Service-Oriented Component Middleware

53

3���
�������
����
��������
�������������������
��� ��������
��������
�
��������������

������
������������������������
������������
��1���������
�������������������
�������

��������������
����
���������
����������
���
��
����
������������������������������

���������������
�������
��������
������
�����
���������������
���������
�����

������������������
�������������

������
�����
���
������������
�����������

��+�������
���
���� ����������������
����'������������� ��������
����
�����
�����

��������������
����
������������
������������
����������
�����

��������
�����
�

�������
��%�
�������������%�����%� �����
�����������%����������������������

�
������������������
��� ��������
�����������
������
�������������
��
������������

��������������
�������������������������
����
�����������������
��������������

���
��������������������
���
����������
���������������
���!�������������������

� ��������
���

�����������
��%� �����
�����������%���������
��������
����������������� �����
��������

���
������
�����������
����
�����������������������������
������������������
��������

���������� �����
��������������������
����������
������
�����������
������

�����������������������������
���
��������������������
���������������������������

�
��
�������&"������
�������$��������,�����
�������������������������/�
��&	
�������

�������������2����������,�-6�'�#�0�

����
������������
���������
�������
����������������
����
��������
�������������

���
��������������������
���������������������������
����
��������������
�������������

����������
����
��1���������
���������������3����������
������
����������������������
�

���
��������������������
���
����������� �����
��������������������2���������
��������

���������
����������������
�������
��
��������������������
�!�����������������

&	������,�����&"����
�!,��
��� ����������������������
���������������
��������
���

��
��1���������
��������������� ��������
����������
�����������
��������
������ �����

����
�����
������������
��1���������
���������������������������������������

�������
���

���������������� ����������������
���������
�����������
�����

�����������
����
����������������������
����
��1���������
��������������

2������
�����
��������������%����%��������
������������
�������������+�������

���������
����
����
���
����������������������������
����
������������������

���������������
����������������

6�����������
$
��	������������������������� �����
���
������������������������
�������

�
����������

��� �����
���������������������
������������������������������������

�����������������&���������,���
�!����������������������2�������
������ �����
�������

��������
�!������������������� �����
������������������������������� ���������������

���!��
�������������

���

Applying Patterns

54

#��
� �$� �����

����������
���
��
��������

��
�������������
���������������������
�����������������������������
�������
������

�
������������
������

&���	����
����	� �
�������������!$

"�#
�����
����������
���������������������������������+�������
�����
�����

��
����1����������
���
�1

����������
������������������
������������������

��������
�������
�������
��
�������������
����������������������������������

�������
�����
������������
�������������� ��������
�����
������
�������

������������������
��������������
�����������
���
��������
���
���

A���������
������������������������������
�	����������	��'���������
����
��

�
����
������������������� ��)
����������	�������6�����
������������
��

����
��������������������������������
�������������������
�������
������������

��
�	��
��
����������
������������������
�������������������������������
�����

����������
��
���������������������������������
������������
�������������������

�
�����������
������������������
�����������
�������������������������
�����

�������������������

	������1�����������������������������������
�	����������	�����
�������
��

������������������� ��)
��O�����	�������6�����
�����������$#���������)
���

� �����
���������������������
$
��	����������
��1���������
������������

��������������������
	��������
��������
���������������������
��
����
�����������

�
��������������
������������������������

4�����������������
�����������������������
��������
$�����	���	
����
��

��������	
�����	
$	�� %
�	���������)������
�������������������
��
����
��

����������
������������
�������
����
�������������������� �
������������������

����������������������
����������

���������	
�����	
$	�� %
�	���
������������
��������������������� �����
��

�
��� ��
�������������������
�!���������������
�����
�����	
$	���	
����
�

��
�����������
����������������
��� ������������
�������
��� ������������

�
������
��
�������������������
�������
�����������
��������������
�

� �����
���
��� ����������

B���
��� �
��
��������������������
��
��

�
��
���
��������������
��
�����

���
��
����������

��
����
��
��������������	
��
�	��������������	�������6�����
���������������

� �����
���
���������������
��	
����	
��
	!����
�����������������6������

Using Patterns to Create a Service-Oriented Component Middleware

55

�
���
��������
!�������������
�����������������
���������������������������

��� ��������
�������
����������������

����
��������	��
�$����������� ���������������

�����
�	����������	�����
������������������������
����������

��������������������������
������2����
������������
������������������������

����������
��������������������
��������������
������������
��+���!�����
�����

�����������������������
�������
��������������������
���
�!�����2���
��������

��������
��������
��� ���������������������������������������
���������
���������

2�����
����
�����
������������
��
�����������
���������
���������
����������������

��� ������ �������������������$���	����	�������	��
�$�������	�

���)
��.�	�������6�����
�������
����
������������������������������

�������������������
���������
$�����	���	
����
��������)��'���������
������

���
��

��������
����������������'??�
$�����	���	
����
����������
�!����������������

�����������
����
��
���
��'??��������

��+������������������������������������
���

�������������������������!�������������!����������� ����

���������������������
���������������������
���������
$�����	���	
����
�

������������������
��
��������������
���������������
���������������

�����������������������������������
�����
��������+�������

�����
	�������
�������
������������
����������
������������������
���
�������

�
�
�����������������������������
����������������
�������������������
����

(�����������	����������������������!��������������������

��������
�������
�������
��
�������
��� ����������
�������������������
���

��������
��������������������
��
������������������
���
��������������
��

��
�����
��������������������������
�������������������
�������
���
�������

�
��������
����������������
�����
�����

�$�����	���	
����
����
�������������������������
�����
��
��� ��������
�������

�
�
�������������
����������
�����
������������������������

6����
������������
	���
�����������������
������������������+����������������

�
�
��������������
��������
��!��
�����������������
����������
�
������

��������
������������������������������
�����	��� ���������

�������!����
����
 ���������
!���
�����������
�������������������
�����
�������

��
��������������������
������������������ ����
�����#��!������������
	����

	�)
������
�������������

�����������
���������������
��������������������!�

���
������

������������������������
�
�������
�����

Applying Patterns

56

6������
�����������1�����������������������
$�����	���	
����
���������
��������
�

�������+���!�����������������������
���������������
��������
�������
����
���

���������������
���
������!����� �����
�������������
���

B��
�����������������������
��������������
$�����	���	
����
�����$#������)
���

����������
�	����������	���������������
���������������������������������

��������
���
����
������
���������1��������
�����������
����������

��'??�@��2�

"�,#���-����	������
��������+���!���

��������������������������
��������������������+������

)�	����	���������������������������!��
�������

"�#
���+�������
�����
���

�����
��
������������
�����������

�
������
������������������

��������
�������
�������
����
����������������
��
��%����%�3	����������
���

�������
�����������������
�������������3���������	�������������������
����

�������������������1���������
����
���������
��������������

��������
����������������'??�
$�����	���	
����
����������������
����������

�
�!�����������������
�������������������������
��'??�����������������

��+������������������������������������
���

Using Patterns to Create a Service-Oriented Component Middleware

57

������

����������������������
�������������������������
������������������1
��������

�
�
����������������
��������
��������������������������
����������������!���

	3������������������
������1�
������������������
�������
�����������1��������

���������������������
����������������

"
��������������
������������������������������������
�����������
��������������
��
����

������������
��
���������������������������
�	����������	������	
��
�	����

��������	
�����	
$	�� %
�	���������$#�������������������������
�����������
��
����

�����
�!��
������������������
����%�����������������
�������
������������
��'??�@��2�

�����+�����������������������
��
����������
������������������
����������

�
��������������������
�����������
�����������������
���������������
��������

��+�������
������
��������
 ���������
!����������������
��������!�
�����
�������

���������������
���������
����������
���
�������

3��������
��������+�����
��������������������������
�!����������������������

�����������
�������
����������������������������
��1���������
��������������

�
�������������������������
������1�
���������������������������
������
�����

�������1�
�����
����
�����
�������������������������
�����
���������������
�������

�����1�����������
�!�����������������'3@6��
��@���
����@
���@�����������
��

������������
������������������������
����������������������������
����������������

�����������
�!��
�������������������
��������
�����

2��������
��
�����
�������������������������������
��������
�����������
����������
�

����������������������
��!��!��1����������������������
���������
������
���

�
������������������������
���

!�
������������
������2���������������������������������
����������������������

��
��������������
�
�������
�������

�������������������������
��������
����������������������
������
��
���������������

������������
�������� �����
�������������������������������#3������!�*�������#�

-#�K�L
0���������
����������������
���
��������
�������������
����
��#6���������� �

)�����������	�3��
�����8���������	��������9�		
�����#��

���
�����������������������������
����
�������������������
������������������������

����������
���������
������
���������%����������������������
�������������
��������

����
������!���

Applying Patterns

58

�
���%��������

����!���
�@
������������
������������������2���������������������������������������
��

��
���������������
��������������
��������������
��
��
��������
�������������������

����!���
�������
������������
��������
����������������
����
����������������

�������
����������������������������
�������
�!����� ��������������!���
�#������

$�������
�����������������
������������������!�����
�����
�������������������
���
��

!�
��������
��������
�����������
����
��������
�������������
��������������

��������
�������������

����!�����������������
�A�������#���������
�����������������������������
������

����
�����
�������
�
!��������������������
������
������
�����������������

�
����������"�����������!��
���
�����L�!����*
��G../��
�!��
����������������
��

����������������������!�

Using Patterns to Create a Service-Oriented Component Middleware

59

$�&����
�

-6���.80 #�����6��!�������������'���������6�������*��!������!�6��
����	� �

6�������+���!�%��G���(����
��������
��4�������6
��
��:G..8<

-6�'�#�0 *��6��������'��������@��#�9���������������������������)��*�������� �

�����	�6	�����%�������
��4������:G..;<

-6��$��0 "��6������������#��$��������6��
�����)�����������	��������9���!��%� �

(��
�*
��G..;���
����������B��������P���������#
�����9�=���:G..8<

-'
����/C0 A�(��'
�������:���	��������������� ���;%��>������
�����9�����

:7D/C<�������)OO�������
������
O��������O�
����������

-'
�����DE0 ��3��'
����������>�'��	������:(���
��<�����<������� ��8� �
�������

��������������1��!��!�%������*�������1��!��!������*��!����8���!�%�

:7DDE<

-'���.G0 (��'��������6���������8�����
��!����"����������������%��L�!����*
��G..G

-=
"0 (��=����@��$����@���
���
����������L�����������8���!��*��������' �

6
����������3�����
����������������	���������%�������
�14������:7DDE<

-$���./0 #��$��������+�������6������
�������(����������������1��!��!�����	����� �

��4������%�:G../<�

����)OO������
1������
���
��!O���������O����������

-#�K�L
0 A��L
�������A��#��������B��K�������3������!�*��������.�&���	��������� �

6�����������)����������	�3��
�����8���������	��������9�		
�����%��4�����

	
����������������	�����

-A3>��0� A
�����>��
�����5��*������� �

����9���
�����
��������8� �
������%��

����)OO���������������O
���O��������O�������*�������

-�3	�70� "�6���������@��A��������$��@
����������	
�����������A��	�����

�*��������������	�����������������������/�
����-�'����$��������*�������%��

�
���4���������	
���:7DD/<

-�3	�G0� >�'��	�������A��	�����$��@
�����������"��6����������*��������������	 �

����������������������/�
����2�'�*������������+������������	�8���������	 �

�������%���
���4���������	
���:G...<

-�3	�;0� A��#���������������������*��������������	�����������������������/�
����5 �

'�*������������3��������9���!�����%���
���4���������	
���:G..8<

-	�6�.70 	���������#�������6�������A�!�����!�
�����������8� �
����������� �

�+3=9%�����������$�����B�����	������@������F��:G..7<

Applying Patterns

60

-��('$0 I�������
��������
������)�����)OO������
��������
O��
�����O+�

-42#	F=0 4�!���������������
��
���������
��5�

����)OO�����!�������
��O��!�O	������
�Q�������

-42#	3�0 4�!���������������
��
��	3��5�

����)OO�����!�������
��O��!�O	������1
�������Q������������

Using Patterns to Create a Service-Oriented Component Middleware

61

Software Patterns

Credential Delegation: Towards Grid Security Patterns

Michael Weiss

School of Computer Science, Carleton University, Canada

weiss@scs.carleton.ca

Introduction

Security is a central concern in grid computing. A grid is a platform for sharing re-

sources (such as computers and storage) across organizational boundaries. Thus, us-

ing a grid raises fundamental security challenges such as ensuring that only trusted

organizations access our resources, data integrity and confidentiality, and delegation

of credentials to grid applications. The Grid Security Infrastructure (GSI) imple-

mented by Globus [5] and other grid toolkits [1] addresses many of these security

challenges. A practical introduction to the GSI is given in the Globus Toolkit 4 tuto-

rial [8]. Our goal is to document the patterns underlying such grid security solutions.

In this paper we describe the Credential Delegation pattern. This is one pattern from a

pattern language for grid security we are writing. One of the other patterns that we

will describe is Mutual Authentication, a precondition for applying the Credential

Delegation pattern. Its intent is for two parties (client and server) to verify each

other’s identities. In our description of Credential Delegation, we follow the format

for security patterns defined in [7]. Our focus is on security aspects. For a general pat-

tern-oriented introduction to grid computing see the grid architectural pattern in [3].

Credential Delegation

In a grid parties may need to act on behalf of other parties. They should be able to

authenticate themselves as acting on behalf of those parties. Therefore, issue a special

type of certificate (proxy certificate) signed by the original party (grantor) that con-

firms that the holder of this certificate (grantee) is allowed to act on its behalf.

Example

A user at site A requests to run a simulation on a powerful server at site B. But this

simulation may – on the user’s behalf – need to access input data or invoke services

on another server at site C. Typically, these parties (user, simulation, and providers of

input data or services) are all in different security domains, and may use different lo-

cal security mechanisms (Windows, Unix). Figure 1 summarizes this scenario.

65

Figure 1: A user at site A requests to run a simulation at site B. This simulation needs

to access input data or invoke services at site C on the user’s behalf

Context

A grid in which parties need to act on behalf of other parties. You are using Mutual

Authentication to establish secure communication between the parties.

Problem

When a party requests a service on behalf of another party, it should be able to

authenticate itself as acting on behalf of that party. Refer to those parties as

George, Fred, and Ted. Fred requests a service from George, who in turn requests

services – on Fred’s behalf – from Ted. One solution would be to ignore Fred’s iden-

tity, but this has the obvious drawback that George may lack the credentials to request

the service from Ted. Another solution would be to specify that the request is made

on Fred’s behalf, and for Ted to contact Fred about the validity of the request. But it is

impractical to ask Fred about each service requested on its behalf. Fred may also al-

ready have signed off by the time Ted tries to contact it. Finally, George could dem-

onstrate that it is acting on Fred’s behalf, if Fred had provided its private key to

George. However, this solution results in a severe security breach, as private keys

must always remain secret.

The solution to this problem must balance the following forces:

� George must operate independently from Fred: Fred cannot be expected to be

available, or to provide any information beyond what it initially provided.

� George, as it is acting on Fred’s behalf, must be provided with a means of demon-

strating to other services such as Ted that it represents Fred.

� This means should not be valid beyond the scope of the request. Otherwise,

George
1

could pretend to act on Fred’s behalf in the context of unrelated requests.

Solution

Issue a special type of certificate signed by the original party (grantor) that con-

firms that the holder of this certificate (grantee) is allowed to act on its behalf. A

private/public key pair is generated specifically for such a proxy certificate, and the

1
Or somebody else who manages to compromise the means.

Software Patterns

66

authority to act on the grantor’s behalf extends only to the holder of this pri-

vate/public key pair, that is, the grantee. One issue to be addressed by this solution is

that such a proxy certificate would allow the grantee to act unconditionally on the

grantor’s behalf. Above we referred to the grantor as Fred and the grantee as George.

While the grantor might trust the grantee to act on its behalf during the context of the

specific request, it is unlikely to trust the grantee indefinitely. Thus, the lifetime of the

proxy certificate is limited (usually to a few hours). Should some other party com-

promise the proxy certificate, it will now be of limited use. Some implementations of

this solution (e.g. X.509) also support the placement of restrictions on the grantee by

means of proxy certificate policies. For example, the proxy certificate might only al-

low the grantee to read certain files. This is another way of mitigating the unintended

use of a proxy certificate. The use of proxy certificates results in a delegation of

credentials (i.e. the grantor’s identity) to the holder of the certificate (grantee).

Structure

Figure 2 shows the structure of this pattern. A Grantor asks a Grantee to perform a

request. As executing the request may involve the invocation of another Service, the

Grantor gives the Grantee permission to invoke such a Service on its behalf. This

permission is embodied in a Proxy Certificate, which the Grantee creates and

asks the Grantor to sign. The Service can verify the identity of the Grantor by

checking the Proxy Certificate, that is, it does not need to contact the Grantor.

Figure 2: Structure of the Credential Delegation pattern

Dynamics

The sequence diagram in Figure 3 illustrates the process of generating and using a

proxy certificate. The steps are as follows:

1. The Grantor and Grantee establish a secure channel (using SSL) to assure the

integrity and confidentiality of any subsequently exchanged information.

2. The Grantee generates a temporary public/private key pair to be used for the

Proxy Certificate and signs the new public key with its own private key.

3. The Grantee sends the signed Proxy Certificate request to the Grantor.

Credential Delegation: Towards Grid Security Patterns

67

4. The Grantor signs the Proxy Certificate request with its private key. This re-

sults in the creation of a new certificate, the Proxy Certificate.

5. The Grantor then sends the Proxy Certificate to the Grantee.

6. The Grantee uses the Proxy Certificate to establish a secure channel with the

Service that it needs to invoke on the Grantor’s behalf.

Figure 3: Generation and use of a proxy certificate

A proxy certificate is like a digital certificate, except that it is not signed by a certifi-

cate authority. Thus, for a service to establish the validity of the proxy certificate, it

first verifies that the certificate was signed by the grantor, applying the grantor’s pub-

lic key to obtain the certificate’s public key as signed by the grantee. Then, it applies

the grantee’s public key to extract the certificate’s public key. The service obtains the

grantee’s public key from the grantee’s certificate, which is typically sent together

with the proxy certificate by the grantor, and is signed by a certificate authority.

Example Resolved

Before the simulation (grantor) at site B can access input data or invoke services at

site C on behalf of the user (grantee) at site A, the simulation and user application mu-

tually create a proxy certificate. The service request is then accompanied by the proxy

certificate and the user’s certificate, which allows the service at site C to verify the

proxy certificate, and to establish a secure channel between simulation and service.

Figure 4 shows how the example is resolved. Using stereotypes the role of each com-

ponent (grantor, grantee, service) is indicated in correspondence with the pattern.

Software Patterns

68

Figure 4: Example resolved (stereotypes indicate roles in the pattern)

Known Uses

The principle of credential delegation using proxy certificates was independently in-

troduced in the Digital Distributed System Security Architecture (DDSSA) [4], and in

version 5 of the Kerberos authentication system [6]. Later it became the basis for the

design of the Grid Security Infrastructure (GSI) [2]. GSI is a library for public key

based authentication and authorization designed for inter-domain resource sharing. It

is the most widely adopted security solution for grid middleware, and prominently in

the Globus Toolkit [5]. Other uses of credential delegation, which predate the devel-

opment of Globus, are documented for the I-WAY system [1, chapter 4], and the Le-

gion Grid [1, chapter 10], among others. In I-WAY, proxy user ids were used to

authenticate the user to remote resources on the user’s behalf. In the Legion Grid, user

credentials are communicated through authentication objects, and subsequently used

to access data on the user’s behalf. RFC 3820 [9] provides a detailed discussion of the

proxy certificate technology underlying the GSI. Finally, it should be noted that al-

though a critical component of GSI, credential delegation is not limited to grids.

Consequences

The following benefits may be expected from applying this pattern:

� Proxy certificates allow users to delegate authority to parties that then act on their

behalf, even if the user is no longer available.

� The user’s security is protected due to the short lifespan of proxy certificates.
2

Compromising a proxy certificate has far less impact, in terms of damage that can

be done and recovery, than if the user’s own certificate had been compromised.

� Use of proxy certificates also gives us single sign-on. When interacting with mul-

tiple resources, the user only needs to be authenticated once in order to create a

proxy certificate, and can use the proxy certificate for subsequent authentications.

The following liabilities may arise from applying this pattern:

2
A participant of the writer’s workshop suggested refactoring this pattern into smaller

patterns. For example, this and the next benefit of using the pattern could be docu-

mented in separate patterns with potential names of Short Lifespan and Single Sign-

On. As we add to our pattern language we plan to rework this pattern accordingly.

Credential Delegation: Towards Grid Security Patterns

69

� Performance is slightly degraded, because of handshake required to create a proxy

certificate, but also improved slightly on subsequent authentications.

� The infrastructure becomes more complex in order to support proxy certificates.

See Also

The pattern uses Mutual Authentication (also known as Known Partners [7]) to estab-

lish the initial trust between a grantor and the grantee to which it delegates its creden-

tials. There are many issues not directly addressed by the pattern, such as dealing with

timeouts during transactions longer than the timeout period, and delegation of user

credentials through a chain of systems. They will be addressed by future patterns.

Acknowledgements

My thanks go to my tiresome shepherd Jorge Ortega Arjona. His feedback has helped

me significantly in bringing the workshop version of this paper into shape. I also want

to thank the participants of my VikingPLoP workshop for their thoughtful comments:

Jim Coplien, Aino Vonge Corry, Yngve Espelid, Jayashree Kar, Lars-Helge Netland,

Rebecca Rikner, Andreas Rüping, Kristian Elof Sørensen, and Birgit Zimmermann.

References

1. Berman, F., Fox, G. and Hey, T., Grid Computing: Making the Global Infrastruc-

ture a Reality, Wiley, 2003.

2. Butler, R., Engert, D., Foster, I., Kesselman, C., and Tuecke, S., A National-Scale

Authentication Infrastructure, IEEE Computer, 33, 60-66, 2000.

3. Camargo, R., Goldschleger, A., Carneriro, M. and Kon, F., Grid: An Architectural

Pattern, Conference on Pattern Languages of Programs (PLoP), 2004.

4. Gasser, M. and McDermott, E., An Architecture for Practical Delegation in a

Distributed System, Symposium on Research in Security and Privacy, 20-30,

IEEE, 1990.

5. Globus Alliance, GT4 (Globus Toolkit 4) Security: Key Concepts,

http://www.globus.org/toolkit/docs/4.0/security, 2006.

6. Neuman, B., Proxy-Based Authorization and Accounting for Distributed Systems,

International Conference on Distributed Computing Systems, 283-291, 1993.

7. Schumacher, M., Fernandez-Bugliono, E., Hybertson, D., Buschmann, F. and

Som- merlad, P., Security Patterns, Wiley, 2006.

8. Sotomayor, B. and Childers, L., Globus Toolkit 4: Programming Java Service,

Morgan Kaufmann, 2006.

9. Tuecke, S., Welch, V. et al, RFC 3820 – Internet X.509 Public Key Infrastructure

(PKI) Proxy Certificate Profile, 2004, http://www.faqs.org/rfcs/rfc3820.html.

Software Patterns

70

�������� �	����
 ���
��� �	���	���

���������� 	�
���� ����� ������� ������ ���� ������

���������� �	
�	�������� ��������� �	 ������
������� ������� �����������������

��������

���� ����� ���	
���� � ��	
���� ������ ��� ��
� ��������� � ��� �����	��

����� � �������� ���	������ ��	��������
��������� �� ��� �������� 	��

	����� �� ������ ���������� ���� � ��	
���� ��	����
� �� �
�	��� ����� ���

������ � ����� �� 	������

� ���������	��

���������� ��	
����� � ����� ����� �� �� ����������� �� ������� �� ����
������ �� ��� ������� ���� ���������� ���� ���� ���� �� ���� � �� � �� ���!
"#$� %��	 ����& ����� ��	 �����& � ���& ��� ��� 	������ ��� 	������ ���&	 ��&
	������	 ���� �� ������� �� ������� 	��� 	�	��	� 	������ �	���	 ����
��� 	�
�	�&� �� ����� �� ����������� �������	 ��& ��� ���������� ������������ '	 �
���	�(������ ��		��� (������	 �� 	��	���� ���������� ��� ���&�(����� ������&
�� ��)�
�

���� �� �������� %�� ������ �	 � ���&� 	��� ��� ������� ������ ��������	�
*����	 ��� ���&��� ������
�� �� ���� �� ���&� ���& ���
��	� ���		�+�& �������� &���
��& 	��	���� ��&���� ����������� ' �������� ������� ���� ����� ������	 �	 ��
��
�
�	�& 	������� ���� ,��� &��������	 �	� ��&&�� +��&	 � 	��� ��& �����-���
&�� ���� �	��	� ��& ���� � �����.� �� �� ���������� ���
� ��	��� ���������&�
%������ 	��� �������� ����	� ������	 ��� &���� ���� ��� �����	 �� �� ��

	���� ��& ����� ������	� ���&	 � �/���� &�	����	� %��	 �������
���� ��	 ���
����& �� ��
��� �� ���� ��� 0�
����� ���� "�$�
� 	������ &��������	 �������
� �����	� ����������	 �� ��� ��&� ���� � 	��� ����	 "�$�

*������ 	������ �	 �� � ��� ��	����� ����� *��.�� ��& *�����&��1	 ����������
���� 2%�� �������� �� ���������� �� ������� 	�	��	3 "4$� &�	���
�	
�	�� �������
���	 �� ������ ��� ���� �&��� ,��� �������� ���� �5�� ��	 ���� ��� &�	���
���
��� ������	
���� 	������� �� ���	 ��
���&��� 	����� 	�������
�	 �������
���&�����	 ���� &������& �� 	������ ��������� 6����	 ����
����� � �������
��� �� 	������ 	������& ������&�� ��& �/�������� ���� 	����		��� ������	 �� ���
&������ 	������ ������������ ' 	������ �������� ����	 �����	��� ��� &�	��
����
	������ 	������ ������&��� %�� +�	 ����� �� ��	 &������� ��	 �����
� 7�&��
��& 8������� "!$ �� # 9�

71

����� �����	�
 	� ��� ������ �� �����	�
 ���� �����	�� �� ����� �
�	��� � ���
�� �������� ����� ��� ���� ��� ����	���	�� ����	�� ������ ������� � ! ���
������ " ����
�	�� �� 	���� �����	�
#

��������� �	��
�� ����� ���� ���� ��� ��� ���� ��$���� %	���

���������� � ��� �� ���� ���� $��� ��� ���� ���� 	� �� � ����	� ����& ��� ��'
��� �����(& 	� %	��	� ����	��� ���
�� ������	��& � �����	�� ���� ��$	����
���������

�������� ������ ������ ���� ������ ����'��� ���	���� ��
	�& ���� �� �	�����%	�

��� ����� ������ ������ 	� �� ���	�� ����	�
 ����	���	�� %��� ���	�
 �	����

��� �����)��	���� ������ ����	��� 	� ��	� ���� �������� ���������� ��� �	
��

��

 	��
� �� ������ �� ����� ���� ����	��	*�� ������� ���� �� �+, 	�����	�� ���
����'�	�� ��	��	�
 ��� �� ����� %	�� $�� �-���	.��� ����
� ������ �����$����
��� /�0, �����	�
& ������	.��� �1!� �� 	� ����	��� �� ���	
� � ���� �� ���� ��
$���������� �������& ��� 	����	��	�
 .��	� 	���� ����	�	.� .��	���	��� 	� ����	����
����� ���� ����	�
 �� ���� ���� ��� �� ��� ��$� 2����	�
 ��� ����� �����
� 	�
$�� ������ 	� ��$� �� $�	��������& %��� ��� ��.� �� �� ���������� ��'��'����
%	�� ��% ������& %�	�� ��� ��$� ���	�� ��� ��.	�� ������	�� �
�	��� ��$� ��
��� ������� �� ��$��

3�.��	����� 	���� 	� ��$�� ��� �� �����4� ��� ��� �	�� �.� %�� ����	���	��
.������	�	�	�� �5!� ��� ��� �� ��� ���� ������� � ����	�� ������ �� 	����
.��	���	��� �� �����% ��� ��$����� ���� 	� �6& �� 6!& %�	�� 	� ��� �� ����� �������
�� %	�	�
 ����	�� ��������

� ����� ���	
����

� ��$�� �� ������� �� %�� ����	���	��� ��
�� ��� ����	���	�� ������� ����
�
%�	�� .����� ������� ���	����� 7	�%��� ��������
� ��� � ���������� ��	��
�

����� �6& �� 891! ��� ������ ������ ������ ����& ��� ������� �� ��� ���� �(���	��
�$������ 	� $����
� �������� ��� ����'��� ��.���� ����� �� ���� ���������

�� .��	���� ���� ���� ��$ ��� ��	����

�������

�� ������� ����	�
 ��.	�� ��� ������� ���� ���
��� �� � ��	�� �� ����� ��'
������ �� ������ � ��% %���� ���� %��� ����� � ��*�� �� ��� ����4� ��	���� ����
����� ��$���	�
 �� ���% %�� ���	 �������� ��� ���� ������ ���� �� ��� 	�.��'
�	
��	�� ���� �����%�� ������ �����$ %�� �	���.���# � ��	 :����	�� �� �	��� ��	�
�� �����$�� �����	��� ��
��	.� �$������ 7���������& ��� ���� 	�.����� ���.	��
	� � �	
��� ��	��� ��

	�
 �����$ � ��% $����� ����& �� ���	�
 ��� ��� ����	��
������ ��� �� � �����$� ����	�� ; ����	��� ��% ��� ���� 	$��.�� ���	 �����$4�
����	���

Software Patterns

72

�������

��� ����� �	
��	�� �	���� 	��
��� �� ������� ����� ������ 	 �
��������� ����

��������	���� ��� ����� ��� ��	
 �� �� �	
��	�� ����� ��� ��� �
����� �����
�	
��	���� ���� ��� �	�� ������ ������� ��
������ ����
���� �� �� 	 ����
�����
�	� ������� ����	���� ��	� ��
�� �� ����� ��� ���������� �� ����� ��� ������
���� ��� ����	

�� �
��������� �	
��	���� ������ 	� ����
��� ��� 	 ������� ��	���
������ ���� ���� ��� ��

����� ���� �������� 	� ��	��� ��� �!������� ������
����	�� �����	�� �� ������������� �����" �� ������� ������ �	������� �� ��
������ �#����� �� ��� ����" 	�� �� �	�� ��������� ������� �� ��� ����� ���
��� �
��������� �	
��	���� �� ���
�	����" 	� ���� �� ��� ����$�� ��������� 	����
	� �
	��� �� ��������

����	�

%	�� �����	� ������� �	�
 �� ������� 	�� $
�� ����������� ������ ������ �
���
�
� �	���� ����� ������ �� ����	�� �������" 	��	���� �	� 	
�� ��� ���	�
����
	�� ������
� �!�
��� ���
�����	���� ��	������� �� �������� �	��� ��� ��������
#������� �� 	�� �� &��� �	� ��� ������ �
��������� 	��
��	����� 	�	���� 	��	���
������ �� ��� ����	�� �������'(

������

��� ����� �	
��	���� ��
����� ���� ���
�� ��� ��

����� ������

• !������� �!	���	���� �� ����� ��	�� ��� ������	����	
 �����	��)���
�
���� ����
� ����� �� �	�� ����� �	
��	���� 	� ������������ 	� ������
�� ����
�� ������	

� �� �� �	�	���������� �������" ���� ��
	�� ��	� 	� 	�����	�
� ��
��	

� 	��
��	�����" ��� ���������� 	�� ���� ��� ������ ���
����

• ��� �����	�� ��� �� �	 ������� �����	� ����
���� 	�� �	
������ �	����
�	� ���	���
� ����� ��� 	 �����	��� 	��	��� ��������� �������� ��� �	��
�� �!�
������ �����	�� *������ ����
� �� �������� ���� ���� ������� �	��
� ��
���� 	�� ������	�� +�!��
� ��
������ ��	� �	� �� �	��
� �!������" �� ������
�	�" �� ������ ����� ���	���

• ,�	��
��� �� 	 ��� �	��� �� ������� ��������� �� ���	�
� *������ ��	� 	�
����
�! 	�� ��-��
� �� ���	�� �	��� �	���	���� 	�� ���� �� �� ����	���
��	� .���	��/� ��������

��	����

����� ����	����	
 	�� ���	����	
 �	
��	���� �� 	

 ����� ��	� �� �� �� �������� ��
��� ����� ����� 0 �	������� �� �	
��	���� 	� ����� &�	
��	����(�� &��������
�
��(�� 12�*�� ���� ������ ���	�
� ����������� 	�����	�� �	
��	���� �
�� ��
�	�� ����� �� ������

Security Pattern for Input Validation

73

Target Object Rule

Validator

Target Method

produces

enforces

Validation Summary

*

validates

uses

*depends on

������ �� �	
��
� ������	
 �
������

���������

���� � ��	�� ��� ���� ����� �	� ���� �����
� ��� ������ �
������ ��

������ ����	�
 ����� �� ��� ����� �	� ��� ������	
 ��	����� �	������
� ��	����

���� ������� �	 �
������	
�

������ �����
 ����� ���	���
 	����� ��	������

����
 ����� ���
�� �	
����
�� �	� ��� ���	��� 	����� ��	��������

��������� ����� �	
��	�� ��� ������	
 ��	����� ������
� ��� ���	��� ��	�������

	�
 	����� ��
�� ���� 	� �����
� ���	���
�
� ���� ��	���	
��

��������� �������
 ����� ��	����� ������ 	� �� ���� ��	���	
��

���	
���

��� �	� �
�� 	�
 ����� ����	��
� �
 �� �����
�� �
 ����� 	�
 ���	��

�������� ���� �	�
�� ���� ! ��	�� ������ ������ ����� �������� ���� ���

���� ������	� �����
� �����	
 ����� �� �
������� �

 "��� ����
�� #

���� �	
����� ��� ������ �
������ �
 �� �
��������� � �	��	��� ��� �������� ��

��� ���	�� �������� ����	

��
� �$�����
�% ������ ����	�� �� �������
��� ��

����
� ����
����% ������ ������ �	�����	
� �	 �
������� �
������	
 ������� ����

� ���������� ������ 	� ���	��% ����� ������� ����� ����� ��	��� �� �����	����

������ ������� �
�����
����� ��
��
� �
 	��
���% ��������� ���������

�	��� �� �
����
� ���	��� ��	����� �� ��� ���	�� �������� ����	

�� �
 ��� ���
�

	� ���� ��	���	
��

�	
����� ��� ��$��
�� 	� ����� �������� ���
 ����
��� ��	�� �� � ��� ���

������ ���� �	�
�� ������ ��� �	������ ���� ��	� ����	��
� ���� ����� �	��

���
�� �	 ��	�� ��� �� 	� ��� �� �������� ������� ��	� 	
� 	� ��� ����
��

Software Patterns

74

������ �� �	

����� ��
������ 	� 	� 	������
������ ��������

��
��� ���
������ �����	��� ���
 �
 	 ����������� ��� ����� �	���	����� 	�� 	� ��
������� �� 	
 	 ����	�� ���	��
�� ����� ���
������ � �	�
 ��	���� ��� ��	�����
��� �����	� ����
� �� 	���	�� ���� 	 ��������� ��
� �� ��
	������ ��!��
� ���
�	

����� �	��
 ������� 	 ���	� �������� ����� �����
� ����	��� 	�� ����� 	�
"

����
 	�� ��
����� ���� #"�	�
� $� ��� 	������
������ ���
����� ���
 �� ���

	���
	�������	� ��	
���

�� 	
 ����"
�� �� ���
 	�� ���� ����
�	���
 �	� �� �
���
��	�����
 ��	� �� ��� 	��� ���������� ����
 	� ������� ����� !������� ����� ���"
����	���
 	�� ������ 	�	� ���� ���
������ �������� 	�� �	� ������� ��%�����
�
���
����� 	� ��� �������� ������ �&��
�
 �� ����� ��
��������
�
�� 	
 ��� ������
'�����
�� ��� ����� ����	��
� �����	��
 	 ���������� �	

���� ���� �� ����
�
 �	����� �� ��� 	����	�����
��� ����

 �� ���������
�������� �����	� ����
 �
 ���� ������� �������� ��

	
 �����������	� ���
 �
 	 �
���� �����%�� ���� ��� �	�� 	 ������� �������� �� ���
�������	� ������
 �� ����
�
����

������������	�

���� (
���
 	� ��	���� ���������	���� �� ��� ����� ����	��
� �
��� ����	��

)*� �� +,(- 	�� 	� ��������
� ������� ��
��)*� �� +./-� �� ��������� ���

�	������ ��� ��������� �	
�

����� �� ���������

0� $������� 	�� �������	��� ������	���
��
�
���
� 1��������
 ��
�
����� ���
��������
 ����� ��

	�� ������ ���� �� ����

��� $� ���� (� ���
���
	����	���� 	�� ��� 	���� �	�	��� 	� �� ����������

Security Pattern for Input Validation

75

Client
Integration
Reverse
Proxy

Stock
Application

Input
Validator

Account
M anager

Input
Validator

In
n
e
r
F
ir
e
w
a
ll

DB

O
u
te
r
F
ir
e
w
a
ll

Internet Application ZoneDem ilitarized Zone(DM Z)

������ �� �	
��� ������� �
��
���
�����������

�� ��������� ��� ������ ��� �� ����� ����� �������
�� ����� ��
� �� �� �� ����
������� �
�� ������ �� ��������� �����
 ��������
����
�� � ! �� "# ��
������$ ��� ����
� �� �
�� �����!
�� %����
� �������� ����	����
� & �
�

��� ���������� �� ��� ����
� ����� �� ����
�����

�� '������� �
���� ��(����
�� ������� ��� ��� �
��
���� ����� ��� ��� �� �����
����� �������� '�������� ���� ���� ��� �
�� ����� ���������� ���� ��� ����
����� ����!
�� �
� ����� ���� �� ��� ������������� �
���� ��������

)� ����$ ��� �
��
����� &� ����� �� ���� �! �
��
���� ����� �� ������
��� ����
����$ �������
$ �����
�� ���
����
�����

*�� ����� �
��
��� �
����� ����� �� �������� ����
�
��������� ����
����
����� �
� �
�����
�� ����� ������
����
���� ��� ���
�����!
�� ��
��
 ���
������ �� �������$ ��� ������� �
������
���
�� ����������� ��� ������ ��
� �� ��
��� ���
������ �������� ���	�
��
� ��������
�� �+! �� �,-# �
� ��� ��
��������
�
�������
��
��������� ����
�����

����
 ����� �� ��������
��$
�� ���� �	��������! �
�$ ���
����
���� �����
����� ��$ �� ����� ������� �� ���
� �� ��� ������ .� ���
�����
�� �������� ������
�
��
���� ��
 ���$ �������� ��/����! �����
����� ���� ����� ��
��� ��� �����
���� ��� ��
 �� �
%��� �� �
��� 0����! ���� ��������� ���� �� �����	
�� �
$
����� �������
�� ���������� ������
�� & ������
����
���� �� �� ��� ��� ��� �� ��
�
�
�� ��� �
��
���� ����!
�� ������ �� ��� ���� ����� ��
����� �� �����

����
��� �� ������

������� ���	�
��

*�� .������� �
�% ��������� �� 1������ � �
�
�� �� ��������� ��� �
��� �� ���

���
��� �$ ���������� ��� ������ ���� *�� ����$��� �� �����
������� �
� �
����
�$
 �����������
��
�%
������
�
���� ��� �
�%2�
��������
���� ����
����� ����
��� ���
�
$��� ��
�� ���
�� ��
� ��
� ��� �$����
�%�� �
��
���� �� ��������
�����

*� ������$ ��� ����
���� ��� �
�% ������
���
� ����� �
��
��� ���� ����� ���

����
����� *�� ������� ����� ���� �
%���

Software Patterns

76

�� ��� �������	
��	�� ��
���	� �� 	������� �� 	�
���	�� ��� ������ ����
� �	�	� �� �
����
���� �	�� ��� �	����� ����	������ �� ��� �����
��
������� ��� �����
�� ������� ��� ��� �	�	�� ���
������ ���� ���
�� ��

����� ���	� ������ �	�� � ��� ���� �������� �� ���	� ���� ��� 	�� ���
������	�� ������� �����	�� ���� ��
������ �� �����
� ���� ��� ������
������� �� ��� ��� ���	
��

����������	
����������
����������������

�� � ������ �� ��	�� ���� ���� ��������� �� �����
� ��	�� ���	
 ����
���	�� �	��� �� 	����
�� � ���� ���� �����	�� ������ ������� ���� !��� ��
��
	"�� ��� ��� ������ "���� �� �������
������ ���� �����	�� ��� ����
	� ��� ���� ��� ������	�� ���� ���� ������

#�$ � ������� �����	�� ���� ��"�	�� ���������� � ��� ���	� ���� �������

���������������������

#�$ � ���� ���
��
%	�� ���� ��� ��� ���� 	 ���
������ ���� �� 	� ��� ������

����� ����

� ������ �� ���%�� ����	�� ��� 	���� ���	���	�� ��	�

������� ����	�
�� ��� 	 �� ����&���
� ���	���	��
�������� ��	
� ��	�	&
����� ���� ��� ���
�� '���� ��������%� ������ ��(�
� ���)���*���� +���
��� ����� ��������� �����	
 ��� ��� 	��	�	���� ���	
 ������� ������ 	�)���
��(�
�� ���
�������� ������ ��������� ��
��"���� ������ ������ ���
���� 	�
��"�����	�� "���

�
����� �� 	 �� ,��- +����� .��	���	�� /��	�� ��� 	� �)�// ���	��������
��� ,��- ������ 	 ��� ������ ��(�
�� ��� ���	�� ������ ������� �����	��
���� ��� ���� ��� �		�� �� ����� ���� 	� ,��- ������� 0��������
��
��
	�� ��� ���� �	�� ��� '�
��	�� .��	���	�� 0�
�	��	�� 1�������� ��	
� 	
��	����� �� ��� ��� ������ ������ 	� ,��- �������

���� ����	�
��� ������ ���
���� ��� ��� ���� �� 2�� ��� 	� ��� �3/� �����&
���%� ��� ������ ��������� �� ������� 	���� ���	���	�� ��
�	��� 	���� 	�
��� ����	
��	��� ��� ������ ��(�
� ��� ��� 	���� �����
������� ��� ���
��������% ����	�� �����"��� ���� �
� � ����	��� "���� ������ ��� �������
�����	��� ��� ���	���	��
������ ��� ��
	"�� � ���� �� ��� ��������	��
���	
�

������	��
��

��� ������	�� ����"�
�� �� ����
��� ���� �����	�� ��	 ��������

• 4���� ���	���	��
�� ������� ����
% �������� 	� �����
�������

Security Pattern for Input Validation

77

• ������������ 	
��� � ��	 ����	�
��
��� ��
� �
�� ������ ��� ���
� ����
�
��� �� ��� �
���
����

• ��� ����
���� ��
����
�������� �
��
��� �� �
������� ���� ���
�����
��� �����
��� �
� �
��� �� ���� � ����������
�������� �������� ���
��
����

• ��� ����� �
���
�� �������
 �����
�����
�� �
�
��
��� ����
���� ��
����� �
���
����

• ��� �
�� �
���
��� ���� �
� ��
������ � �������� �
���� ������� �����
������ ��
� ��
�� ��� �
�� ��
�
���������� ����� ����� ��� �
�� �
���
���
�����

��� ���	��� ������
� ��
�������� �
�
���� ���
������� ���� �
������

• � ������ ������� 	��� �
���
������
� �������� �����
� �
����� ���
���
������ �������� ���
������ � �
���
��� ����
�� �
���� ��� ������ �
��
�� ��� ��������� ������ �����

• ���
���� �������� �������� ��	 ����� � �
������ !�����
� ���� �
�
�
�� ���
�����
��� ��
�
��
����

• ��� ��	 �
��� � �������� �����
��� ������ �����"��� 	���� �� ���� �
� ���
��

 ������ �
�����
��� ����

��� ����

������ ����� 	����
� #$%& ��������� ��� ����� �
���
��� ������ ��
 	�� ����"��
�� ����� �� ��� ��
����
�� � ����������� ������
��
����� ��
� ��� �
�� ������
���� �� �
����� �� � ��� �����������
� 	���� ��� �
����� ������ � ���� ��
������

�� ������ �� ������������ 	��
�����
�����

����
������ ��������
 #$'& ��
 ()** �
����� �� �
���
���� ������ ������
�� �� �� ���� � �������� ����
��
������� � +���� �� ��	�
��
��� �
��� ��
��� ���������
������ ������� �� ����
�� 	��� ��� ����� ��������
 ���
�����
�������� ����� ��� ����
������ ��������
 �
�� ������
�
���� ��,�����

��
����

-����� �
������ ��
� �
� �� ����+��
� �� ��,������ 	��� ��� ����� .
���
��
�
����� �������
�������� +��	
��
�� �
������ �� ������ ��������
�����
����
#/&�

�����	��
������

0�� ������� ��
��� � �����
� 12���� 	� ���
 ���
� ,� �� ����������� �� �
���
�������� ���
��
��� �����
��� ��� 	� 	��� ���� � �"���� �� ������� ��
������
� ��� ����	 ������� � �� 	������ 	����� ����
� .�����!3!)445� 6�����
�
*�� 78������ ��� .��� 9��� :����� ;������
� �����
� 12���� <���
��
����� (
��� 0� 9����� (
�
����� 6
�
�� 1�����
 1������

Software Patterns

78

����������

��� ������	�
 �������� �	� ���� ���� ��������������	
��������������

�	�������������������������������������	������
������ !"#$%�

��	������&#"'()��		���������
�������	��������*	���������

��� ��� ��������� ������ ���� �	� ��!" #��!��	$����
 �������� %�!� ����
����
�������+++�����,�
������-���
��
��.	
����
�����������

�&� ' �! ������ #��!��	$��� (�	$	��
 �������� %�!� ���� ����
�������+++�	
/�-�	����
���0/��������	
/�-��������

�)� %
*
 �	��+�� 	!� �
(
 ��,������- .�,� �������! �� !����	��! ! ��� ����
�������-/ ! ����������	 �
 ��� ���- �&012���345�&�4- �� ���$�� �136

�6� %
 7���� 	!� %
 8	��	��9- .���,������	� :	����!� ��� �!	$�!" � ��	��!
�������-/ ! ����������	 �
 ������� ��������	 �
 �������	 ������ - �113

��� (�	 #	��	��! � ';��:
 �������� %�!� ���� ����
�������+++�	+�
��	������1�����)����2�����	�

�3� �
*
 *���$�- ������� ������ �������� ������� ����
�� �� ����������	!
%�,! ;��� < ��!�- =��� ����! ���)

�4� ';��: �� ��!
 �������� �	� ���� ����
�������+++�	+�
��	����	��������	���	���������

�1� �
 ��,��	�,��- �
 ���!	!��+�8�"��!- (
 *�$�����!- �
 8���,�	!!- 	!� :

�������	�- �������� �������	>���������� �������� ��� ��	���	 �����������

%�,! ;��� < ��!�- =��� ����! ����

���� ?����!� #	��	���
 �������� �	� ���� ����
�������3�4������������	����	��	�
�/�����	��

���� �� ��� �������- ��!"�� *��: ��@���� #	��	��! �!"!�
 �������� � ��
���� ���� �������+++��
����
�����0��	��
������

���� #	��	��! ������ ?�!�����
 �������� �	� ���� ����
��������
������	
	.���	���-���0���.������
��������-���0���,�
�

�������.���������	�$& (5#&0���16	�2�����	�7	���	�
��
��

��&� ?��!� �! �� ������
 �������� �	� ���� ����
�������+++�
��0�������8������
�����0�������
��

��)� ?
 �����- �
 A	"	 	!- 	!� �
 B	- ���� �������� �������	>"�	� ��������	
��� ���������	
�� #$��% �� ���&���	% ��� ������� '���������! :��!���
*	��- =��� ����! ���6

Security Pattern for Input Validation

79

Copyright © 2006 by Andreas Rüping. Permission is granted to VikingPLoP 2006 to make copies for conference use.

Software Architectures for
Web Content Management

Patterns for

Deployment and Infrastructure

Andreas Rüping

Sodenkamp 21 A, 22337 Hamburg, Germany

andreas.rueping@rueping.info

www.rueping.info

Introduction

Web content management comprises technologies and processes around the
creation and maintenance of digital content and its delivery to the web. Content
management systems can help you with that, but if you develop a large-scale site
it's highly likely that it will also require a good amount of individual software
development. This is true especially if a good amount of flexibility is needed for
an individual information model, the design of individual templates, the
integration of third party-products such as search engines, or for personalisation.
The site will probably also face non-functional requirements such as maintaina-
bility, scalability or performance, so you'll quickly find yourself in the middle of
a discussion of software architecture issues.

This paper is an excerpt from a larger collection of patterns that take a look at
the software architecture side of web content management. The patterns don't
describe how to build a CMS tool, but address the development of your own
software on top of a CMS of your choice. This paper contains the Chapter V of
the complete collection and deals with deployment and infrastructure. Typical
discussions of this paper address web application definitions, web server config-
urations, environments (development, live and otherwise), development
processes, and so on. Throughout this paper I’ll use a running example to explain
how the patterns work. The example is a web portal for technology transfer. The
details should become clear as we go into the actual patterns.

81

The complete collection of patterns is very much a work in progress. To give you
an idea of the overall collection in its current form I have added thumbnails of
the other patterns in the Appendix. Moreover, there are two EuroPLoP papers
that cover chapters from the overall collection that also give some insight in tis
ongoing effort (Rüping 2005, Rüping 2006).

It’s likely that the collection will evolve further and I’d like to invite everybody
interested in sharing their views to get in touch with me. Feel free to contact me
at “andreas.rueping@rueping.info”, whether it is with agreement, good ideas,
concrete suggestions for improvement or experience reports.

Acknowledgements

Thanks go out to Michael Weiss who, as the VikingPLoP 2006 shepherd for this
paper, came up with much useful feedback that has helped me improve the paper
for the conference, and that will also be useful when one day the full manuscript
undergoes a major revision.

Thanks also to Uwe Zdun for his comments on the first draft of the full
manuscript (including this chapter) that he shepherded for EuroPLoP 2004.

Last, but certainly not least, I’d to thank the VikingPLoP 2006 workshop where
this paper was discussed. It’s always amazing how much good feedback you
receive at such a workshop — thanks to everybody who shared there ideas and
suggestions.

Software Patterns

82

V. Deployment and Infrastructure

5.1 One Web Application

Context You have implemented the custom server-side components for your web site.
This probably includes a system of INTERACTING TEMPLATES (2.3) for the
actual HTML generation as well as components that encapsulate additional
functionality, for instance for navigation, searching or personalisation. You have
to deploy all these components when you launch the site since the site relies on
these components in their entirety.

Problem How many web applications should you define for the components that

you have developed for rendering content?

Example Though not an overly complex web site, the Technology Transfer Portal consists
of several components nonetheless. There are going to be quite a few templates,
as well as components for various purposes.

What these components are depends on the underlying technology. If we follow
a Java-based approach then there are going to be JSPs and Java classes. In an
XSLT-based approach there are going to be XML files, XSLT transformations
and Java classes as well. In a PHP-based approach we’ll need various PHP
classes. To some extent, these approaches can even be combined.

In addition, there could be classes from web frameworks such as Struts or
Spring, or third-party components like search and personalisation engines.

All in all, this amounts to quite a number of components. When we deploy these
components to the web, what kind of packaging is recommended?

Forces In order to launch a web site, all its components have to be deployed to a
machine where they are available for the web server. The web server has to
answer all http requests it receives, and therefore it has to find all necessary
resources, whether they are classes, templates or configuration files, and so on.

Depending on the technology you use you may have the option to define one or
more web applications. A web application consists of resources that together
provide a specific service to the users. Different web applications are relatively
independent of each other, while the resources within the same web application
collaborate closely. The concept of web applications is perfectly common in the
Java world. It’s supported by virtually every web server and application server on
the market. Other technologies such as PHP don’t yet offer support for separate
web applications, though frameworks such as Zend are heading in this direction.

Software Architectures for Web Content Management

83

Different web applications bear the advantage that they can be deployed
separately. You can launch the new version of one web application, while all
other web applications remain untouched. This allows you to partition your web
site or portal into fairly independent parts and avoids a big-bang style
deployment which is extremely error-prone. You can use separate configuration
files for your web applications, specify separate log levels and use separate name
spaces.

Establishing separate web applications, however, has its drawbacks too. Because
separate web applications are largely independent of each other, collaboration
between them is possible but limited.

First, calling a component from another web application is possible, but more
complicated and usually less efficient than calling another component inside the
same web application. Second, application servers maintain different sessions for
different web applications — exchanging session information across web appli-
cations is possible but relatively awkward.

Many of your custom components, however, rely on each other heavily. Several
of them call each other, some even have to share the same session information.
Scattering these components over several web applications would introduce
significant dependecies between these applications and therefore doesn’t seem
like a good idea. It’s for cases like this that Paul Dyson and Andy Longshaw, in
their book on Architecting Enterprising Solutions, recommend to “group all core
system functionality in a single application” (Dyson Longshaw 2004).

Solution Define one web application for all server-side components that are

involved in the page generation and delivery for your site. This includes

both templates and any service components that you may have developed,

as well as components provided by the content management system. It is

fine to single out components in separate web applications if their

functionality is only remotely connected to page generation.

In detail, the central web application includes the following components:

• the templates for all document types, essentially one TEMPLATE PER VIEW

(2.4)

• the DOCUMENT WRAPPER (2.1) component for each document type

• the NAVIGATION MANAGER (2.2)

• the components specific to the search functionality available for your site,
including the SEARCH REQUEST CONTROLLER (3.3), the SEARCH ENGINE

ADAPTER (3.4) and the SEARCH MANAGER (3.5)

• all components specific to the personalisation available for your site, such as
a ROLE-BASED CONTENT FILTER (4.1) and a USER MANAGER (4.2)

• the components from your content management system that collaborate
with your custom components

• all necessary configuration files

Software Patterns

84

Grouping all these resources into one web application removes the barriers that
could hinder their close collaboration.

Candidates for separate web applications include modules whose functionality
can be regarded more or less independently of any web page generation.
Examples include the search engine (usually a distinct CMS component or a
third-party product), a payment component, or some external single-sign-on
solution that you may use.

Content validation is quite a different matter. You don’t apply TYPE-SPECIFIC

VALIDATORS (1.6) in the process of HTML generation but instead integrate
them into the content editors’ workflow. It’s therefore clear that validators don’t
belong to the core web application.

Example
Resolved

We introduce one central web application for the Technology Transfer Portal.
The one component that is not going to be part of that web application is the
search engine. The search engine is sufficiently independent and it’s only
connected via a SEARCH ENGINE ADAPTER (3.4), so it’s fine to regard it as an
application of its own.

How the central web application is organised depends on the technology we use.
It’s clear that individual content management systems have their specific require-
ments concerning deployment structures. Assuming the Java world, Figure 1
shows, as an example, how this web application can be represented in the file
system structure if we use Tomcat as our application server. You can see that
there’s one web application named “technology-transfer” with subdirectories for
templates, Java classes, libraries and so on.

Benefits + The amount of cross-application communication is clearly reduced. First,
this makes collaboration between components more straightforward and
more maintainable. Second, there is a positive impact on the system
performance due to a smaller overhead caused by cross-application calls.

tomcat

webapps

technology-transfer

images

WEB-INF

classes

lib

Figure 1 Deployment structure in a Java world

templates

Software Architectures for Web Content Management

85

Liabilities – Having just one web application can make a hot deploy difficult. With the
exception of things like templates and scripting elements, you usually can’t
exchange individual parts of a web application at run time. If, for instance,
you want to replace certain Java classes involved in page generation or
delivery, you’ll have to re-start the entire system. Introduce DEDICATED

DEVELOPMENT AND PRODUCTION ENVIRONMENTS (5.4) to alleviate this
problem, and establish COORDINATED RELEASE CYCLES (5.5) to manage
dependencies between software deployment and content publishing.

5.2 Legal Request Policy

Context You have implemented a system of INTERACTING TEMPLATES (2.3) that
generate the HTML pages that make up your site. Now you deploy these
templates to the web server environment, along with all other components.

Problem How can you prevent users from retrieving incomplete page fragments, or

else from invoking unauthorised requests?

Example The Technology Transfer Portal offers a set of pages linked to each other
through the site navigation. Obviously we want users to read these pages, enjoy
them, retrieve the information they seek.

We don’t want users to get to see isolated page elements though. Individual page
elements, such as a menu, a login form or a text heading should always appear in
the context of an overall page, but shouldn’t appear isolated.

In particular, it must be impossible for users to receive isolated page elements
that would normally appear in the context of a page that requires authentication.
Examples include text blocks from articles in the protected area, as well as the
full navigation tree with links to the protected area which should only be
available to authenticated users.

Forces After the web server has received an http request for a specific web page, the
content management system invokes the template that is responsible for
rendering that page. It depends on your content management system how the
necessary mapping from pages onto templates is maintained. Suffice it to say that
such a mapping is implemented somewhere, and that it’s possible to invoke the
right page template in response to an http request.

If you have implemented a system of INTERACTING TEMPLATES (2.3), then there
is probably an outermost template that calls other templates that in turn render
the individual page elements. What if, intentionally or by accident, a user makes
a request for such an ’inner’ template directly?

Software Patterns

86

An inner template probably won’t deliver a complete HTML page since the tags
that declare a page as well as its header and body will be missing. This might be
fine, especially if that template yields a page fragment that is meant to be
embedded into other sites as well. However, the template might simply generate
some HTML fragment that cannot (or shouldn’t) be used separately. This is
clearly undesirable.

Worse yet, calling specific templates can represent a violation of access control.
It’s common enough that the responsibility of invoking user authentication lies
with the outermost page template — the ’inner’ templates that generate page
elements simply assume that authentication has taken place. This is, for instance,
the idea behind ROLE-SPECIFIC TEMPLATES (4.4) — a dispatcher template
checks the user’s role (which includes authentication) and calls specific templates
depending on this role. For performance reasons, the specific templates must not
trigger off any kind of authentication.

However, if users can request any ROLE-SPECIFIC TEMPLATES (4.4) directly, they
may be able to bypass authentication and to retrieve information that should
only be available to authenticated users.

There are other ways for users to send requests that might cause trouble. For
instance users might add parameters to a URL, which might have an effect on
the content management server. If, for instance, the content management system
is Wiki-based, adding a parameter such as ’mode=edit’ might give the user write
access. This is admittedly an extreme example, and merely adding a parameter
will not typically suffice to bypass all authentication, but it could still lead to
unwanted effects.

Solution Devise a policy that states which kinds of requests are legal and which

aren’t. Usually requests for full pages are considered fine, as are requests

for page elements that may be integrated into web pages elsewhere. On

the other hand, the execution of arbitrary commands or scripts typically

leads to unwanted effects, and should therefore be considered illegal.

Configure your environment in such a way that it accepts only legal

requests.

There are different ways to make such a configuration, depending on the under-
lying technology of your system. The simplest techniques are targeted directly at
http requests before they even reach the content management system:

• You can configure your web server to accept only certain kinds of requests
depending on a URL pattern.

• You can configure your applications server (or whatever container you use)
to accept only certain kinds of requests depending on either a URL pattern
or the path to the script that is to be executed.

Either way, you can ensure that direct calls for certain templates will be denied.
Whether they are JSPs, XSLT transformations, PHP scripts or something else,
templates can now only be called from within the container — usually by content
management system components or by other templates.

Software Architectures for Web Content Management

87

In addition, you can easily configure your system to ignore possible parameters
added to a URL, or at least interpret them with care, so as not to invoke actions
that shouldn’t be invoked.

There might be other techniques as well — check your content management
system and your web and application server infrastructure how the necessary
configuration can be made.

Example
Resolved

There are various ways how we can rule out direct calls of any of our templates.
For instance, if we use Apache as our web server we can make the necessary
configuration in a file named “.htaccess” where we can use regular expressions
to specify certain URL patterns (such as all requests for a JSP or a PHP script).

If we’re using Java technology, we can also use the servlet engine’s configuration
to ensure that no templates are called directly. One option is to place all templates
(usually JSPs) in a subdirectory under “WEB-INF”, where they cannot be
accessed directly, but can be called from other components.1 A second option is
to define a security constraint in the deployment descriptor named “web.xml”.
Figure 2 shows an example that covers all templates (specified by their path) and
assigns no roles as being allowed, which the servlet container interprets to mean
that no templates must be accessed directly.

As a consequence, unwanted requests such as “.../technology-transfer/
templates/renderNavigationTreeLoggedIn.jsp” will not be processed but lead to
an error message instead.

Benefits + Users won’t receive any ill-formatted page fragments made of incomplete or
invalid HTML.

+ Users cannot bypass authentication mechanisms and directly invoke
templates or other components that should only be invoked after successful
authentication.

<security-constraint>
<web-resource-collection>

<web-resource-name>JSP pages</web-resources-name>
<url-pattern>/templates/*</url-pattern>

</web-resource-collection>
<auth-constraint>
</auth-constraint>

</security-constraint>

Figure 2 Security constraint for a servlet engine

1. Apparently not all J2EE servlet containers have implemented this feature.

Software Patterns

88

Liabilities – Configuring your environment can be a tricky business, especially if several
machines are involved. Chances are that you’ll introduce DEDICATED

DEVELOPMENT AND PRODUCTION ENVIRONMENTS (5.4) to decouple
software maintenance from content editing — it’s crucial in this case that
these environments are identical (down to the configuration level) so that
the access configuration that you have tested in the production environment
also works well for the live system.

5.3 Dedicated Production and Delivery
Environments

Context You’re planning the system infrastructure for maintaining and operating your
site.

Problem How can you make your system scalable and at the same time protect it

from attacks?

Example It’s unclear how many users the Technology Transfer Portal is going to have. And
although the portal doesn’t face any special performance requirements, it should
be reasonably efficient whatever the number of users. We may have to scale it to
a higher performance should the number of users increase with the time.

As for security requirements, it is clear that we need to protect our site from
potential attackers. Obviously no user should be given direct access to the
content repository. But even if an attacker gained access to the machine that
hosts the web server (to which all users must have some kind of access), the
attacker still shouldn’t be able to enter the content repository or any other
software components.

Forces While content is created, edited and maintained, it’s made available only to a
limited group of people — the content editors who are responsible for its
production. In many cases a workflow component manages the processes
around content production. The classical 4-eye workflow is quite typical — it
assumes that a content editor creates and edits an article and that an editor-in-
chief performs a final quality assurance before the article is published. Of course
there can be other kinds of workflow too, for instance a more complex workflow
that involves more people or some kind of short-cut that involves only one
person.

Whatever workflows you’ll need for your site, and whatever mechanisms the
content management system of your choice offers to implement these
workflows, you must set up an environment in which these workflows can be
integrated and that scales well to the necessary number of content editors.

Software Architectures for Web Content Management

89

Once content is published, however, the demands on the environment change.
The published version of the content is no longer subject to maintenance, so no
content editors need to have access to it. Instead the content will be accessed by
templates and other components in response to requests received by the web
server from the site visitors. Published content must therefore be made available
in an environment that is sufficiently powerful to process all incoming http
requests.

This leads to both performance and scalability requirements. On the one hand,
the web must be able to deliver pages fast enough (in terms of efficiency criteria
that you’ll need to define). On the other hand, the environment must scale to a
possibly increasing number of users.

Furthermore, the moment that content is published is also the moment that it is
exposed to a mass of anonymous users in the Internet. To make it possible for
the world to visit your site and view your pages, you must allow user requests to
trigger off processes on your machines. But there has to be a limit to that.
Everybody knows that requests from the outside can represent a security threat,
so it’s essential to take the necessary actions to protect yourself from attackers
who try to break into your system via the web server that is meant to make
published content available to the users.

Solution Establish separate environments for content production and maintenance

on the one hand and for content delivery on the other. Equip the

production environment with the infrastructure necessary to host the

workflow processes for content maintenance. Set up a demilitarised zone

for the delivery environment and equip it with the infrastructure necessary

to process requests from the expected number of users. Except for

hardware and security configurations, both environments should be

identical.

You will have to set up the necessary hardware for two separate environments
and to install the necessary software components for each. This involves the
following tasks:

• Design the production environment to meet the needs of the content
editors. The production environment requires all CMS components, a
database, a web server, an application server (or whatever container is
required for executing templates and other components) and all your
custom software. Complete page generation must be possible for preview
and testing reasons. In addition, the production environment hosts the
server-side WORKFLOW-BASED VALIDATION (1.7). If there are many
content editors, you may have to use several machines instead of just one.

• Design the delivery environment according to the expected number of users
and the required response time. Larger sites usually require several server
machines and the necessary load-balancing mechanisms (Dyson Longshaw
2004). Each server must be supplied with a complete CMS installation, a
web server, an application server and, again, all custom software compo-
nents necessary for page generation. This includes all templates and service

Software Patterns

90

components directly or indirectly involved in page generation — essentially
all components included in the ONE WEB APPLICATION (5.1) concerned
with page generation as well as stand-alone components such as a search
engine.

Web Browsers:

– send http requests

Delivery Server:

– web server

– application server

– CMS

CMS Clients:

– content maintenance

– client-side validation

publication

Production Environment

Delivery Environment

Production Server:

– web server

– application server

– CMS

– server-side validation

Figure 3 Dedicated production and delivery environments

Firewall

F
ir

e
w

a
ll

F
ir

e
w

a
ll

Software Architectures for Web Content Management

91

• Install the necessary firewall software to make the delivery environment part
of a demilitarised zone (DMZ). Limit network traffic so that only the web
servers within the DMZ can be reached from outside your organisation
(Dyson Longshaw 2004). Also ensure that the web server processes can
only invoke content management functions in the delivery environment, but
cannot gain unwanted access to machines in the production environment.

• Integrate a content transfer into the server-side workflow processes so that
content, upon publication in the production environment, is made available
in the delivery environment.

Figure 3 illustrates the production and delivery environments. Both environ-
ments are represented by just one machine, but as mentioned before, you can
scale either environment to consist of several machines.

Details concerning the necessary hardware equipment rely very much on the
specific requirements of your individual project. How many servers you need
really is a question of infrastructure architecture and as such is beyond the scope
of web content management. You can find valuable advice in the book by Paul
Dyson and Andy Longshaw on Architecting Enterprise Solutions (Dyson Longshaw
2004).

Example
Resolved

We set up distinct production and delivery environments for the Technology
Transfer Portal. For the time being, we use one machine in either environment,
though we retain the option to install additional servers in the delivery
environment should the number of users exceed our current expectations.

Both environments are protected by firewalls that limit network traffic as
indicated in Figure 3, with one exception. When introducing personalisation into
our site we developed a PROFILE MAINTENANCE FORM (4.6) that allows regis-
tered and authenticated users to update their profiles. Profile updates submitted
by this form have to be stored in the database in the production environment.
We therefore have to open our firewall between the delivery and the production
environment for this very specific functionality.

Benefits + Content editors can create and maintain content in an environment suited
for their needs. This environment offers the complete functionality for page
generation, which gives content editors the possibility to obtain previews for
all pages. Furthermore, the production environment can integrate all
necessary WORKFLOW-BASED VALIDATION (1.7).

+ Because the production and delivery environment are near identical,
previews in the production environment are highly accurate. One http
request should lead to mostly the same response, whether it is made in the
production or in the delivery environment.

+ The delivery environment scales well to an increased number of users. You
can add more server machines if necessary. Load-balancing software can
distribute requests among all servers you have installed.

Software Patterns

92

+ The introduction of demilitarised zone clearly contributes to system
security. It is much more difficult now for attackers to damage content or
software in the production environment, since firewalls actively shield this
environment from the outside world.

Liabilities – Separate environments for production and delivery require more machines
and more infrastructure and therefore lead to increased costs for your site.
These costs are justified by the scalability and security that you gain from
this pattern, but there’s no way to deny that these benefits don’t come for
free.

– In most cases visiting a web site means read access to the content and other
data only. Sometimes, however, sites allow users to submit information that
is then stored persistently in a database. Examples include email addresses
submitted for a newsletter subscription, user profiles maintained by users
themselves, or even arbitrary files in a site that offers an upload mechanism.
In such a case you must configure the firewalls to allow for a certain degree
of write access in the production environment. Although opening the
firewalls somewhat impairs your security concept, it is necessary if you want
to maintain all content in the production environment.

5.4 Dedicated Development and Production
Environments

Context You’re preparing for future changes to your site for which you have already
established DEDICATED PRODUCTION AND DELIVERY ENVIRONMENTS (5.3).
These changes will not only affect the content, but the underlying software
including your templates as well.

Problem How can you reduce the interferences of software development with

content maintenance and publication?

Example So far we have developed a set of templates as well as several other components
for the Technology Transfer Portal. This doesn’t mean, however, that there won’t
be any future changes. Maybe we’ll need a new layout one day, maybe there will
be additional document types, or maybe we’ll want to add more functionality.
Either way, changes to the templates and all other components can become
necessary.

Changes to the software of the live system will obviously interfere with content
production and delivery. The Technology Transfer Portal is not a mission-critical
site and therefore has no special availability requirements, but anyway we have to
avoid long periods during which content maintenance is impossible, let alone
long periods of unavailability.

Software Architectures for Web Content Management

93

Forces All software systems evolve and it’s safe to assume that Internet web sites are no
exception. Whether the information model changes, whether an organisation
wants a new corporate layout, whether demands for additional functionality
arise, whether an increased number of users causes new performance require-
ments — there is a virtually endless list of reasons why changes to a site might
become necessary. The extent of these changes varies greatly, ranging from small
updates to a complete re-launch.

It’s clear that software development must not influence the current content
editing process. Content creation, maintenance and publishing must go on
undisturbed while new software is developed and tested. Obviously the live
software and the software under development must be distinct from each other,
as in any other software development project.

Changes to a web site, however, can also involve the underlying information
model. In this case the DOCUMENT TYPE HIERARCHY (1.2) needs to be updated,
which results in changes to the document type specifications and to the config-
uration of the CMS repository. You must expect live content and test content not
only to be different, but to be differently typed as well. The consequence is that
logically different content repositories may become necessary in the context of
a web site evolution.

Solution Establish separate environments for software development on the one

hand and for content production as well as delivery on the other. Aim to

simulate the live environments in your development environment as well

as you can. Make sure to apply versioning to software and content alike.

Setting up the development environment consists of the following tasks:

• Equip the development environment consisting of a central development
server and development workstations. The development server requires an
installation of the content management system. In addition, you have to
provide the necessary tools and mechanisms for software development,
such as IDEs and version control.

• Make sure that versioning is applied to all custom components, including
not only classes and templates, but also document type model specifications,
workflow definitions, and any other configurations. Make a connection
between versioning of software (usually done with a configuration
management system on the development server) and versioning of the
actual content (usually done within the CMS repository).

• Shield your development environment from attacks from the outside by
setting up the necessary firewalls, but make sure that deployment mecha-
nisms can pass these firewalls when software updates have to distributed
onto the production and delivery environments.

To allow for meaningful tests, the development environment and the live
environments must be identical as far as system infrastructure is concerned. This
doesn’t only refer to the software components installed in each environment, but
also includes the underlying operating system, database, load balancers and
firewalls.

Software Patterns

94

Ideally this means that your development environment should consist of both a
production and a delivery server, so as to simulate the live environment as well
as possible. In many practical cases, however, it will be sufficient to use just one
installation in the development environment, as Figure 4 illustrates.

Web Browsers

Delivery Server

CMS Clients

publication

Production

Environment

Production Server

Figure 4 Dedicated development and production environments

Firewall

Development

Environment

Delivery

Environment

Development

Clients

Development

Server

deployment

d
ep

lo
ym

en
t

F
ir

e
w

a
ll

F
ir

e
w

a
ll

Software Architectures for Web Content Management

95

Once the tests in the development environment have been completed, you’ll
have to deploy the software onto the production and delivery servers. This, of
course, is the critical moment when the new software version has to go live.
There are several strategies that you can apply, depending on the availability
requirements placed on your site:

• You can take the site off-line while the deployment takes place. You’ll
probably need to perform some final tests in the delivery environment too,
so the site will stay off-line for a while. Typical time frames range from a few
hours to a weekend.

• You can deploy the new software onto some of the servers in the
production and delivery environments, perform the necessary tests, but
keep the old version online. Once all tests are completed, you can switch
from the old version to the new one by changing the web server or the load
balancer configuration, so that from that moment on all http requests are
answered by servers that run the new software.

Either way, take care to apply a transaction-based mechanism for deploying all
custom components from the development environment to the production and
delivery environments so that it’s possible to roll back to a previous version
should the deployment fail, for instance due to problems on the remote side.
There are deployment tools available on the market that offer such functionality
— you might want to check whether you can use one of those.

If the new version of site assumes a different DOCUMENT TYPE HIERARCHY

(1.2) than the old one, a content migration becomes necessary. You’ll have to
migrate the content in the production environment first and then publish it so
that it is transferred to the delivery environment. Content publication has to
happen simultaneously with the deployment of the new software onto the
delivery environment since only the new software can process the migrated
content.

Example
Resolved

Since we’re not met with requirements for extremely high availability, as well as
for cost considerations, we decide to establish a development environment with
just one server and several workstations for the Technology Transfer Portal (as
suggested by Figure 4). The development server hosts a CMS installation,
database, a web server and an application server (or whatever container is
required depending on the technology of choice). For testing purposes, the CMS
repository in the development environment is supplied with some ’real’ content
imported from the live system.

Our development environment is protected from attacks by a firewall, but we
don’t simulate a demilitarised zone in our development environment. We can
therefore do a good deal of software development and testing without touching
the live system, yet when it comes to deploying new software, a certain amount
of tests in the live environment will be necessary.

Software Patterns

96

Benefits + Content editing and software development are largely decoupled. Except
for the deployment stage, content editors can create and update live content
completely independently of any software development activities. Keeping
the web site up to date becomes much easier.

+ The dedicated development environment contributes much to the site’s
testability. The environment can serve as a platform for unit tests, system
tests, performance tests and more, resulting in a more accurate and more
reliable site.

Liabilities – The development environment causes additional costs for both software
and hardware. This additional cost, however, is the price you have to pay to
stay manoeuvrable with respect to content maintenance in the presence of
software changes.

– Although the development environment may simulate the live environ-
ments to quite some degree, these environments will probably not be exactly
the same. Firewall configuration and load-balancing configuration often
differ from the development environment to the delivery environment.
Even the best tests in the development environment can therefore predict
the behaviour in the live system only to a certain degree.

– The deployment process itself cannot be tested completely just inside the
development environment simply because it involves file uploads in the live
system. You need a fall-back solution if your deployment process fails.

– Different deployment strategies may or may not require you to take the site
off-line for a while. If there are changes to the DOCUMENT TYPE

HIERARCHY (1.2) and content migration becomes necessary, a short period
of unavailability is hard to avoid. But even if the site doesn’t have to go off-
line, it’s likely that no content maintenance will be possible during the
deployment stage and while the new version is taken online. Close collabo-
ration between the software team and the content editors is essential here
— COORDINATED RELEASE CYCLES (5.5) will help you manage the
problem.

5.5 Coordinated Release Cycles

Context You’re planning the future evolution of your site. You have established
DEDICATED DEVELOPMENT AND PRODUCTION ENVIRONMENTS (5.4) to
decouple software development and content maintenance, and now you’re
thinking of how to use these environments properly.

Software Architectures for Web Content Management

97

Problem How can you avoid conflicts in the software development and content

maintenance processes?

Example We have established DEDICATED DEVELOPMENT AND PRODUCTION

ENVIRONMENTS (5.4) for the Technology Transfer Portal, yet we’re aware that
when it comes to a software deployment or even a full re-launch of the site a few
conflicts between the content editors and the software developers cannot be
avoided. On the one hand, the system may have to go down during deployment,
and the content editors probably won’t appreciate that. On the other hand,
software developers must be very careful not to interfere with the live site more
than necessary. This requires a good amount of coordination effort.

Forces Maintaining a web site involves different activities, of which software devel-
opment and content maintenance are the most important ones. These activities
are performed by entirely different groups of people — software developers on
the one hand and content editors on the other.

Naturally, these activities follow completely different processes. Software devel-
opment usually includes stages of requirements engineering, design, coding and
testing.2 Content maintenance, however, usually follows workflow processes that
include the creation and modification of content, quality assurance and publi-
cation. A 4-eye workflow is the most prominent example, though other
workflows are possible of course. Unlike the software development process,
content maintenance is a continuous process, affecting a web site’s appearance
more or less permanently.

These processes typically take place in largely independent environments, which
generally is a good thing — DEDICATED DEVELOPMENT AND PRODUCTION

ENVIRONMENTS (5.4) are necessary to let software developers and content
editors work undisturbed by each other. However, the moment a new software
release has been completed and should become effective, a connection between
the two worlds becomes necessary.

Bringing software developers and content editors together is all the more
problematic since usually these two groups of people don’t overlap. They are
normally recruited from entirely different business units of an organisation.
Plans and problems known to one group aren’t necessarily known to the other
as well.

Collaboration between the two groups is crucial for a smooth site maintenance
though. Developers must be aware of additional functionality or changes to
existing functionality that the content editors might request, and they must learn
of this in due time. Content editors must know about possible interferences of
software updates with content maintenance. Everybody must be aware of
technical risks that might be involved in changes made to the site, and they must
agree on how to react should anything go astray.

2. This list of activities is not supposed to suggest a waterfall model. This is not the place

for a discussion of different software development methods. Whether you follow a more

traditional or an agile approach, the point here is that the software development and

content maintenance processes are clearly different.

Software Patterns

98

Solution Make sure that all software releases are coordinated by a site manager

who is equally aware of the software processes and the demands on

content maintenance. The site manager must keep in touch with all stake-

holders of the site and ultimately has to coordinate all activities concerned

with the site’s evolution.

In detail the site managers’ job includes the following tasks:

• develop a strategy for the site’s future evolution and come to an agreement
concerning this strategy with the content editors

• plan and schedule software changes with the development team

• keep track of and manage dependencies between content and software,
especially the need for changes to the DOCUMENT TYPE HIERARCHY (1.2)

• agree on deployment schedules, including the identification of periods
during which no updates to the content will be possible

• identify periods during which the site has to go off-line, should this be
necessary

• ensure versioning is applied to both software and content, and keep track of
which content version goes with which software version, especially in the
presence of changes to the DOCUMENT TYPE HIERARCHY (1.2)

• devise possible fall-back strategies should a deployment fail (probably
relying on previous versions of the site)

Seemingly unrelated, the software development and content maintenance
processes do in fact depend on each other quite a bit. A good deal of coordi-
nation by the site manager is the precondition both for a smooth ride through
the software release cycles and for undisturbed content workflows.

Example
Resolved

A relatively small site, the Technology Transfer Portal only has a few content
editors and a small development team. Nonetheless, one person has to accept the
overall responsibility for managing the site, which includes management of all
changes. That person’s primary task is to keep in touch with software developers
and content editors alike, and to convey the necessary information among both
groups.

Benefits + The role of a site manager is essential for the site’s manageability. The need
for changes is recognised earlier, and awareness of future changes is
increased. If the site manager coordinates the site’s evolution, everybody
involved can react more accurately to changing requirements and depend-
encies on other people’s workflows.

+ Because every software deployment is coordinated between both the
software developers and the content editors there won’t be any unexpected
periods during which no content maintenance is possible, let alone any
unexpected off-line times. If such periods are necessary, at least the content
editors are able to plan ahead.

Software Architectures for Web Content Management

99

+ A fall-back strategy in case of an unsuccessful software deployment
increases the site’s reliability. Whatever happens, you can always resume the
site’s most recent version. This version may not include the new function-
ality you wanted to deploy, but at least it’s a consistent version and works
reliably.

Liabilities – The role of a site manager admittedly represents an additional organisation
effort, and ultimately increased costs. Someone has to be paid to do the job
after all. It’s worth it though. Obviously it’s work that needs to be done. Plus,
if you look at it from a monetary aspect, you can expect the costs caused by
an unsuccessful deployment or unexpected off-line times to exceed the
costs for proper site management.

Software Patterns

100

Appendix

The following table contains thumbnails of all patterns in the overall collection.

Content Organisation

Domain-
Driven

Document
Type Model

(1.1)

How can you ensure that content editors can create, maintain and publish content in an appro-

priate way?

Introduce a document type model based on domain-driven requirements. The
complete set of document types must represent the different information
categories known and meaningful to the site’s content editors. This way the
document types can become the basis for all the site’s content management.

Document
Type Hierarchy

(1.2)

How can you describe the document types in such a way that not only makes rendering possible,

but also avoids redundant information?

Extend the document type model to become an object-oriented document type
hierarchy. Specify the attributes for each document type and employ association
to describe how documents are related. Tailor the document types so that the
model becomes normalised and non-redundant. Make moderate use of inher-
itance to model abstraction.

Decoupling of
Content and

Navigation
(1.3)

How can you ensure that content editors can organise both the content and the site’s navigation

hierarchy in a straightforward and flexible way?

Decouple the actual content from the navigation hierarchy. Extend the
document type model by introducing a special document type for pages. This
document type’s sole purpose is to embody the web site’s navigation structure,
while the actual content will be assigned to the existing document types. This way
you give content editors the freedom to design content and navigation structures
as they see fit.

Software Architectures for Web Content Management

101

Configurable
Hierarchies

(1.4)

How can you support several navigation and content structures simultaneously?

Extend the document type for pages to include conditional links to the actual
content and to the child pages. This way you can establish several hierarchies that
exist in parallel and can share parts of their navigation hierarchy as well as parts
of their content.

Implicitly
Linked

Documents
(1.5)

How can content that changes frequently be maintained, without imposing on the content editors

the tedious job of manually linking the new content into the navigation hierarchy?

Introduce a dedicated document type for dynamic lists. A dynamic list does not
maintain references to the documents that serve as its list elements, but instead
specifies criteria for potential list elements. Later, when the list is being rendered,
these criteria will be interpreted to include the appropriate documents into the
list.

Type-Specific
Validators

(1.6)

How can you avoid having documents that contain illegal attribute values?

Specify validators for the attribute types that occur in your document type
model. Validators can take different forms ranging from XML schemes to Java
code. Make sure that a document can be considered plausible if all validators
succeed that can be applied to its attributes.

Workflow-
Based

Validation
(1.7)

How can validators be applied effectively?

Establish two classes of validators. On the one hand, validators that prevent
illegal attribute values can be applied during the editing process on the CMS
client. On the other hand, validators that check for completeness and
consistency have to be integrated into the server-side workflow so that they
become effective only upon publication.

Rendering

Document
Wrapper (2.1)

How can you avoid that templates are being cluttered with model aspects?

Provide a component for each document type that wraps the access to all
document attributes. A wrapper component yields attribute values upon request,
but is free to polish these values for proper use in a template. Templates no
longer call the system’s content API directly, but gain access to documents only
through the wrapper components. In their entirety, the wrapper components
form an access layer on top of the content API.

Software Patterns

102

Navigation
Manager (2.2)

How can you prevent templates from being burdened with the calculation of navigation infor-

mation?

Establish a component that provides all necessary navigation-related infor-
mation. Whether they generate navigation elements or hyperlinks to other pages,
templates never calculate navigation information on their own but always rely on
the navigation manager instead.

Interacting
Templates

(2.3)

How can you avoid, to a large extent, redundant template code and inefficient rendering?

Define a system of interacting templates. Design the templates to call each other
in such a way that they can render the full page, beginning with the page’s
outermost structure, down to the smallest page elements. The template’s call
hierarchy will mirror the relationships between document types. Extract all state-
dependent rendering into separate templates, and make sure that all state-
independent content will be subject to caching.

Template Per
View (2.4)

How can you support the definition of different views for the same content?

Define a specific template for each view of a document that is distinctly different
from any other views. The primary task of each template is to generate markup
for the page element that it represents without specifying any details of its layout.
In addition, the template may provide client-side scripting functionality if
necessary.

Style Per
Layout (2.5)

How can you specify the layout for your site and support different output media at the same

time?

Concentrate all layout definitions in style sheets. Each style sheet should contain
a consistent set of definitions regarding page geometry, fonts, colours, and the
like. Define a separate stylesheet for each view of your site, or output channel, or
media type that you have to support.

Careful Use Of
Layout

Variations
(2.6)

How can you allow content editors to fine-tune the layout of individual documents?

If there is a real need for content editors to specify certain layout details for
individual documents, you can meet this requirement by assigning additional
attributes to the document types in question. These additional attributes
represent layout variations from which the content editors can choose. Use this
feature sparingly, so as not to make the document types and their associated
templates overly complex.

Realistic
Browser

Assumptions
(2.7)

How can you prevent templates from becoming extremely complex due to unknown client-side

technology?

Make sure that all web pages you deliver rely only on techniques and mechanisms
that are generally accepted and completely unspecific of browser types. On the
other hand, make realistic assumptions concerning the availability and the state
of the art of the client-side technology.

Software Architectures for Web Content Management

103

Searching The Site

Purposeful
Search

Capabilities
(3.1)

How can you ensure that the site’s search function meets the users’ needs?

Perform a requirement analysis regarding the necessary search capabilities for
your site. This includes both the type and the expressive power of search queries
that you have to support and a state model that describes the user interaction
involved in searching the site.

Decoupled
Keywords And

Categories
(3.2)

How can you make your search function more successful than a mere full-text search would be?

Provide topic-driven categories that each represent some characteristics of some
of your site’s content. Allow content editors to assign keywords to individual
documents and to maintain a mapping that relates each category to a set of
keywords. In general it is fine for the categories to overlap. Content matches a
certain category if it contains at least one of the category’s keywords.

Search
Request

Controller
(3.3)

How can you process the search requests?

Establish a server-side controller that receives all requests concerning the search.
This includes search queries as well as requests for sorting, filtering or navigating
the search results. The controller does not implement any search functionality
but invokes the necessary actions and decides to which follow-up page a user will
be forwarded.

Search Engine
Adapter (3.4)

How can you smoothly integrate a search engine that yields the desired search results?

Provide an adapter component that wraps the interface of the search engine of
your choice. First, this adapter translates search requests received from users into
queries understood by the search engine. Second, it takes information about new
content and provides it to the search engine in such a way that the search engine
can update its index accordingly.

Search
Manager (3.5)

How can you maintain the search results that your search engine yields and prepare them for

presentation to the users?

Implement a dedicated server-side component that maintains search queries,
their parameters and the search results in the session state. This component
receives updates when a new query is performed. It makes its information
available to the templates that render the search and search result pages.

Software Patterns

104

Personalisation

Role-Based
Content Filter

(4.1)

How can you can you ensure that the generated web pages contain only content to which the users

should be given access?

Establish a mapping that specifies content visibility depending on user roles.
Introduce a dedicated component that interprets this mapping and informs
about a document’s visibility in a given context. A template can rely on this
component when it has to determine whether or not it should include certain
content in the output it generates.

User Manager
(4.2)

How can you introduce user-specific information into the rendering of your content in an efficient

way?

Establish a component that maintains the relevant information about a specific
user within the user’s session state. This includes the user’s roles as well as
personal information and preferences. Templates and other components call this
user manager component whenever they require any user-specific information.

Reasonably
Secure

Authentication
(4.3)

How can you identify the user who’s visiting your site?

Employ an authentication mechanism that meets your specific security require-
ments. You’ll have to weigh the level of security that a solution offers against
trade-offs such as poor response time.

Role-Specific
Templates

(4.4)

How can you avoid efficiency problems in the presence of role-based personalisation?

If the degree of personalisation leads to only a small number of different appear-
ances for certain content elements, define dedicated templates for each variation.
Each of these templates has to be specific for a certain user role but shouldn’t
depend on the current user. HTML fragments generated by these templates can
therefore be cached.

Verified
Registration

(4.5)

How can you prevent users from registering false information?

Establish a registration mechanism that includes verification of the user’s identity
and the personal information submitted. Design the registration mechanism in
such a way that the level of security matches the security demands placed on your
site.

Profile
Maintenance

Form (4.6)

How can you reduce the overhead involved in user profile maintenance?

Provide a form that allows registered users to update their profiles. Implement a
process that, upon submitting that form, makes the necessary changes in the
database.

Software Architectures for Web Content Management

105

Deployment And Infrastructure

One Web
Application

(5.1)

How many web applications should you define for the components that you have developed for

rendering content?

Define one web application for all server-side components that are involved in
the page generation and delivery for your site. This includes both templates and
any service components that you may have developed, as well as components
provided by the content management system. It is fine to single out components
in separate web applications if their functionality is only remotely connected to
page generation.

Legal Request
Policy (5.2)

How can you prevent users from retrieving incomplete page fragments, or else from invoking

unauthorised requests?

Devise a policy that states which kinds of requests are legal and which aren’t.
Usually requests for full pages are considered fine, as are requests for page
elements that may be integrated into web pages elsewhere. On the other hand,
the execution of arbitrary commands or scripts typically leads to unwanted
effects, and should therefore be considered illegal. Configure your environment
in such a way that it accepts only legal requests.

Dedicated
Production

and Delivery
Environments

(5.3)

How can you make your system scalable and at the same time protect it from attacks?

Establish separate environments for content production and maintenance on the
one hand and for content delivery on the other. Equip the production
environment with the infrastructure necessary to host the workflow processes
for content maintenance. Set up a demilitarised zone for the delivery
environment and equip it with the infrastructure necessary to process requests
from the expected number of users. Except for hardware and security configu-
rations, both environments should be identical.

Dedicated
Development

and
Production

Environments
(5.4)

How can you reduce the interferences of software development with content maintenance and

publication?

Establish separate environments for software development on the one hand and
for content production as well as delivery on the other. Aim to simulate the live
environments in your development environment as well as you can. Make sure
to apply versioning to software and content alike.

Coordinated
Release Cycles

(5.5)

How can you avoid conflicts in the software development and content maintenance processes?

Make sure that all software releases are coordinated by a site manager who is
equally aware of the software processes and the demands on content mainte-
nance. The site manager must keep in touch with all stakeholders of the site and
ultimately has to coordinate all activities concerned with the site’s evolution.

Software Patterns

106

References

Broemmer 2003

Darren Broemmer. J2EE Best Practices — Java Design Patterns, Automation, and

Performance. John Wiley & Sons, 2003.

Buschmann Meunier Rohnert Sommerlad Stal 1996

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
Michael Stal. Pattern-Oriented Software Architecture, Vol. 1 — A System of

Patterns. John Wiley & Sons, 1996.

Buschmann Henney Schmidt 2006

Frank Buschmann, Kevlin Henney, Douglas C. Schmidt. Pattern-Oriented

Software Architecture, Vol. 4 — On Patterns and Pattern Languages. John Wiley &
Sons, 2006.

Cocoon

The Apache Cocoon Project. “http://cocoon.apache.org”.

Dumais 1988

Susan Dumais. “Textual Information Retrieval”, in Handbook of Human-

Computer Interaction. Elsevier (North-Holland), 1988.

Dyson Longshaw 2004

Paul Dyson, Andy Longshaw. Architecting Internet Solutions. John Wiley &
Sons, 2004.

Farley Crawford Flanagan 2002

Jim Farnley, William Crawford, David Flanagan. Java Enterprise in a Nutshell.
O’Reilly, 2002.

Flanagan 2002

David Flanagan. Java in a Nutshell. O’Reilly, 2002.

Fowler 2003

Martin Fowler. Patterns of Enterprise Application Architecture. Pearson
Education, 2003.

Gamma Helm Johnson Vlissides 1995

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns

— Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

Hackos Redish 1998

JoAnn Hackos, Janice Redish. User and Task Analysis for Interface Design. John
Wiley & Sons, 1998.

Software Architectures for Web Content Management

107

Hackos 2002

JoAnn T. Hackos. Content Management for Dynamic Web Delivery. John Wiley &
Sons, 2002.

Harold Means 2004

Elliotte Rusty Harold, W. Scott Means. XML in a Nutshell. O’Reilly, 2004.

Kerth 2001

Norman Kerth. Project Retrospectives. Dorset House, 2001.

Kircher Jain 2004

Michael Kircher, Prashant Jain. Pattern-Oriented Software Architecture, Vol. 3 —

Patterns for Resource Management. John Wiley & Sons, 2004.

Krug 2000

Steve Krug. Don’t Make Me Think — A Common-Sense Approach to Web

Usability.

Loton 2002

T. Loton. Web Content Mining with Java. John Wiley & Sons, 2002.

Lucene

The Apache Lucene Project. “http://lucene.apache.org”.

Morville 2005

Peter Morville. Ambient Findability — What We Find Changes Who We Become.
O’Reilly, 2005.

Rockley 2002

Ann Rockley. Managing Enterprise Content — A Unified Content Strategy. New
Riders Press, 2002.

Rosenfeld Morville 2002

Louis Rosenfeld, Peter Morville. Information Architecture for the World Wide

Web — Designing Large-Scale Web Sites. O’Reilly, 2002.

Rüping 2003

Andreas Rüping. Agile Documentation — A Pattern Guide to Producing

Lightweight Documents for Software Projects. John Wiley & Sons, 2003.

Rüping 2005

Andreas Rüping. “Software Architectures for Web Content Management —
Best Practices for Enterprises and E-Government”, in Andy Longshaw,
Uwe Zdun (Eds.), EuroPLoP 2005 — Proceedings of the 10th European Conference

on Pattern Languages of Programs, 2005. Universitätsverlag Konstanz, 2006.

Rüping 2006

Andreas Rüping. “Software Architectures for Web Content Management —
Patterns for Interaction and Personalisation”, in Uwe Zdun; Lise Hvatum
(Eds.), EuroPLoP 2006 — Proceedings of the 11th European Conference on Pattern

Languages of Programs, 2006. Universitätsverlag Konstanz, 2007. To appear.

Salton 1989

Gerald Salton. Automatic Text Processing — The Transformation, Analysis, and

Retrieval of Information By Computer. Addison-Wesley, 1989.

Software Patterns

108

Schmidt Stal Rohnert Buschmann 2000

Douglas C. Schmidt, Michael Stal, Hans Rohnert, Frank Buschmann.
Pattern-Oriented Software Architecture, Vol. 2 — Patterns for Concurrent and
Networked Objects. John Wiley & Sons, 1996.

Sørensen 2003

Kristian Elof Sørensen. “Session Patterns”, in Alan O’Callaghan, Jutta
Eckstein, Christa Schwanninger (Eds.), EuroPLoP 2002 — Proceedings of the

7th European Conference on Pattern Languages of Programs, 2002.
Universitätsverlag Konstanz, 2003.

Spring

The Spring Application Framework. “http://www.springframework.org”.

Struts

The Apache Struts Project. “http://struts.apache.org”.

Turner Bedell 2003

James Turner, Kevin Bedell. Struts Kick Start. Pearson Education, 2003.

Vogel Zdun 2006

Oliver Vogel, Uwe Zdun. “Content Conversion and Generation on the
Web: A Pattern Language”, in Dragos Manulescu, James Noble, Markus
Völter (Eds.), Pattern Languages of Program Design, Vol. 5. Addison-Wesley,
2006.

Völter Schmid Wolff 2002

Markus Völter, Alexander Schmid, Eberhard Wolff. Server Component

Patterns — Component Infrastructures Illustrated with EJB. John Wiley & Sons,
2002.

Wellhausen 2005

Tim Wellhausen. “Query Engine — A Pattern for Performing Dynamic
Searches in Information Systems”, in Klaus Marquardt, Dietmar Schütz
(Eds.), EuroPLoP 2004 — Proceedings of the 9th European Conference on Pattern

Languages of Programs, 2004. Universitätsverlag Konstanz, 2005.

Weiss 2003

Michael Weiss. “Patterns for Web Applications”, in PLoP 2003 — Proceedings

of the 10th Conference on Pattern Languages of Programs, 2003.

Weiss 2006

Michael Weiss. “More Patterns for Web Applications”, in Andy Longshaw,
Uwe Zdun (Eds.), EuroPLoP 2005 — Proceedings of the 10th European Conference

on Pattern Languages of Programs, 2005. Universitätsverlag Konstanz, 2006.

White 2005

Martin White. The Content Management Handbook. Facet Publishing, 2005.

Wikipedia

Wikipedia — The Free Online Encyclopedia. “http://www.wikipedia.org”.

W3C

The World Wide Web Consortium. “http://www.w3c.org”.

Software Architectures for Web Content Management

109

Hybrid Parser1

Jürgen Salecker

Siemens AG, CT SE 2

Otto-Hahn-Ring 6, 81730 München, Germany

juergen.salecker@siemens.com

The Hybrid Parser architectural pattern applies to software systems which

need to parse documents but are constrained by memory resources and

processing power available. The pattern combines the processing

advantages concerning execution speed and memory resources of event

driven parsers with the programming comfort of a fully-fledged document

object model, provided by an object tree parser. An event driven parser is

usually by a factor of about 10 faster than an object tree parser but has the

significant disadvantage that it is a cumbersome procedure to create an

object model out of parsing events. This pattern combines the advantages of

both parsing techniques, the solution in a nutshell:

Parsing events are collected and used to construct a parse tree which

contains only node location information. Once the addressed node has been

reached all following parsing events are used to construct a document object

model (DOM) of just this part of the document. This avoids the necessity to

hold the complete document in memory, when the focus is only on a part of

the document. The extracted part is provided as a complete object model for

comfortable processing with a DOM parser by an application.

You need to extract a relatively small amount of information out of a larger

(XML, for example) document. This extraction has to be done as efficiently

and effectively as possible, both in terms of processing speed and required

resources, such as memory and with a minimized implementation effort.

Context

1
 © Siemens AG 2006, all rights reserved; permission is granted to VikingPLoP to make

copies for conference use and to publish it in the official conference proceedings.

111

The figure below shows a principle XML document, where the application

needs to extract the two DOM sub-nodes trees identified by the two circles.

Example

Figure 1, Principle DOM

With an object tree parser (DOM parser in XML technology) the complete

document needs to be represented in memory first. Then the application is

able to extract the two DOM sub-nodes by using the comfortable DOM API.

In the case an event based parser (SAX parser in XML technology) is used

the application is responsible to construct an object model out of the

generated parse events, which is a cumbersome procedure. Once the model

is complete it is necessarily not a DOM model instead it is an application

specific model, i.e. might even contain business logic.

Let’s assume an event based parser is used exclusively to extract the

relevant information – the two DOM sub-nodes – shown in the figure above.

In this case the processing speed will be sufficient, however the

programming effort required creating an object model just out of parse

events will be significant. Using an object tree parser instead, will solve the

problem to create an object model, but the processing speed is usually not

acceptable, at least for larger documents. It can be said that an event based

parser is approximately by a factor of 10 faster than an object tree parser.

Problem

Software Patterns

112

The following forces influence the solution:

Only a relatively small part of a document is required by the application.

Provide an effective parsing technique in terms of a minimized

implementation effort, because it is a cumbersome procedure to

exclusively use parse events to construct an object model of an

interesting part of the document. Instead the architect should focus on

the business logic and not waste his or her resources “i.e.

implementation time” for processing parsing events to create a complete

object model.

The main document to be parsed is too large to be present in memory all

at one.

Provide an elegant measure being able to forward the extracted part of

the document to another application(s) as a generic object (i.e. instance

of “org.w3c.dom.Node”) without containing any application specific

logic.

The extracted object should be easily transformed into other document

object models, like XOM, JDOM, Crimson DOM, DOM4J, etc. in order

to gain advantages of the benefits of more specific APIs.

The computer resources in terms of memory and processing power

available are limited, as it is typically the case in embedded systems. But

similar situations might also occur in enterprise systems.

Therefore the usage of either an object tree parser or an event based parser

alone does not produce satisfying results in terms of architectural elegance

and resource consumption.

In favor of a precise description, the solution is explained based on standard

and well-known XML parsing techniques. However in principle the solution

is generic and can be mapped to other document types to be parsed as well.

Solution

The solution in a nutshell: Use a combination of a SAX parser and a DOM

builder in order to gain advantage of the processing speed of a SAX parser

and the programming comfort of a DOM parser, which provides a fully

fledged document object model to the application.

The principle data flow of the hybrid parsing technique is shown in Figure 2

below:

Hybrid Parser

113

Travel xPathxxxx

Instantiate NodeDOMBuilder

Generate DOM sub-object

Store DOM sub-object

:xPaths collection

:xPath

:DOM sub-object

:DOM sub-objects collection

Figure 2, Hybrid Parsing Technique

First define trigger locations (xpath collections) for the interesting parts of

the document. Then use an event based parser (SAX) to locate (Travel

xpath) the interesting areas within the document. Once the parser events

from the SAX parser match a trigger node (Instantiate NodeDomHandler),

it feeds all further parse events to a document tree builder. This document

tree builder constructs (Construct DOM sub-object) a document sub tree out

of the token events. The construction will go on as long the document tree

builder accesses child nodes of the previous matched trigger node. The tree

builder stores the extracted sub-document (Store DOM sub-object) once it

has processed all child nodes of the trigger node. Finally it returns to the

event based parser (SAX), and keeps on parsing.

Again the event based parser is searching for the next match (based on the

defined trigger locations) which triggers the same procedure as described

above. After the event based parser has finished parsing the complete

Software Patterns

114

document, the collected sub-documents - which are standalone document

object models - are forwarded to classes for domain specific processing.

The implementation relies on two major principles which are the event

based parsing technique implemented by the class HybridHandler and the

construction of DOM sub-objects out of the parsing events, implemented by

the class DOMBuilder, a 3
rd

 party software.

Implementation

The XML processing framework with standard Java 1.5.x has been used for

an example implementation; the complete class diagram of the

implementation of this pattern is shown in the figure below:

Figure 3, Hybrid Parser, Class Diagram

The slightly grey colored classes indicated 3
rd

 party software from the

packages:

3
rd

 party interface

org.xml.sax.ContentHandler

3
rd

 party classes:

com.sun.org.apache.xerces.internal.parsers.SaxParser

org.apache.xml.utils.DomBuilder

org.apache.sax.helpers.DefaultHandler

Hybrid Parser

115

Software with similar functionality from other 3
rd

 party packages might be

used as well by taking into account slight adaptations.

As already mentioned the solution relies on two major principles the “event

based parsing technique” together with “DOM sub-object creation out of

SAX parsing events”.

Event Based Parsing Technique

The principle of this technique is shown in Figure 4, below. A SAX parser

calls the method startElement() any time a new XML node “<….>” has

been detected. The method endElement() is called once a closing XML

element “</…>” has been detected. The method characters() is called for

anything detected between the start and the end of an XML node.

Figure 4, SAX Parsing Principle

The class HybridHandler overrides the methods (call-backs) startElement()

and endElement(). The method characters() will be handled by its super

class, the DefaultHandler (3
rd

 party software).

The methods startElement() and endElement() are used exclusively to

construct XML tree location information (xpath). The XML node name

Software Patterns

116

(including namespaces) is used to calculate the location information (xpath)

of the current parse location. All other information provided by those two

methods (XML attributes) is ignored, i.e. not relevant for this pattern.

If the calculated location information (xpath) matches with the xpath

definition provided by the class xPath, the HybridHandler will instantiate

the class NodeDomHandler and then forward the SAX parsing events to this

newly created object.

DOM sub-object Creation

The class NodeDomHandler together with its super-class DOMBuilder

implements the second principle of this pattern, the creation of a DOM sub-

object. It uses the forwarded SAX events to construct a complete DOM sub-

objects by including all details, XML attributes and name spaces. It uses the

same instance of the SAX parser as the class HybridHandler.

NodeDomHandler overrides the methods startElement() and endElement()

(call-backs from the SAX parser) and within those methods it calls its super

class DOMBuilder for DOM sub-object creation, outlined below:

Figure 5, DOM sub-object Creation

Hybrid Parser

117

The class NodeDomHandler calculates as well document location

information (xpath) in the same way as HybridHandler, but with the

exception: If the calculated location information matches with the xpath

definitions provided by the class xPath it will instantiate itself recursively.

An example XML document for this case is shown in the figure below:

Figure 6, Extracting XML Child Nodes

This provides a comfortable way to represent an XML tree as a tree of

instantiated DOM sub-objects. In the example document model shown

above (Figure 6) the DOM node three “./d/f” will be extracted as a DOM

object from DOM node two. DOM nodes one and two have the same xpath

“/a/b” but have different child nodes.

Once the NodeDOMHandler has reached its end condition (the same leaf

level in the parse tree as it has been instantiated) it calls endNode() which

adds the constructed DOM object to the user defined class via the method

addNode() implemented by the class DomNodeCollection. Then it returns

the SAX events back to its parent object. Its parent object could be either

another instance of the same class NodeDomHandler or an instance of the

class HybridHandler. Returning SAX events back to the previous initiator is

initiated by the method getParser().setContentHandler() from interface

HybridIF.

Software Patterns

118

The class DomNodeCollection represents a class which holds the extracted

DOM sub-object collection. This is the only class which might contain

business specific code and is therefore not part of this pattern. It is shown in

the class diagram (Figure 3) for the sake of completeness.

The class HybridHandler might be instantiated recursively in case XML

documents are linked together via Xlink definition (see Figure 7 below). In

those cases the HybridHandler has to be launched at the XML root

document.

Figure 7, Recursive XML Document Processing

In the Q-Marine system - a seismic recording system - from Schlumberger

the pattern is used for managing the massive amount (well above 15000) of

digital sensors (small embedded system) in an efficient way. At Siemens it

is currently being implemented for managing the vast amount of

information from software change information (tasks from a configuration

management system) in an efficient way.

Known Uses

Hybrid Parser

119

The pattern provides the following benefits:Consequences

Light weight parsing of even large documents by resource constraint

systems, both in terms of processing speed and memory resource

required.

Combing the advantages of event based parsers with object tree

based parsers.

Avoid the cumbersome procedure of having to implement a

complete object model out of parse events.

The pattern provides following liabilities:

If the application requires more or less the complete document and

enough memory is available one might consider using an object tree

parser exclusively.

This pattern does not provide a direct binding of the XML document

to the programming language in usage, because the document object

model has to be queried via the API provided by the document

object model (DOM).

This pattern has gone a long way to reach the point where it is now. As I

decided to use XML in a development project somewhere in 2002 at

Schlumberger/Norway, I searched the Internet for advice about how to parse

large XML documents as efficient and effective as possible. In a forum (I

forget the name of the original author) there was a post with the following

four advices concerning the efficient processing of large XML documents:

Credits

Define trigger locations for interesting parts of an XML document.

Use an event based parser (SAX parser) to locate those locations.

Use a parse tree builder (DOM builder) to extract the defined

location as a DOM sub-object.

Use a tree parser (DOM parser) to provide the binding to the

programming language.

The core of the pattern is captured in those four statements. Also thanks to

Kevlin Henney who basically invented the name of the pattern (in Q1/2003)

once I explained the principle to him.

Software Patterns

120

My first shepherd (EuroPlop 2005) pointed out that this pattern might be

more generic as just to being applied for XML document processing. At this

time I did not really believe, but at this comment got repeated by shepherd

number three (Uwe Zdun, VikingPlop 9/2006), finally I was convinced.

Shepherd number two (Peter Sommerlad, EuroPlop 7/2006) did provide

very valuable support concerning the clarification of the essence of this

pattern.

The writer’s workshop at VikingPlop 2006 composed of: James Siddle

(SAP), Cecilia Haskins (NTNU), Juha Pärssinen (VTT), Met-Mari Nielsen

(Runestone Game Development), Pavel Hruby (Independent), Klaus

Marquardt (Dräger) did provide very useful suggestions in order to increase

the quality of the paper even further. The UML diagrams became

significantly clearer with the help of my colleague Silvano Cirujano-Cuesta,

a UML specialist, at our Munich office. Finally my colleague Jürgen

Schmitt initiated important last minute changes, concerning the correct

description about XML child node processing.

Hybrid Parser

121

Patterns in Other Fields

Patterns for Tailoring E-Learning Materials to Make them Suited

for Changed Requirements

Birgit Zimmermann, Christoph Rensing, Ralf Steinmetz

0 Introduction

Creating appropriate E-Learning material is a costly task. Re-use would help to lower those costs.

But if you want to re-use existing material you need access to high quality material that can be re-

used. By establishing a marketplace for high quality E-Learning materials the project Content

Sharing (http://www.contentsharing.com) aims to solve the problem that often smaller companies

have no access to such materials. This marketplace will make E-Learning materials available to

all kinds of companies for use and re-use. But often the re-used materials do not completely fit to

the new usage scenario. In those cases the materials have to be adapted to the changed

requirements.

There exist lots of different kinds of such adaptations (e.g. adaptations to a changed corporate

design, terminological adaptations, or content translation). This means that several aspects must

be considered (layout, didactics, linguistics, technology). In addition various different formats are

used (such as HTML, PPT or Flash), often within one course. Unfortunately, many authors do

not have the knowledge to perform all the adaptations needed. Therefore a tool offering support

to authors in performing E-Learning material adaptations would be useful.

To design such a tool, we analyzed which and how adaptations are done by experts [4]. We found

that there are common ways how to do the adaptations. Some times adaptations can be done in an

automated way (e.g. changing the design of a course). Some times it is hardly possible to offer a

good automated support, as the adaptations are done based on human cognition and experiences

(e.g. adaptation to a changed learning objective). But in all cases we found that there exist

guidelines and best practices how those adaptations can be done. Therefore we decided to write a

pattern language for the adaptation of E-Learning material.

Copyright (C) 2006 by B. Zimmermann, C. Rensing, R. Steinmetz. All rights reserved. Permission granted

to copy this work in its entirety for non-commercial use provided that this copyright appears.

125

In this paper we present a first version of solutions we have mined. We present them as five

patterns that form a pattern language for E-Learning material adaptation. The aim of this

language is to collect expert knowledge in performing single adaptation processes and to make it

available to people who have to perform several adaptation processes. Those people have a

certain basic knowledge that is needed to perform the adaptation processes. For example they

may know how to change the size of an image. But they may not be experts in all the adaptation

processes they have to execute.

Talking to experts we got a list of 15 adaptations (listed in table 1) performed by those experts.

We also asked the experts to describe how they proceed in performing the adaptations. When

analyzing the answers we got from the experts we found that adaptations cover three areas of

changes:

Changes in the layout,

Changes in the content, and

Changes with a more technical background or purpose

Each of the 15 adaptations belongs at least to one area. Adapting material to a changed design for

example changes the layout of the material, changing the terminology changes the content. But

some adaptations belong to several areas. For example the transformation into another format is

mainly an adaptation with a technical background. But it also changes the layout, e.g. by resizing

images that are not suited for the new format. With our pattern language we want to cover all

areas of changes as all of them might be needed to make re-used material perfectly suited to

changed requirements. The following table shows all adaptations and their assignment to the area

of change they mainly belong to. The adaptations covered by the patterns in this paper are written

in a bold font.

Layout Content Technical background or

purpose

design

printability

screen resolutions

accessibility

translation

learning objective

terminology

degree of interaction

semantic density (see

explanation below)

learning strategy

difficulty of the course

duration of the course

transformation into several

formats

end devices

bandwidths

Table 1: Areas of adaptations.

Patterns in Other Fields

126

Explanation to semantic density: “The degree of conciseness of a learning object. The semantic

density of a learning object may be estimated in terms of its size, span, or --in the case of self-

timed resources such as audio or video- -duration.” [IEEE Learning Technology Standards

Committee: IEEE Standard for Learning Object Metadata 1484.12.1., 2002]

In addition we found that there exist certain connections between adaptations: Two adaptations

are connected if the execution of the first adaptation probably leads to the execution of the

second adaptation.

Example: If you change the semantic density of a course you should also check if you have to

change the difficulty of this course. The connection can be very close or looser. E.g. the

connection between semantic density and difficulty is close as a course with a high semantic

density is normally more difficult then a course with a low semantic density. So changing one of

those two items probably leads to a need for a change in the other one as well. Between design

adaptation and terminology adaptation there is a loose connection. Design adaptations are often

needed if one company decides to re-use the course of another company with a different

corporate design. The companies might also have specific terminologies which results in a need

to adapt the terminology.

The following figure shows the connections between the three adaptations that are described by

the patterns in this paper. Each adaptation is described by one pattern which is named according

to the adaptation. The arrows between two adaptations mean that if the first adaptation process is

performed this probably leads to a need to perform the second process as well. The patterns

describe how to perform the adaptations.

Figure 1: Connections between adaptations.

Our pattern language shows how to adapt E-Learning material to make it suitable for a new

scenario of usage. There may be other pattern languages related to our language, like Ian

Graham’s “WU pattern language” [1] or Vogel and Zdun’s pattern language for “Content

Conversion and Generation on the Web” [3]. But up to now no pattern language for adapting

existing E-Learning material to changed requirements exists.

There exist two kinds of patterns:

Patterns for Tailoring E-Learning Materials to Make them Suited for Changed Requirements

127

1. First we formulate 15 adaptation patterns, one pattern for each adaptation. Those patterns

describe how to perform an adaptation. Whenever someone wants to adapt E-Learning

material to make it suited for changed requirements he / she finds the description what to

do in those patterns. (This paper contains three adaptation patterns: “Design Adaptations”,

“Printability” and “Translation”.)

2. Second we formulate what we call supporting patterns. During the execution of an

adaptation process there are typical problems you might run into. Those problems are

described by supporting patterns. Several of those problems occur in more than one

adaptation. For example there are many adaptations that replace parts of a text. The new

text parts can have a different size than the old ones. If it is important that the new text

parts keep the length it is necessary to correct the text parts that differ in their length. A

description of how to solve this problem can be found in the supporting pattern “Correct

length of text blocks”. Therefore supporting patterns describe how to solve problems that

typically occur during performing adaptations. (“Correct Length of Text Blocks” and

“Correct Arrangement of Elements” are the supporting patterns described in this paper.)

Problems can also occur during the execution of a solution described in a supporting pattern. To

solve the problems that come up here again supporting patterns are used. If a supporting pattern

does not need any other patterns to support its execution we call this a final supporting pattern.

As stated before our target group is not the group of people being experts in performing one

special adaptation (like a translator is expert in performing translations or a designer is expert in

changing the design). We aim at those people who have to work with adaptations but are not

experts in performing them. To understand our pattern language, only a basic knowledge in

adapting E-Learning material is needed. But to adapt existing material in a useful way, persons

who do adaptations should have knowledge in the topic the course covers.

Patterns in Other Fields

128

1 Re-Using existing E-Learning Material *

Intent: Change existing E-Learning material to meet new requirements.

Context: Creating appropriate E-Learning material is a costly and time consuming task. One

possibility to make the production of E-Learning material less expensive is to re-use existing

material. This is particularly relevant for smaller companies that cannot afford to create custom

material tailored to their particular needs. Re-using material can either mean that you take parts

of an existing course, e.g. a good example, and add them to a new course. Or it also can mean

that you re-use a whole course. However, re-using existing material is not enough since often the

existing material does not completely fit the new usage scenario. As a result of this, the material

has to be adapted to this new scenario.

Problem: You want to adapt existing E-Learning material to changed requirements. What do you

have to do in order to achieve material that fits the new requirements?

Forces:

You have to create new E-Learning material.

You re-use a whole course or only parts of it, as they (at least partially) fit to your needs.

The re-used course or the re-used parts do not completely match to the new scenario of

usage. But it is cheaper to adapt them then to build them from scratch.

Solution: You start by defining your requirements. Then you decide which existing material best

fits your needs. To achieve a 100% match between your requirements and the re-used material it

might be necessary to adapt the existing resources to these requirements. How costly an

adaptation is depends on the tools you have supporting you in performing the adaptation, and on

the knowledge you have for this adaptation. You have to consider 15 possible adaptations:

design: the (corporate) design of the material has to be changed

printability: you need a version optimized for printing it

screen resolutions: you need versions optimized for several screen resolutions

accessibility: the material has to me made available to disabled persons

translation: the material has to be translated into another language

learning objective: the learning objective has slightly changed (if major changes should be

done to the learning objective, you have to create new material)

terminology: the terminology used in the material has changed

degree of interaction: you want to change the degree of interaction

semantic density: you have to adapt the material to a changed semantic density

learning strategy: the material has to be adapted to a changed learning strategy

difficulty of the course: The degree of difficulty of the material has to be changed

duration of the course: the material should change its duration

transformation into several formats: you need several file formats (e.g. PDF and HTML)

Patterns for Tailoring E-Learning Materials to Make them Suited for Changed Requirements

129

end devices: users will access the material using different devices (PDA, note book,…)

bandwidths: users download the material via different bandwidths. The material should be

optimized to achieve the best possible download rates for several bandwidths

Known uses: This pattern is based on the experience of several people working in the area of E-

Learning material production.

Consequences:

 Positive:

You save time and money.

You get E-Learning material that completely fits your needs.

Negative:

You have to do the adaptations.

You have to take care not to forget an adaptation. Otherwise you would get material that

is not really suited for your needs.

Related patterns: Not known

Connected Patterns:

None

Used Patterns:

You adapt E-Learning materials to changed requirements with adaptation patterns such as

TRANSLATION (for different languages), DESIGN ADAPTATION (for different

designs) and PRINTABILITY (to get a printable version).

Patterns in Other Fields

130

2 Design Adaptation *

Intent: Adapt the design of materials to match incoming requirements.

Context: As for many kinds of content the design is very important for E-Learning content.

Therefore you should always take care of a design matching all requirements. If there is a change

in design requirements it is necessary to adapt the course to the new requirements. There are

several reasons for a change in the requirements, e.g. if a course was originally designed for one

company and should be re-used in another company or if the style guide of a company changes.

Problem: You want to adapt your course to changed requirements concerning the (corporate)

design. What do you have to do in order to achieve a design that fits the new requirements?

Figure 2: Example for a design adaptation.

Fig. 2 shows a course: First the original version, and then after adapting it to a changed corporate

design.

Forces:

E-Learning courses are normally designed by following a style guide. If this style guide

changes for some reason the design of the course has to be adapted to the new guideline.

The design normally consists of many items, like logos, background images and colors,

fonts etc. To adapt the design all elements have to be considered.

If a style template is used you can change this template (e.g. CSS for HTML or slide

master for PPT).

Patterns for Tailoring E-Learning Materials to Make them Suited for Changed Requirements

131

If no style template is used you have to change the design by changing element by

element, page by page and file by file.

Solution: A design adaptation starts by replacing graphical elements that do not meet the

requirements (e.g. logos). Therefore you decide for each graphical element if it is conform to

your requirements. If it is not you replace it by a conform element. If the new graphical elements

have a different size compared to the original ones it might be necessary to resize them.

Depending on the file format of the materials the way how you replace the elements is different.

E.g. in HTML you replace the target of the element’s tag, whereas in DOC you delete the old

element and insert a new one.

There might be some graphical elements that occur in places where no elements at all are allowed

to occur. You should check for those elements and if you detect some you must delete them.

If you need additional graphical elements in places where no element is provided you have to add

those elements. Keep in mind that this has effects on the arrangement of all elements. In the last

step you rearrange all elements that are not placed correctly.

Style guides normally define rules how to design the whole layout. If the style guide changes you

have to adapt the design accordingly.

If you want to use the course in another company it might be also necessary to change the

company name. Be careful if the new name has a different length then the old one. This might

has a negative effect on the look of the text blocks, where the name has been changed.

There is no strict order in executing the steps mentioned so far. However the order proposed here

seems to be useful. The step “Rearranging text parts and images” should always be executed as

the last step. When executing this step you should check that all elements are positioned

correctly. All other steps might influence the arrangement of elements. E.g. if a logo is deleted

instead of replacing it, this leads to a change in the arrangement of the other elements as well.

Steps needed to execute the solution:

1. Replacing graphical elements

2. Deleting graphical elements

3. Add additional graphical elements

4. Performing changes according to style guides

5. Changing company naming

6. Rearranging text parts and images

Known uses: This pattern is based on the experience of experts in branding and corporate design

from several companies, e.g. SAP, as well as on our experiences in changing the design of E-

Learning content.

Consequences:

 Positive:

The course is adapted to the required (corporate) design. This generates the required look

and feel for this course.

Negative:

In the rare cases where no style guide is available the adaptation is hard to execute and

might be incomplete.

Patterns in Other Fields

132

If you have done adaptations that provide an additional version of the course for parallel

use (like translation or printability) you should perform the design changes for these

versions as well.

Related patterns: Not known

Connected Patterns:

Terminology (Often the target group has changed if a layout change has to be executed. A

change in the target group might also require an adaptation to a changed terminology.)

Printability (If you have changed a version that is optimized for printing, you should

check that none of your changes conflicts with printability.)

Used Patterns:

“Correct arrangement of elements” used by “Rearranging text parts and images”

“Correct length of text blocks” used by “Changing company naming”

Patterns for Tailoring E-Learning Materials to Make them Suited for Changed Requirements

133

3 Printability *

Intent: Printing E-Learning materials appropriately.

Context: Most E-Learning materials are designed to access them via a browser. Often materials

are without any provision for printing them in a suitable way. For example, a course may allow a

student to exercise an online test, but not to print the results. But often users want a printable

version of the materials. As Ian Graham says: “Navigability and aesthetics conflict with

printability…” [1]. Therefore you should provide two versions: the original one optimized for

output on a screen, and a second, separate version that is optimized for printing. The user can

then print the material if he / she wants to do so.

Problem: You want to provide a separate version of the material that is optimized for printing.

How do you optimize the new version for printing?

Figure 3: Example for a printability adaptation.

Patterns in Other Fields

134

Fig. 3 shows how the research department KOM solved the printing problem. The first part of the

image shows a small section of the print preview of a part of KOM’s homepage. You can see that

some elements on the right hand side are cut off. To overcome this problem KOM offers a

second version of their website that is optimized for printing. This is demonstrated in the lower

part of the figure. You can find the same problem and the nearly same solution in the area of E-

Learning material.

Forces:

Adaptation to achieve a good printability is not needed for all formats. Page based

formats like PDF or DOC that have been created to be printed later on, do not need to be

adapted.

Your material is not optimized for printing, but for access e.g. via a web browser or a

special player for E-Learning courses.

When printing the material some elements might be cut off.

Sometimes formatting data like CSS is available and can be used for optimization,

sometimes this is not the case. But often it is not enough to “only” change this CSS file,

you also have to take care for images if they are used.

When printing some elements might be separated in a way that downgrades readability

and understandability.

You need a version optimized for printing in addition to the version optimized for

viewing it on a computer screen.

Solution: In general you should create a new printer friendly version of your material. This

means you have to create a second version of your material that is provided in addition to the

original material. To achieve a good printability for this new version you have to resize all

elements that cannot be separated in a way that they match with a printed page (e.g. images that

are too big). You have to do the same for all elements that can be separated (e.g. text boxes or

tables). You should remove all colors that cause negative effects when being printed (e.g. yellow

font color, or white font on a black background). You should check for elements that contain

important information but are not printed. Those elements should be added in a printable version

as well. And you should correct all page breaks that reduce readability. The order of the steps is

partly fixed (the first two steps and the next two steps belong together). It is useful to follow the

order proposed here to achieve a good result.

Steps needed to execute the solution:

1. Detecting non separable elements (like images) not fitting to targeted page size

2. Matching non separable elements to targeted page size

3. Detecting separable elements (like tables) not fitting to targeted page size

4. Matching separable elements to targeted page size

5. Checking colors not suited for printing

6. Checking for elements that are not printed (like backgrounds)

7. Correcting page breaks

Patterns for Tailoring E-Learning Materials to Make them Suited for Changed Requirements

135

Known Uses: You find lots of examples where a separate version of a resource optimized for

printing is provided, e.g. company homepages like the one of the company SAP mentioned

above.

The problem of printer friendly versions is considered often in the hypermedia area. In this area

other patterns were developed to solve this problem. E.g. Lyardet and Rossi [2] have written a

pattern called “Printer Friendly” and Graham [1] wrote another pattern “Separate print pages”.

This pattern uses ideas from their work.

Consequences:

Positive:

You have a version that is optimized for printing.

Negative:

Having two versions, one optimized for viewing on a screen and one optimized for

printing, causes more effort in keeping both versions current.

If you have done adaptations that provide for additional versions of the course for parallel

use (like translation) you should create a printable version of those versions as well.

This adaptation provides a print version for each page, if you need a print version for the

whole course you should additionally convert the course to a format suited for printer

output (e.g. PDF).

Related patterns: “Printer Friendly”, “Separate print pages”

Connected Patterns:

Design Adaptation (If you match several elements to the targeted page size or correct

page breaks, this might influence the arrangement of the elements in a way that is not

conform to the design guide requirements.)

Used Patterns:

“Correct arrangement of elements” used by “Matching non separable elements to targeted

page size”, “Matching separable elements to targeted page size “, and “Correcting page

breaks”

Patterns in Other Fields

136

4 Translation *

Also known as: Multilingual Content Production

Intent: Provide content in a different language.

Context: Normally E-Learning material is first designed in one language. If versions in another

language are needed the original version has to be translated.

Problem: You want to translate E-Learning content from one language to another language.

Which process has to be performed to achieve a translated version?

Figure 4: Example for multilingual content.

Fig. 4 shows the first paragraph of an introduction to the University of Darmstadt. The upper part

shows the German version; the lower part shows the translated English version.

Forces:

Your content is provided in a language that is not understood by your target group.

To provide a version understandable to your target group you need to translate the

material.

You know in which source languages the content is written and to which target language

it should be translated.

You need to know whether only parts of the course or the whole course has to be

translated.

Patterns for Tailoring E-Learning Materials to Make them Suited for Changed Requirements

137

Solution: To create a translated version you have to provide the content to the translator.

Caution: You should always provide as much information to the translating person as possible.

This allows for a better quality of the translation. (If for example the translator has only a few

sentences to translate but not the whole text he or she probably may have difficulties to

understand the correct meaning of the sentences depending on the context.) In addition you

should make available domain specific information to the translator. In most domains a specific

terminology is used that has to be regarded during translating the content.

The translator translates the content. If the length of the text is important it has to be checked

during translation that the translated text stays within the allowed length. This means that you

have to provide the information if the text size matters to the translator. If the text size is of

importance the translator also needs information about the allowed text size and possibilities how

to correct the size, e.g. if certain abbreviations have to be used. Based on this information the

translator then has to check and if necessary correct the length of the text. If only parts of the

material have been translated you or the translator have / has to add or to replace those parts.

(Adding might be necessary if you want to keep the original part, e.g. a definition, and want to

add the translation.) After adding or replacing the translated elements you or the translator should

check if the arrangement of the elements is still according to your requirements. (This is not

necessary if you replaced text parts by new texts with the same length.) The order of the steps

needed for translation is fixed. This means that you should execute the process in the order as it is

described here to achieve an optimal result.

Steps needed to execute the solution:

1. Making elements that need to be translated available for translation

2. Translating content

3. Checking for correct length of text

4. Resizing texts with a wrong length

5. Adding translated elements

6. Replacing translated elements

7. Re-arranging elements that do not fit the requirements

Known uses: We talked to people in several companies, e.g. SAP, providing E-Learning

materials in several languages. In addition we talked to several translators. We found that the

solution described above is accepted as best practice.

Consequences:

Positive:

The translated text elements are now available in the desired language.

If you decide that the length of the text in both versions is not important you have no

problems with texts being too long or too short.

Negative:

If the length of the text is not important you have two different versions with respect to

the layout of the course.

Patterns in Other Fields

138

If the length of the text is important the translator has to take care of formulations that

match the length of the original text. This might cause many abbreviations or

formulations that have slightly different meaning then the original text. In addition the

readability might be decreased by many abbreviations.

Providing a translated version of your course causes a higher maintenance effort as later

changes in the original course also have to be translated.

You have to translate each parallel version of your course (e.g. a print optimized version)

as well.

Related patterns: Not known

Connected Patterns:

Printability (After translation of material that has been optimized for printing a further

optimization for printing may be necessary.)

Used Patterns:

“Correct length of text blocks” used by “Resizing texts with a wrong length”

“Correct arrangement of elements” used by “Re-arranging elements that do not fit the

requirements”

Remark: At the moment only a few supporting patterns are available, but translation needs lots of

supporting patterns as it is a complicated task. This will be taken into account in future versions

of this pattern language

Patterns for Tailoring E-Learning Materials to Make them Suited for Changed Requirements

139

5 Correct Arrangement of Elements

Intent: Get a correct arrangement of the elements contained in your course.

Context: There are several adaptations that change the arrangement of course elements, like text

blocks or images. In some cases you need to re-arrange the elements.

Problem: You have to change the arrangement of some elements in order that it fits to your

requirements. How can you execute the re-arrangement?

Figure 5: Example for re-arranging elements.

Fig. 5 shows a course page where a photograph has been replaced by an image. In addition the

image had to be placed on the right hand side of the page. This made a re-arrangement necessary.

Forces:

The arrangement of some elements in your material has changed for some reason (e.g.

deletion or insertion of graphical or textual elements or replacement by other elements

with a different size).

The new arrangement does not comply with your requirements, e.g. given by a company

style guide.

Patterns in Other Fields

140

The guidelines concerning the arrangement of course elements have changed and you

have to adapt the material to the new requirements.

Or the requirements how to arrange elements have changed.

You must re-arrange the elements to achieve an arrangement compliant with the

requirements.

Solution: You have to re-arrange the elements in a way that they comply with the requirements,

e.g. given in a company style guide. There are several reasons why the arrangement of the

elements is not correct (see forces).

If the arrangement has changed because you have replaced an element you can try to change the

size of the new element. If for some reason (e.g. loss of quality) this is not possible or if you have

added or deleted an element you can try to resize the surrounding elements. If you resize

elements you should always take care not to decrease the quality.

If you cannot resize the elements or if the requirements on the arrangement of elements have

changed you have to rearrange the elements. This means that you have to check how the elements

can be arranged to achieve a result that supports a good readability and understandability and that

complies with the requirements.

Known uses: This pattern is based on our own experiences with changing the arrangement of

elements in E-Learning courses and on company guidelines describing the arrangement of

elements in different formats.

Consequences:

Positive:

The elements are arranged correctly.

Negative:

Depending on a potential resizing of elements their quality might have decreased.

The new arrangement might be not as good as the original one, but at least it should be

better than before the re-arrangement.

Related patterns: Not known

Used Patterns: None

Patterns for Tailoring E-Learning Materials to Make them Suited for Changed Requirements

141

6 Correct Length of Text Blocks *

Intent: Get a correct length of the text parts contained in your course.

Context: There are several adaptations where you replace text parts by new text parts, e.g.

changing a companies name, changing the terminology or translating content. If the new text

element has to keep the length of the original element you have to change the new text element in

a way that it gets the correct length.

Problem: You have to correct the length of text parts. How can you execute the correction?

Figure 6: Example for a corrected text length.

Fig. 6 is split into three parts. The first part shows a piece of the original text from an English

manual. The second part shows the direct translation to German. The third part is the corrected

version of the German text. (In this case the length of the corrected version is very similar but not

completely identical with the length of the English version.)

Forces:

Your material contains text boxes that changed their length for some reason, e.g. because

of changing a companies name, changing the terminology or translating content.

The new length of the text boxes does not comply with the length required for those text

boxes, e.g. if the text has to fit into a speech bubble.

To change the size of the text box it is not enough to resize it e.g. by changing the font

size. You must change its length.

Patterns in Other Fields

142

Solution: If you want to correct the length of a text box you have to change the content. There

are two possibilities regarding the length: Your new text is too long or too short. Texts, that are

too long, have to be shortened and texts, that are too short, have to be lengthened.

To shorten a text you can try to find abbreviations. (Caution: Do not use too many abbreviations.

This has a negative impact on readability and understandability.) In addition you can try to find

synonyms that are shorter (e.g. “to make longer” – “lengthen”). If you use synonyms you must be

careful that you do not change the meaning. You can also try to find phrasings that are shorter

(see Fig. 6).

To lengthen a text you have the same possibilities: You can write out all abbreviations, you can

try to find longer synonyms and you can try to find longer phrasings.

Known uses: This pattern is based on our own experiences as well as on the experiences of

several other people working with text, like translators.

Consequences:

Positive:

The changed text now has the correct length.

Negative:

Depending on how you changed the length the quality of the text might have decreased.

The text might have a slightly different meaning.

If you use many abbreviations the readability of the corrected text might be not as good as

it was before.

Related patterns: Not known

Used Patterns: None

Patterns for Tailoring E-Learning Materials to Make them Suited for Changed Requirements

143

7 Acknowledgements

We would like to thank Fernando Lyardet and Markus Schumacher for their valuable comments

on this work. Special thanks go to James Coplien for shepherding this paper.

This work is supported by the German Federal Ministry of Economics and Technology in the

context of the project Content Sharing.

The authors would like to thank SAP AG - SAP Research CEC Darmstadt, as well as KOM

Multimedia Communications Lab at Technische Universität Darmstadt for supporting this work.

Contact Information:

Birgit Zimmermann
1, 2

, Christoph Rensing
2
, Ralf Steinmetz

2

1
 SAP AG

SAP Research CEC Darmstadt

Bleichstr. 8, 64283 Darmstadt, Germany

birgit.zimmermann@sap.com

2
 KOM Multimedia Communications Lab

Technische Universität Darmstadt

Merckstr. 25, 64283 Darmstadt, Germany

{birgit.zimmermann, christoph.rensing, ralf.steinmetz}@kom.tu-darmstadt.de

For further questions and remarks please contact Birgit Zimmermann.

References

[1] Graham, I.: A Pattern Language for Web Usability. Addison Wesley, 2003

[2] Lyardet, F., Rossi, G.: Web Usability Patterns. In: Proceeding of EuroPLoP 2001

[3] Vogel, O., Zdun, U: Content Conversion and Generation on the Web: A Pattern Language,

Published on EuroPLoP 2002

[4] Zimmermann, B., Bergsträßer, S., Rensing, C., Steinmetz, R.: A Requirements Analysis of

Adaptations of Re-Usable (E-Learning) Content. Published in: Proceedings of EdMedia 2006

Patterns in Other Fields

144

“Not just another conference”
Pattern language for conducting a successful niche conference

Cecilia Haskins

chaskins25@yahoo.com

Abstract: Niche conferences are designed to appeal to a specialized audience. They are

crafted, not mass produced, by volunteers with a vision and the commitment to create an

assembly for learning and networking. The quality of the conference is determined by all

participants, not only the featured presenters. Such events are generally small in numbers,

which means the budgets are tighter than those of larger conferences. This pattern language

provides guidance to the committee of a niche conference to help them create a forum for the

exchange of new ideas and “not just another conference.”

The context: a niche conference

The Merriam-Webster online dictionary contains the following definition of niche;

2 a: a place, employment, status, or activity for which a person or thing is best fitted … d: a

specialized market.

This pattern language has been written to recommend techniques and solutions that are

especially suited to organizing committees with the following attributes:

Volunteers – not paid in any currency other than appreciation and the chance to attend

the conference at no charge;

Small committee size – ten or fewer volunteers, which in turn limits the ambitions set

for the event, i.e., the conference is not designed to attract over 500 people or last

more than three days;

Professionals – which means that the primary expertise of members is in the field of

the conference and no one in the committee is an expert at running events;

Small budgets – which means there is very little money to spend for extras.

Due to the small number of participants and relatively intimate environment, a niche

conference shares some of the characteristics of a writers’ workshop, especially the need to

create an atmosphere of trust and goodwill. The author believes that the pattern language

presented here is best set in the context of niche conferences. Of course, organizing

committees for larger, well-funded events are welcome to use the good ideas embedded in

these patterns.

History and background of this language

Historically, this pattern language derives from seven years of experience creating the

ROOTS conference. The author is the conference visionary and had disjointed experience

creating events before launching ROOTS. This pattern language is written primarily as a

tutorial for new committee members and other volunteers in the Norwegian Computer Society

(DND) who create similar events.

The story of ROOTS begins in Oslo in 1998 when the author attended a one day event of brief

lectures followed by a panel debate between the distinguished speakers on the subject of OO

techniques. Based on the strong attendance, the vision to create a longer event was conceived.

A committee was formed from volunteer members of the DND with an interest in OO

145

technologies shortly thereafter and the first conference, a two day event, occurred in Bergen

during the spring 2000 with a social connection to a local music festival, called at that time

the Blues and Roots Festival.

The committee members held a retrospective after the first ROOTS conference. Jim Coplien

helped the committee articulate a purpose for the conference resulting in the current formula

with tracks for both technical and leadership participants. Martin Fowler gave us many

helpful tips on what worked best from his perspective as a speaker, and advised the committee

not to grow the conference into the thousands of participants, as was the then-current plan. As

a result, ROOTS’ invited speakers have shaped much of the evolving vision that motivates

this conference. The planning committee concluded that the number of participants and the

variety of themes should remain small. This was an important decision because with the

general topic of “object orientation” there is a great temptation to incorporate diverse themes.

The committee confirmed its original intention of creating a forum for discussion and debate.

They updated the concept to include both managers and practitioners – to attract groups of

people who work together and need to create effective teams. In effect, the target audience

mirrors the skills and interests of the committee members.

A successful conference exhibits the characteristic of meeting the expectations of both the

committee and the participants. The ROOTS conference structure has evolved significantly

based upon the feedback from attendees, who have placed great emphasis on maximizing

interaction time for participants and speakers. For this reason pauses and lunches are

scheduled with generous time allocations. Each year the program is designed, with the help of

prior years’ feedback, to attract this very unique audience. Even when an organization is only

able to send one or two team members, we are aware that the learning is taken back and

shared, much as bees returning to a hive.

Details about conference planning processes and methods are not a focus of this pattern

language. Readers are encouraged to develop their own checklists and team structures. The

essence of the ROOTS committee year-long planning process is summarized as follows. The

organizing committee begins by creating a wish list of persons they would want to hear

during the conference. From this, and feedback from prior years, the theme of the conference

is determined. Individual members of the committee volunteer to take the role of personal

host for a speaker. The speakers are asked to suggest what presentations or tutorials they

would most like to deliver consistent with the theme.

Speakers are encouraged to be approachable to the small audience during lunch and

conference social events. A unique gift is presented to each speaker as thanks and a memento

of the occasion.

Every project depends on some critical success factors. They are listed here with commentary

regarding how each factor is addressed by the ROOTS organizing committee.

a. Person in charge – as visionary, the author served as chair in the first year and again in

subsequent years. As with all roles, the role of chair has rotated among the committee

members. This has ensured that the vision has been internalized by all the volunteers

who are involved in creating the annual event, that responsibility is shared, and that

contributions are made in a risk-free and unstressed environment.

b. Proximity to community – every member of the organizing committee is a person who

would otherwise attend the conference. This ensures that the themes, speakers and

topics selected are of interest to potential attendees.

Patterns in Other Fields

146

c. Planning and structure of the event – the conference structure evolved from a very

successful event and has continued to evolve primarily based on feedback from

attendees. Otherwise, the event is relatively unstructured (long pauses, BOFs),

allowing participants to create a more personalized experience.

d. Individual sessions – once the speaker list is defined and confirmed, the speakers

themselves determine the content of the conference by their suggestions for talks and

workshops. By getting the right mix of speakers, and with very little direction, the

overall program falls into place.

e. Standard components versus standard process – as indicated in item d. above, the

process is standardized from year to year, but the content (or components) are variable

based on the contributions of the participants, both speakers and attendees.

f. Cost control – the committee has great autonomy and no stress to make a profit,

although great losses are not sustainable. Once a price per participant has been

determined, the committee monitors registration and adds or subtracts optional items

right up to the final weeks.

What is day-to-day life like during the construction of the conference? – The ROOTS

organizing committee has grown into a tight-knit community that shares a common goal and

has fun together. Meetings are infused with the sort of humour one finds among siblings and

good friends. Every opportunity for collective meals or events is taken. When a problem

arises, each member looks seriously at what contributions they can make for resolution

without the attitude “that’s not my concern.” The committee currently exhibits many of the

documented attributes of effective teams. Some of the members have been involved since the

first event; at least one new member is added each year as other members rotate out of the

committee. This keeps the viewpoints new, and helps resist stagnation.

The positive feedback from other conference organizers regarding this language suggests that

there is a need for this knowledge. The author hopes that future users of the patterns in this

language will also contribute to its improvement. Kindly send any comments and suggestions

to chaskins25@yahoo.com.

The first pattern for this pattern language and the introduction of the language itself were

presented during VikingPLoP 2002. Additional patterns have emerged and received generous

workshop feedback during VikingPLoP 2003-2006, and PloP 2005. The intent of this author

is that the language will mature, gradually include more original patterns and will eventually

build on precedent patterns from other sources. The final result should be a collection of the

essential elements that are required by conference organizing committees. The patlets that

follow indicate the last event at which the pattern was included in a workshop. The entire

pattern language is published for the first time in the proceedings of VikingPLoP 2006. The

patterns can also be found on the ROOTS conference website, http://roots.dnd.no.

Summary of the Language

The patterns in this language are organized into four sections entitled Vision and Process,

Atmosphere, Roles, and Customs. The patterns in the Vision and Process section identify the

importance of identifying the core values of a conference and the process for creating the

conference. The other pattern areas serve to reinforce this core.

"Not Just Another Conference"

147

Vision and Process

The ROOTS conference vision is to provide a forum for the discussion of new ideas and

trends in OO development and to foster a spirit of team learning – TOGETHER.

 1. MARKETPLACE OF NEW IDEAS presents the use of panel format P04

 2. NEWS FROM THE FRONT explains the use of experience reports P04

 3. HONEY TO THE HIVE

program contains something to take back to the

office and use tomorrow; a primary goal of the

event

VP04

 4. COMMITTEE ARE EXPERTS importance of diversity in the program VP04

 5. PROGRAM MIRRORS PROCESS

how the conference program evolves and

reflects the committee organization and

processes

VP06

Atmosphere

Establish a setting for the conference that is comfortable, intimate and conducive to formal

and informal dialogues. The technical aspects of the physical facilities should not distract the

participants from their primary objectives; learning and networking.

11. COFFEE ALL DAY LONG importance of hospitality overall VP05

12. COMFORTABLE BEDS importance of facilities, both hotel and conference VP05

13. WELCOME GATHERING importance of becoming acquainted VP05

14. NOISY BREAK TIME

the importance of having enough time to begin and

end conversations and the opportunity for

professional friendships to develop during an event

VP04

15. SAFE ENVIRONMENT
the importance of mutual respect in the exchange of

ideas
VP04

Roles

Leadership and collaboration are important to achieve a successful conference.

21. MOTIVATED COMMITTEE excellent committees make excellent events P04

22. COURAGEOUS VOLUNTEERS take the burden off committee during event VP06

23.
LEADER GUIDES THE

COMMITTEE

importance of leadership in the organizing

committee
VP04

24. STRONG SUPPORTING STAFF importance of the facilities professionals P04

25. DISTINGUISHED SPEAKERS importance of the invited speakers VP05

26. SPEAKER HOST the importance of nurturing invited speakers VP05

27. ENGAGED PARTICIPANTS importance of keeping participants involved VP05

28. PRICELESS SPONSORS importance of financial support VP05

Customs

Repetition of certain formulas re-enforces the comfort level for returning participants and

speakers and creates a format for “continuing” dialogues between and within each conference

event.

31. FEEDBACK FORM importance of asking for and using feedback VP05

32. ORDERLY REGISTRATION Importance of first impressions VP06

Patterns in Other Fields

148

33. RETURN OF PARTICIPANTS
the importance of having some of the same

attendees returning for an annual conference
VP04

34.
SOMETHING TO REMEMBER US

BY
gift selection for speakers, lottery VP06

35.
ENVIRONMENTALLY

CONSCIOUS CHOICES
paper free and recycling VP06

36. YEAR-ROUND WEBSITE

creating a source for continuous

communication and reference material from the

current and past conferences

VP06

37.
UNOFFICIAL GUIDE TO GET

AROUND
create an informal connection Plan

38. PERSONAL VOICE importance of the tone in communications Plan

39. NIGHT ON THE TOWN social event related to location Plan

References
James O. Coplien, "A Pattern Language for Writers’ Workshops", Pattern Languages of

Program Design, N. Harrison, B. Foote, H. Rohnert (Ed.), Addison-Wesley, vol. 4, 2000, pp

557-580.

Merriam Webster Dictionary Online, http://www.merriamwebster.com/dictionary/niche, last

accessed 3.dec.2006.

Oscar Nierstrasz, "Identify the Champion", Pattern Languages of Program Design, N.

Harrison, B. Foote, H. Rohnert (Ed.), Addison-Wesley, vol. 4, 2000, pp 539-556.

http://iamwww.unibe.ch/~oscar/Champion/, last accessed 3.dec.2006.

Kai A. Olsen, “The Economics of International Conferences,” Computer, June 2004, pp. 90-

92.

Linda Rising, How to chair ChiliPLoP: a checklist for when to do what, 2004.

Acknowledgements
Sincere thanks to Richard Gabriel for inspiring the author to improve the work and for his

many excellent suggestions for maturing the language. The author is most grateful to the

numerous workshop colleagues for the gift of their time and insights.

(c) 2002, 2004, 2005, 2006 Cecilia Haskins

"Not Just Another Conference"

149

1 – MARKETPLACE OF NEW IDEAS

…Ideally, an international conference provides a meeting place where the participants can

present and discuss new ideas, research topics and results.
1

Conferences tend to encourage safe topics that are well established in the literature but

these can be perceived as boring and having little value to a conference attendee.

Professionals with busy schedules are the target audience for most niche conferences. They

hope to keep abreast and ahead of their industry by attending conferences because they do not

have the time to read the journals where new research and practices are initially reported.

Conference organizers like to choose tightly constrained themes and encourage speakers to

focus on presentations with recognizable content but they forget that conference attendees

need inspiration as well as training. If participants are forewarned that they will not find

presentation material in any book, they will feel honored to be a part of the process.

Both speakers and audience are challenged to be open and a spirit of trust builds between

them. The conference becomes a SAFE ENVIRONMENT with enough interaction between

DISTINGUISHED SPEAKERS and ENGAGED PARTICIPANTS that the new ideas are the subject of

discussions. Speakers appreciate the opportunity to receive immediate feedback on how their

messages are received and understood. In this manner, participants may explore possible

application of the new ideas to their own workplace and the speakers have the benefit of

refining both their ideas and their presentations methods based on the information received

from the attendees. The organizers must ensure that pauses are long enough for conversations

to start and continue.

Since a niche conference relies on the RETURN OF PARTICIPANTS, these conversations are an

important factor to entice participants to return annually to share their experiences formally

and informally and continue the cycle of sharing new ideas. In this marketplace ideas are

Patterns in Other Fields

150

exchanged, not wares, and both merchant (speaker) and shopper (participant) receive

something of value and are enriched by the experience.

Therefore:

Create an element in the program that is a forum for the discussion of new ideas. Invite

highly reputable experts and encourage them to share new material with the audience

that describes what they are trying to do in their current work.

The ROOTS conference begins every year with a first day format that encourages speakers to

give brief insights into the latest trends they observe in the OO industry. The format includes

a moderated panel which gives the speakers a chance to present counter viewpoints and to

interact with the participants.

Select keynote speakers who stretch the boundaries of comfortable topics; plenary speakers

need to be strong enough to invigorate and challenge the audience.

An atmosphere of trust is critical to the success of this pattern – see SAFE ENVIRONMENT. The

final result is a NOISY BREAK TIME and highly ENGAGED PARTICIPANTS who return annually –
see RETURN OF PARTICIPANTS. Returning participants may offer to present an experience

report – see NEWS FROM THE FRONT.

Acknowledgements: http://www.haroldrigaud.net/works/marketplace.jpg

Marketplace, 20"x24", Original Oil on canvas

[1] Olsen, Kai A., “The Economics of International Conferences,” Computer, June 2004.

"Not Just Another Conference"

151

2 – NEWS FROM THE FRONT

… a balanced conference program needs a mix of program elements.

Conference attendees do not fully believe everything they hear from the podium,

especially if the speaker is a well-know author or consultant with something to sell.

What elements can be introduced into the program to establish credibility?

When creating a technical program, the planning committee needs to consider how best to

help the participants integrate new material from the speakers and reinforce the learning

experience. Famous speakers create a barrier to learning because their objectivity is

questioned by the sceptical members of the audience.

Ironically, participants want to hear from top authors and consultants while at the same time

doubting that the message is something that applies to their work situation. The information

from famous speakers can be tainted by the fact that they have books and services to sell.

Even when the best speakers include many real world examples in their presentations, they

may fail to convince their audience of the full value of their message.

After listening to presentations from DISTINGUISHED SPEAKERS participants are ready to think

about how they should use what they learned. Listening to a peer describe how they have used

similar techniques to solve their own problems helps participants integrate new material from

the conference. Concrete examples of how to apply a technique reinforce learning. The fact

that the experience is shared by a person the participant can regard as a peer lowers the

threshold of scepticism and resistance to new ideas. Hence, the conference becomes a more

effective learning environment.

Therefore:

Balance the program between famous and non-famous people. The latter, as peers of

the participants, present results from the work they are doing in experience reports.

A report delivered by a credible speaker who holds a peer status with their audience often

carries more value and can be perceived as validating information received from sources that

are more famous. Other participants are perceived as being more credible to the extent that

they are not selling anything and merely sharing experiences to which the audience can relate.

Patterns in Other Fields

152

The source of the experience may be industry, research, or academic, but the speaker is

invited by the committee and the resulting presentation is not a formal peer-reviewed product.

This pattern joins others in reinforcing the importance of communications among the

participants as proposed in NOISY BREAK TIME. When possible, experience reports should

reinforce the conference theme and demonstrate a concrete use of material presented by other

speakers. Just as news reported by a person co-located with the news event has more

credibility, so do experience reports constitute the conference equivalent of news from the

front.

This pattern is related to patterns about how to find, invite and schedule experience reports.

For more details see the Pattern Language Identify the Champion by Oscar Nierstrasz, 1999.

Acknowledgement: Victor Vasnetsov. News from the Front. 1878. Oil on canvas. The

Tretyakov Gallery, Moscow, Russia.

"Not Just Another Conference"

153

3 – BEES TO FLOWERS; HONEY TO THE HIVE

... A conference must attract participants to succeed.

What is the best way to attract participants to a conference?

Organizational training budgets generally support employee attendance at conferences and

other training events. Often a team wishes to have multiple sources of new ideas and training

and this in turn motivates the individual team members to attend diverse events. This single

attendee approach often means that the information that is returned to the organization is

missing the perspective of more than one viewpoint.

Tutorials and workshops generally contain high learning content. Organizing committees

should vary the mix of topics such that everyone in the targeted audience has a good chance to

find a subject that they want to learn more about. The evidence that a program has succeeded

in this goal is when participants complain that they wanted to be in more than one place at the

same time. When a person from a an organization wishes they could be in more than one

program track, they often return in following years with additional colleagues to ensure

coverage of the program material. Organizations that send more than one participant should

experience an advantage of meeting multiple learning objectives and coordinated feedback on

the themes of the conference.

From the economic perspective, the committee can consider offering a small incentive in the

form of a price rebate for multiple attendees from the same organization.

Most speakers make slide presentations that contain good information but do not include the

classroom interactions and concrete examples that make attendance desirable. If the

presentation material is published, participants can see what they missed and make a

justification for attendance by more than one member of the team in future years. Upon

returning to their workplace, attendees can use these materials to explain the main learning

points to their colleagues.

Patterns in Other Fields

154

Therefore:

Create a program with coordinated concrete learning elements such that every

participant takes away something that they can use on their next day on the job.

Good word of mouth is an important element to create annual participation for a niche

conference. Organizers should create a program that encourages participants to return with

colleagues in following years. Using the analogy of a beehive, sending more than one bee into

a field of flowers yields the sweetest honey.

Provide ample opportunities for the participants to meet and learn from others at the

conference – NOISY BREAK TIME. Ensure that the DISTINGUISHED SPEAKERS are comfortable and

willing to spend quality time with each other and the participants – WELCOME GATHERING.

It is important to the success of this approach that the tutorial and workshop leaders are

respected persons and give good concrete and real-world examples in their material –

DISTINGUISHED SPEAKERS. Reduce the frustration for the participants who miss a tutorial by

providing the slides from all tutorials and workshops when permitted – YEAR-ROUND WEBSITE.

Reinforce the training elements with experience reports that address the themes – NEWS FROM

THE FRONT. The program should contain a diversity of topics that are relevant to the needs of

the workplaces of the targeted audience – COMMITTEE ARE EXPERTS. This pattern should

motivate RETURN OF PARTICIPANTS.

Other conferences use their website to provide “arguments” that can be used to “convince the

boss” to approve participation. See the following URL for examples:

http://srivaths.blogspot.com/2005/06/reasons-to-attend-nofluffjuststuff.html

http://www.jaoo.dk/convince/

http://www.spaconference.org/spa2005/convinceyourboss.html

Graphics acknowledgement:

http://www.puzzlesbyrussells.co.nz/images/bee.hive.with.bees.n_small.jpg

"Not Just Another Conference"

155

4 – COMMITTEE ARE EXPERTS

An expert is someone who has succeeded in making decisions and

judgements simpler through knowing what to pay attention to and
what to ignore. (Edward de Bono)

... When planning a conference, the committee needs to integrate the goals and ideas set out in
MARKETPLACE OF NEW IDEAS, NEWS FROM THE FRONT, BEES TO FLOWERS; HONEY TO THE HIVE,

and FEEDBACK FORM.

What guidelines should a committee use to determine the theme, content and format of

the conference?

Conferences, by design, are limited in the time available during which a program must offer

enough diversity to address the theme and keep the participants engaged. Despite an

advertised theme, the audience has a diverse background and each participant has an

individual learning objective.

To add to the challenge, each participant has a preferred method for learning. A variety of

options regarding program format and content are available to an organizing committee:

Plenary sessions with a speaker on stage behind a podium, such as keynote speeches

Speakers on a dais interacting with audience, such as a panel

Tutorials and workshops with a small, engaged audience

Talks with practical vs. theoretical content

Learn by doing vs. learn by listening

Networking and discussions with others

Conference banquets that offer an opportunity for participants and speakers to mingle

Exhibitor area with vendors describing the newest products and tools.

Most conferences incorporate one or more of the above-mentioned program formats into their

events. Those participants who prefer to listen and reflect may gain most from the formats

with speakers. Panels are a good format in which to observe speakers interacting with each

other. Question and answer periods should follow every speaker session and be integrated

into tutorials and workshops. Exposing participants to a variety of methods for presenting

information around a theme is also part of the learning experience.

When building the program, the committee should remember that there are at least two types

of presenters. One is someone in the field who is an expert on a topic. In this case, the

participants may agree or disagree with the speaker, and this can generate questions and

discussions. The other type of speaker is someone from outside the field who brings in new

material with which the audience may not be familiar. Presentations of the new viewpoints

can stimulate discussions between participants for the period of the conference. These are

very different experiences: but both are effective in engaging the participants.

Patterns in Other Fields

156

Program variety also involves staying abreast of innovations in the field and offering sessions

that introduce new topics without sacrificing sessions that provide updates on established

technologies.

It is boring to sit for hours just listening – even to excellent speakers. Scheduled breaks

provide an opportunity during which participants can give immediate feedback to speakers

and validate their own knowledge by talking about new material. A conference attracts

attendees with varying expertise, from novices to experts. A schedule that offers participants

a generous amount of time in which to converse increases their opportunities to learn from

each other.

Therefore:

Rely on the expertise and diversity in the committee to build the program using content

and format options that appeal to each member. Committee members should encourage

each other to exercise personal creativity when proposing speakers and themes for the

conference.

When participants are presented with variety in the program, each element is a fresh

experience and anticipation is high for the upcoming events. Structure the event so that

participants who are too busy to attend an entire conference are able to choose the one day

that is best suited to their personal objectives and learning style.

Every year the organizing committee should considers adding new variety to the program.

Use feedback from participants – FEEDBACK FORM – for suggestions about topics that interest

them, ways to relieve stress on the schedule, their desire for longer or shorter pauses and the

quality of experience reports – NEWS FROM THE FRONT.

Since the committee are also in the role of SPEAKER HOST, they can approach their

DISTINGUISHED SPEAKERS as peers when negotiating the content of the presentations. It is a

matter of expert judgement how much new material versus updates to prior themes should

appear on the program.

Positive feedback from participants reinforces the committee decisions and supports this

pattern. If the program keeps abreast of changing technologies, this gives additional

justification to the participants for returning to the same event in subsequent years –

RETURNING PARTICIPANTS.

Signs of a successful program are a NOISY BREAK TIME and ENGAGED PARTICIPANTS.

"Not Just Another Conference"

157

5 – PROGRAM MIRRORS PROCESS

... the content of a conference is determined by internal and external influences.

There are many options for creating a project organization for planning a conference.

The question is whether there is an optimal way to structure the committee to achieve

the desired results.

Most teams have a leader, but beyond that, few roles are fixed in project planning committees.

This means that communications within the group are essential to create a successful event.

A successful conference is highly dependent on STRONG SUPPORTING STAFF, the DISTINGUISHED

SPEAKERS selected for the program, and the PRICELESS SPONSORS. It is desirable to establish a

single voice for each external interface to avoid miscommunications, cross-communications

and general confusion. Feedback and new ideas from these sources are important to the

committee to create an annual event that is interesting every year.

Therefore:

Establish a committee organization that optimises communications channels by

mirroring the desired content and format of the conference.

Committee roles imply a process (set of activities). Accordingly, the communication channels

associated with each role will define the content of the conference. Establish committee roles

that mirror the variety of internal and external interactions necessary to achieve the desired

results. For example, if the conference program includes a conference dinner, one committee

member should have sole responsibility for interfacing between the dinner venue and the

person on the committee managing the attendance.

Here are some examples of roles and responsibilities:

Leader – this role is akin to a conductor of an orchestra; often the face of the conference

with high visibility – see LEADER GUIDES THE COMMITTEE

Speaker Host – this pivotal role ensures smooth interactions with speakers; speakers

determine the ultimate content of the conference by their selection of topic and the quality

of their delivery – this makes each event unique – see SPEAKER HOST

Patterns in Other Fields

158

Secretary – keeps track of decisions taken and incomplete actions; liaison with the event

sponsor; generates documentation that helps jump-start subsequent planning cycles

Treasurer / Sponsorship – keep track of money in and money out; create and maintain a

budget against which decisions about spending can be made; manage sponsorship

interactions, both payments and the delivery of benefits – see PRICELESS SPONSORS

Experience reports – this role manages the selection of and benefits accrued to reporters,

which differs from other invited speakers

Webmaster – maintains the YEAR-ROUND WEBSITE; responsible for technical aspects of the

site and underlying registration database; the entire committee assumes responsibility for

providing content

Publicity / marketing – writing content for the website; taking contact with local press;

generating materials for special constituencies

Coordinator of volunteers and registration – this role maintains a procedure for registration

and other conference duties; recruits students from nearby university or college – see

COURAGEOUS VOLUNTEERS and ORDERLY REGISTRATION

Coordinator of dinner / facilities – single point of contact for the conference venue and any

off-site conference program elements, such as a NIGHT OUT ON THE TOWN

Former committee members – people will leave the committee; however, they can provide

insight, perspective and good advice without accepting other responsibilities; they usually

provide a sponsor or other benefit that justifies attendance as a committee member

Master of ceremonies – this role is usually filled by the chair, but should be filled by a

person comfortable speaking in public; develop a script for each plenary session to avoid

rambling.

Each of these roles has a unique contact with the service providers, participants, speakers,

sponsors, and student volunteers. The nature of this interaction determines the tasks of the

role and the process appropriate to achieve the desired results. The content of the program

and the atmosphere of the conference are determined by how well each committee member

performs their duties.

When planning an annual event, one goal is to keep the conference fresh and alive. This

implies a close interaction with the DISTINGUISHED SPEAKERS, who provide innovative topics;

with the STRONG SUPPORTING STAFF, who can suggest new menus or seating arrangements in

the session rooms; with PRICELESS SPONSORS, who can provide a fun give-away item as a

souvenir to participants, or an expert speaker. Each committee member is responsible to bring

these new ideas into the committee to stimulate the creation of the event.

Many of these roles are the subject of individual patterns (as indicated above). It should be

noted that depending on the range of duties and the capacity of individual volunteer

committee members, one person may fill multiple roles. This is also desirable to avoid a

bloated committee or persons attending at no cost without having made any contribution.

Likewise, some roles, such as publicity, may receive contributions from multiple members.

MOTIVATED COMMITTEE contains additional information about the internal interactions within

the committee.

"Not Just Another Conference"

159

11 – COFFEE ALL DAY LONG

Make an ordinary gathering a special event by including food. [Do Food
1
]

… the organizing committee wants the quality of the atmosphere to match the quality of the

technical program.

The organizing committee are not event-hosting experts but must establish criteria for

selection of the conference facility.

Most committee members have attended at least one conference before volunteering to serve

on a conference organizing committee. This experience makes each member qualified to hold

an opinion about facilities and service during an event. But with a limited budget, it may be

necessary to temper wishes with the reality of available venues.

Nearly everyone can agree that rooms should be an ample size to hold the expected audience,

chairs should be comfortable and audio-visual equipment should be adequate to accommodate

the presentations. Experience suggests that hospitality factors are the quickest way to create a

satisfying conference environment. Delegates who are hungry or thirsty will lose interest in

the proceedings in spite of their intentions to remain engaged.

In many cultures the availability of a well-brewed cup of coffee (or tea) represents hospitality.

Even if economy constrains other features, just this gesture can create a warm and welcoming

atmosphere and convey the committee’s concern for the comfort of the participants.

Therefore:

Select a facility that excels in providing a comfortable and hospitable environment.

An example of a hospitality criterion is to choose a location that serves coffee all day long.

The committee should not overlook availability of AV services and appropriately sized

meeting rooms. A visit to the location during business hours should help confirm that the

ambient temperature of the site is maintained at a comfortable level.

Coffee is, of course, a metaphor for tea, soda, water and coffee that is readily accessible, and

provided at no additional cost to the participant. Refreshments should be balanced and

include healthy alternatives to cakes and pastries. Advertising and registration should be clear

about the inclusion of such amenities. Vending machines should be considered only if no

other alternative exists.

Most conference centers will quote the daily rate to include pauses and lunch. This pattern

suggests that the committee should negotiate to have liquid refreshment available to

participants throughout the day for a reasonable cost.

Patterns in Other Fields

160

As an example, PloP brings in a local vendor who specializes in boutique coffees and teas on

the first day of workshops. This pattern is consistent with “Do Food” from Fearless Change,

quoted in the heading.

Providing something to eat and drink during breaks, as well as during lunch, reinforces the

social nature of these pauses and contributes to the success of NOISY BREAK TIME and

ENGAGED PARTICIPANTS.

[1] Fearless Change: patterns for introducing new ideas. Mary Lynn Manns and Linda

Rising. Boston MA: Addison-Wesley, 2005.

"Not Just Another Conference"

161

12 – COMFORTABLE BEDS

 “Some industry experts say the trend [to provide superior bedding] stems from a

new generation of travellers who expect hotel amenities to equal or exceed the

comfort of home. *”

… the organizing committee strive to be good hosts to their invited guests and conference

participants.

How does the organizing committee create a 24-hour positive experience for participants

during the conference?

This pattern deals with the hospitality factors surrounding the conference and is closely

related to COFFEE ALL DAY LONG. After a long day travelling or attending sessions,

participants need to relax and some may need to check with the office. When on the road,

most travellers still expect the comforts of home; security, a clean, quiet room, a good shower,

and a comfortable bed.

In major cities, the cost of hotel accommodations can exceed the conference registration.

Travellers also appreciate locations that do not involve lengthy bus or taxi rides from the

airport. Punctuality and attendance are both enhanced if a single facility includes both quality

conference rooms and quality overnight accommodations.

Therefore:

Select a conference facility that cooperates with a reputable hotel. Since overnight

expenses are a part of the total cost package for the conference participants, keep these

as low as possible without sacrificing comfort.

One way in which a small conference can keep the overall budget low and reduce the total

cost for the participants is to host the conference in a smaller city with a nearby international

airport. Many cities are investing in such locations as a way to boost the local economy.

Another workable approach is to use university or research conference facilities – although

the room standards will not be as high as hotel standards.

A hotel that provides rooms that meet or exceed modern standards will ensure that the overall

conference experience is not degraded by a bad night’s sleep. Today this standard includes

extra features such as wireless internet connections. It is a bonus if the hotel includes

breakfast in the room price, is within walking distance of the conference facility, and is

willing to provide a conference discount.

Patterns in Other Fields

162

When accommodations are connected to the conference facility, the committee is able to

achieve benefits from cooperating with the STRONG SUPPORTING STAFF, who will help ensure

that conference guests are pampered. Ensure that the hotel is aware which guests are the

DISTINGUISHED SPEAKERS and assigns them rooms that are away from street noises and other

distractions.

Collocating DISTINGUISHED SPEAKERS in the same hotel further increases their opportunities

to interact with each other and with participants. A hotel with a comfortable hotel bar is an

added bonus as this provides an excellent setting to include late arrivals for the WELCOME

GATHERING and increases the opportunities for casual encounters between speakers and other

participants, enhancing NOISY BREAK TIMES and ENGAGED PARTICIPANTS.

[*] “Hotels focus on a 'good night's sleep,'” Yvonne Teems. Cincinnati Business Courier,

October 21, 2005.

"Not Just Another Conference"

163

13 – WELCOME GATHERING

“Welcome to Bergen” gathering of the “extended committee” in private

home the evening before the start of ROOTS. (ROOTS archive, 2003)

… the conference is about to begin; the DISTINGUISHED SPEAKERS arrive.

After months of planning, the committee and speakers are finally meeting, sometimes

for the first time.

International speakers are accustomed to travel and hotel rooms – these are a part of the

normal fabric of their lives. Often they meet people for the first time and go immediately to

work despite the fact that they can arrive jet-lagged and unfamiliar with a new town. Often

they do not know anyone in the new city, not even other speakers. When this is not the case,

they are still hesitant to intrude into the private time of fellow travellers. In either case, they

appreciate a distraction to keep them awake but without the stress of performing for a crowd.

After months of planning, the committee is ready to enjoy the company of their invited

speakers and play the role of good hosts who make their guests comfortable. A small informal

meeting between hosts and speakers is part of the non-monetary reward for all their efforts.

During the event the speakers and MOTIVATED COMMITTEE must function as an “extended

committee” providing value to the participants.

Therefore:

Schedule an optional informal gathering to welcome the speakers on the evening of their

arrival before the conference begins.

By joining an informal gathering, the DISTINGUISHED SPEAKERS do not have to find a meal,

navigate a strange city, or eat alone (unless they so choose).

Patterns in Other Fields

164

The gathering serves to break the ice for persons who have not yet met, but will spend the

better part of 2-3 days together. Those already acquainted often pick up unfinished

conversations from their last meeting, and the mood is generally light and jovial. The

welcome can take place in the home of a committee member, or a nearby restaurant. One

criterion is that the location should encourage a congenial, informal atmosphere.

"Not Just Another Conference"

165

14 – NOISY BREAK TIME

... it follows from MARKETPLACE OF NEW IDEAS and PROGRAM VARIETY that conference

attendees need time in which to discuss new ideas with each other and the speakers.

How should a conference capitalize on the richness of the technical program?

The human mind has a limited absorption period. Scheduling pauses is necessary for the

comfort of the participants and for their enjoyment of the event – see COFFEE ALL DAY LONG.

Many planners schedule very short pauses in the hope that participants will return quickly to

the program sessions but this often backfires and the participants do not return as hoped,

preferring to stand in the hallways to finish a conversation. Longer pauses are more likely to

ensure that people return to the sessions, even if this means fewer sessions.

Therefore:

Schedule long pauses in the program to maximize the amount of time available for

conversations between participants and speakers and among participants. Pauses should

be longer than 15 minutes, especially if there are snacks served.

Maximizing the amount of time available for conversations between participants and speakers

and among participants creates a congenial professional atmosphere. Acquaintances may

grow into professional collaboration outside of the event, such as forming study groups and

planning other extra-conference gatherings. Many participants return each year as much for

the educational content as for the chance to commune with valued colleagues. The

conference begins to develop a personality formed by the returning participants – see RETURN

OF PARTICIPANTS.

Patterns in Other Fields

166

15 – SAFE ENVIRONMENT

... as suggested by MARKETPLACE OF NEW IDEAS, conferences are more interesting when

presenters offer new ideas rather than repeating well rehearsed material.

How do you encourage speakers to share their unpolished ideas without feeling

vulnerable to criticism, while at the same time encouraging audience feedback?

Authors survive by seeing their work published and widely read and applied. For works

published without a critical review process, they receive their first feedback from the market

they aim to influence. This may provide a rude awakening for the author. Clearly, authors

benefit from the feedback of both peers and colleagues. This is one of the many reasons they

attend conferences.

Authors also need a forum where they can feel comfortable presenting their suspicions and

findings for the first time in public. When they do, they need to place their presentation into a

context of “this works” or “this may work better, but I’m not sure yet.” This may create an

impression of uncertainty, which can make both participants and speakers uncomfortable.

Generally, a group of people develop trust through shared experiences over time. If a

conference is to generate a community of trust, the participants must be together for a longer

period of time than is usually afforded by a single event. However, a session with new

material is best scheduled early in a conference. This is the point at which everyone is most

vulnerable resulting in polite reactions and unbiased viewpoints.

In a conference setting, an informal session early in the program, advertised as a

MARKETPLACE OF NEW IDEAS, is a refreshing change from formal training sessions and well

rehearsed tutorials. The speakers are willing to release unpolished work in this setting,

knowing that everyone has been alerted to the fact that these are new ideas. This session must

be combined with long breaks during which the material is the subject of face to face

discussions. Attendees feel less uncomfortable asking questions about new material in a

"Not Just Another Conference"

167

personal conversation than in a plenary room. In a non-threatening, casual conversation,

presenters are able to understand how their material was received and understood.

Therefore:

Provide a SAFE ENVIRONMENT where an author/presenter can receive useful feedback

directed at their material rather than at themselves.

Modifications to the material can be made later to integrate the feedback. Material from this

session is generally not published until the author refines the work and offers it for wider

publication.

This pattern is a precondition for MARKETPLACE OF NEW IDEAS. The ROOTS conference

committee begins to build trust by assigning a SPEAKER HOST to help the DISTINGUISHED

SPEAKER prepare his or her thoughts before the conference. The hosting process provides the

speaker with a preview of the conference themes and gives the committee a chance to offer

feedback if a proposed topic feels too risky. In addition, the conference has enjoyed a high

rate of returning participants every year since the first event. If the participants return

annually, the conference attendees have the opportunity to develop into a strong community

of trust – see RETURN OF PARTICIPANTS.

Encourage use of the FEEDBACK FORM as a mechanism to provide comments that are difficult

to give face-to-face.

Acknowledgement:

A Safe Place, Transparent Watercolor, Gunther Bach, www.netgallerybach.com/

Related Patterns:

“Safe Setting” and “A Community of Trust” from A Pattern Language for Writers'

Workshops, James O. Coplien, 1997.

“Safe Place” from Knowledge Hydrant, Joshua Kerievsky, 1999.

Patterns in Other Fields

168

21 – MOTIVATED COMMITTEE

Planning committee for rOOts 2002, picture taken by T. Fossnes

Many niche conferences are planned by volunteers of sponsoring organizations, such as

computer societies. Such volunteers are not paid in monetary currencies and often execute

planning activities alongside a full-time job.

A niche conference planning committee requires the concerted efforts of all members to

achieve their desired results. Conference planning spans up to a year, which is a long

time for volunteers to remain interested and motivated.

Volunteers have many priorities in their everyday lives such as family, work and personal

time. They must be strongly motivated to participate in activities that occur outside working

hours.

When a committee forms, the members should take the time to know each other and agree on

their mutual objectives. One of the first tasks is to evaluate realistically the amount of work

to be done and to identify the interests and abilities of each individual committee member. If

there are too few volunteers a committee can quickly burn out.

Each committee member has the option to commit to the activities, results and level of effort

s/he can contribute. This includes the option to be a backup support for another member. It is

important that each member feels that s/he is making a meaningful contribution to the end

result and that the efforts are appreciated by the entire committee. Since each member selects

their own tasks no one is pressured to do work they find uninteresting.

Over a long planning period volunteers may become demoralized and drop out. Individuals

are initially motivated to remain active as they see the steady progression of early results, for

example confirmed speakers and the forming of a draft program. During the later and more

hectic phases, they are motivated by the opportunity to participate in an event that they

created.

"Not Just Another Conference"

169

Every member accepts one or more roles that define the nature of their commitments. The

role of committee chair is especially critical (see LEADER GUIDES THE COMMITTEE).

A committee that works together over extended periods of time should deliberately encourage

members to accept new roles and learn new skills with the support of the experienced

members. This enhances motivation by avoiding a boredom factor. SPEAKER HOSTS tend to

continue to host the same person if they are re-invited since a personal relationship is critical

to that role.

As individuals accept responsibility and meet their commitments trust grows in a committee.

This trust leads the members to feel a strong personal obligation to deliver the promised

results. Most volunteers accept responsibilities in good faith. A group of people can usually

determine if one member is taking on too much responsibility.

Failure of a committee member to deliver promised results may jeopardize the conference.

The schedule should always contain enough slack such that, in the event of unexpected

personal obligations, another member can step in to complete a task without creating undue

stress. When an unanticipated challenge appears, such as the cancellation by a speaker, other

members step in and make suggestions that help to resolve the issue.

The literature is filled with cautionary advice about team building and project management.

A conference planning committee is generally modelled after a self-selected team. It is also

helpful if the members have personalities that blend well in group settings. The committee

engages in honest and open communications to prevent avoidable failures. A healthy,

motivated committee exhibits the characteristics of a well-functioning team such as mutual

respect, a common language from shared experience and they smile a lot when together.

Therefore:

A successful conference is created by a motivated committee.

This simple pattern is a critical success factor for a successful niche conference. The quality

of the committee often determines the quality of the conference and the atmosphere of the

event mirrors the working environment of the committee.

Suggestions for motivation and team building techniques are available in the project

management and organizational literature. Well defined and executed roles – see LEADER

GUIDES THE COMMITTEE – are important planning tools. The opportunity to work personally

with a DISTINGUISHED SPEAKER may serve as a motivation for some committee members – see

SPEAKER HOST. Removing some of the stress related to facilities and hospitality also

contribute to the success of this pattern – see STRONG SUPPORTING STAFF.

Related Pattern:

Cope/Harrison, “Self-selecting Team,” in Organizational Patterns of Agile Software

Development, Prentice Hall, NJ: Upper Saddle River, 2004, p. 124-125.

Patterns in Other Fields

170

22 – COURAGEOUS VOLUNTEERS

ROOTS volunteers, 2004

... after working for an entire year, the organizing committee is ready to enjoy the conference.

A great deal of work is required during a conference to ensure a seamless experience for

the participants.

There is a long list of hidden activities that underlie every event. Registration must proceed

smoothly, audio-visual equipment is expected to work perfectly, and laws regarding

maximum persons in a room must be observed. The committee is certainly qualified to

handle these details, but they create a distraction from the enjoyment of participation.

Therefore:

Recruit volunteers from a local university or college to do the “heavy lifting” during the

conference.

Student volunteers receive the benefit of attending the conference for no cost, and should also

receive some gift from the committee. In return, they perform a number of duties. They staff

the registration desk each day of the event, and must learn the procedures related to an

ORDERLY REGISTRATION. At least one volunteer is present in every session of the conference –

which means there must be as many volunteers as there are concurrent tracks. They must

learn to use the audio-visual equipment, and coordinate computers that are swapped between

speakers in the plenary session. They are expected to monitor attendance in the sessions and

to ensure that there are not more persons present than legally permitted (usually a fire safety

limit). In the event of overflow, they are expected to check the name tags and prioritise those

who remain according to the declared registration selections – this might take a bit of courage.

A side benefit is that after this experience the vision has been imparted and some volunteers

join the MOTIVATED COMMITTEE with a good background in the conference.

"Not Just Another Conference"

171

23 – LEADER GUIDES THE COMMITTEE

Leadership is the ability to guide individuals and organizations to optimum

levels of performance and service. [anon]

Leadership is practiced not so much in words as in attitude and in actions.

[Harold Geneen, Chairman, ITT Corp.]

... When an all volunteer conference planning committee forms, one of the first questions is

“who is in charge?” Often the leader is determined by a political process that does not take

into account the abilities of the individual. Small committees are especially vulnerable.

A small organizing committee cannot afford dissention or poor group dynamics during

their conference planning cycle.

When volunteers come together for after-hours activities, there is a temptation to leave the

practices of their workplace in the workplace. As a result, otherwise well-organized people

often flounder when trying to complete relatively simple tasks, such as inviting a speaker or

writing a press release. Individuals who are models of good team spirit on the job often can

become protective of their volunteer tasks and fail to share critical information with the group.

This may be the result of not taking the volunteer activity as seriously as a job, or the fact that

most committee efforts are for the most part a lonely activity and it is easy to forget the rest of

the group when they are not around.

The leader should encourage volunteers to accept activities that can be well defined and have

known need dates and interdependencies. Such activities are frequently the result of

brainstorming within the group, which serves as a good technique for forming a team. In this

way each committee member is sensitized from the beginning to the cooperative nature of

their assignments. The leader also accepts assignments and serves as a source of good

example to the other volunteers by the way in which they fulfil their commitments.

When a committee is small, there are fewer people to pick up an extra task if an activity is

overdue or not being done properly. One of the primary duties of the leader is to provide

encouragement and facilitate maximum cooperation between committee members. The leader

watches the schedule and gently reminds individual volunteers when a task is becoming due

and offers help if it is needed. The committee leader should also “externally” observe group

dynamics and use team building techniques. This latter responsibility is handled by arranging

for the team to have fun together as well as work together, for example by sharing a meal and

celebrating success.

The committee leader respects the value of the time of each volunteer and establishes an

agenda and set of objectives for every meeting. It is best if another team member accepts the

responsibility to record decisions and open action items in minutes from each meeting. It is

also advisable to separate the role of financial manager (treasurer) such that it is the prime

responsibility of one team member to watch the economic situation and advise the committee

on related decisions, such as registration pricing and rebates. A leader who attempts to write

Patterns in Other Fields

172

minutes and manage the budget while leading the team will soon burn out unless the role is a

full-time occupation.

It is also helpful if the leader knows something about project management or is willing to

delegate these duties to a deputy. In the case of a political appointment, the titular leader is

more of a figurehead. A figurehead may not have the background skills for managing a

project or group of people. When there are more experienced persons on the committee they

may resent the leader and not feel appreciated for the contributions they are making or are

able to make. Also, without the mantle of leadership, a committee member working behind

the scenes may be viewed as disruptive or bossy, and thereby be ineffective in helping the

team achieve their goals. In this instance it is highly advisable to create a two-tiered

leadership structure with the figurehead on top buffered from the actual volunteers by a layer

of working leaders whose good example serves as an inspiration.

Therefore:

Choose a committee leader capable of treating the conference planning activity as a

project and instituting appropriate team building and project management techniques.

Just as the conference is a reflection of the committee, so the committee is a reflection of its

leadership. A facilitating leader has good people skills and is able to bring out the best efforts

of each volunteer.

This pattern offers additional insight into the critical roles within the MOTIVATED COMMITTEE.

The enthusiasm and good example set by the leader is critical to the success of the committee.

The guidance of prior chairpersons who have been through the experience also provides

additional support and helps maintain morale in the committee.

Many things we do as conference chair one would say could be done

by a professional planner, or by the facility itself. While true, this costs

money, and we have enough trouble with attendance without charging twice

as much to reduce the chair’s workload. Think of it as a big party you are

planning, with a few more logistical issues to address. (Thanks to John

Letourneau, How to chair ChiliPLoP)

Related Pattern:

Don Sherwood Olsen and Carol L. Stimmel, “Guiding Hand” from The Manager Pool,

Addison-Wesley, 2002, pp 3-4.

"Not Just Another Conference"

173

24 - STRONG SUPORTTING STAFF

In 2002, three days before the ROOTS conference start date, a nationwide

strike was imposed on the facility. On short notice, the facility manager arranged

for alternate accommodations for all delegates, appropriate facilities for two of

the conference’s three day format, and provided discounted bus transportation to

bring delegates downtown for the conference banquet. This left the committee to

deal with rearranging one day of sessions. The committee was able to meet all the

program obligations. Since most delegates knew of the strike, they were very

tolerant and had a good time anyway.

…the conference planning committee has created the technical program and needs a place to

hold the event.

The organizing committee has minimum influence on the non-programmatic elements of

a conference, but these factors have a large influence on the overall experience for

participants. The committee must rely on contractual arrangements for services to

anticipate all contingencies.

The physical comfort of the conference facilities and the quality of meals strongly influence a

participant’s overall impression of a conference. A poor sound system, too cold or too warm

ambient temperature, uncomfortable seating or a skimpy lunch can undermine an excellent

technical program. Committee volunteers are generally experts in their professional domain

and able to mange the technical program. The same volunteers are novices in the field of

delivering the hospitality services related to a conference and have relatively little control

over the environmental elements of the conference. For this they must rely heavily on the

facilities contractor to create a comfortable physical environment and provide an adequate

level of services for the participants. Cost is always a factor when balancing what is

affordable against what is desired.

The hospitality staff that services a convention or congress center understands the many

details that are important to their guests. A professional staff provides services in a timely and

friendly manner and is available to address the small disruptions that inevitably occur.

Members of the planning committee are happy to reduce their workload wherever feasible,

and are busy enough networking, being hosts and attending to the technical program. If the

facilities manager and staff can be trusted to provide a comfortable environment for the

participants, this reduces stress for everyone.

Over time the planning committee and facilities staff develop a collaborative style and this

cooperation increases their effectiveness during the conference. Loyalty is an effective way to

create a collaborative cooperation between the committee and facilities provider. This may

have the added benefit of favorable cost quotations and a priority assignment when requesting

dates for future events. Loyalty creates a virtuous cycle in that the committee is pleased with

results and wants to return, and the facility manager is able to count on return business and

works hard to earn the continued patronage.

Patterns in Other Fields

174

Therefore:

Select a facility provider that shares a compatible viewpoint with the organizing

committee and include the facilities manager as a member of the committee in the role of

strong supporting staff.

As a de facto committee member, the facilities manager should receive updates regarding all

elements of the program that could impact the ability of the locale to support the conference –

for example, total number of attendees, number and size of rooms needed, starting and ending

times each day, AV and special equipment needs and the schedule for lunch and coffee

breaks.

The organizers of the rOOts conference have been privileged to be supported since 2000 by

the staff of the Bergen Congress Center (BKS) in Bergen, Norway. Over the years, the

congress center has expanded their concept for coffee breaks from the initial format of coffee

and tea available all day, to including a light snack in the morning or afternoon, and finally to

serving a small buffet of cheese in the morning and cakes and fruit in the afternoon. BKS has

also expanded lunch from a fixed portion meal to an open buffet. All of these changes

occurred without the urging of the committee but were completely consistent with the level of

service the committee wanted to provide and were offered with nominal cost increases.

In 2001 the rOOts conference needed rooms for concurrent tracks and had to provide their

own AV equipment because of poor foresight. The next year BKS anticipated the need for

AV as soon as the number of rooms were requested and provided a day-round AV specialist

to handle any questions. In the following years, the level of AV support has kept pace with

technological innovations, including building-wide wireless Internet services.

As illustrated by the opening story, a number of exceptional situations have arisen throughout

the years that have reinforced the relationship between the committee and BKS.

An effective committee – MOTIVATED COMMITTEE – is made more effective by close

coordination with the facilities provider. Since the relationship is personal, continuity in

points-of-contact is recommended, as discussed in PROCESS MIRRORS PROGRAM.

The facilities provider is an important factor in creating a comfortable atmosphere for the

participants – see COMFORTABLE BEDS and COFFEE ALL DAY LONG. The employees of the

hosting facility become a part of the team – treated with respect and appreciation. As an

example, PloP conference organizers traditionally give Swiss Chocolate gifts to the staff at

Atherton.

"Not Just Another Conference"

175

25 – DISTINGUISHED SPEAKERS

Distinguished speakers conversing during a break at ROOTS 2004 (from left,

Trygve Reenskaug, Alistair Cockburn and Michael Jackson). (ROOTS archives)

… a small, niche conference tries to differentiate their event and offer extraordinary value to

participants.

How can an organizing committee create an interesting program that will attract both

sponsorship and participation?

Sponsorship and good attendance are dependent on an interesting and quality program.

Participants are inevitably drawn to conferences at which published authors or renowned

speakers are giving presentations and tutorials.

Sponsorship is required to keep an event affordable, and sponsors also prefer to be associated

with a quality event filled with well-known speakers and good content.

Speakers of international calibre can command high fees and they often have hectic

schedules. At the same time speakers have an altruistic side that motivates them to help a

worthwhile event by reducing or deferring their normal honorarium. They appreciate a

relaxed environment and the opportunity to meet and talk with each other. They also

appreciate the opportunity to receive feedback and interact with conference participants if

they are not stressed or overwhelmed.

An important feature of a niche conference is its small audience. The expectation on the part

of all participants is that this intimacy will provide opportunities for increased interaction

between the presenters and the participants. Speakers are expected to be present throughout

the event to maximize these opportunities.

Patterns in Other Fields

176

Therefore:

Invite the most distinguished speaker in the field. At the same time, offer the enticement

of interacting with other best-in-field distinguished speakers.

A small conference achieves its primary goals by creating a program filled with highly

qualified presenters. The invitation should make clear the limited funding of the event, and

request a reduction or deferral of honorarium. It should also be understood that the speaker is

expected to be present for all sessions, unless other arrangements are discussed.

Simplify and personalize the interactions with each speaker by assigning a SPEAKER HOST.
The presence of a spouse should be encouraged and the spouse included in all meals and

social activities. These include pre- and post-conference gatherings, such as the WELCOME

GATHERING.

Cover all travel expenses and any other reasonable expenses in the conference budget. The

hosting committee should arrange hotel reservations – see COMFORTABLE BEDS – for the

speakers such that all billing comes directly to the organizers and the speakers are spared the

inconvenience of paying this bill and applying for reimbursement.

There is always the possibility that a speaker will not accept the committee invitation. There

have been experiences where ROOTS was scheduled against a “bigger” event and lost

potential speakers to that event. The end result is that for every speaker who says “no thanks”

there are two that say “yes.” And often those who decline in one year because of a conflict in

schedule make it clear they would like to be invited again and participate in a following year.

Another consequence to watch for is the overbooked speaker who experiences a sudden

change of plans. When the committee creates a program, some local persons should be

identified to substitute in case of a late cancellation. Sometimes your speakers are

distinguished in more than one field, and are willing to step in to fill an empty session. In

either event, sickness or cancellation is always a risk when planning an event.

The one caveat when selecting the speakers is to collect early feedback on the speaking

qualifications of the invitee. A committee can avoid disillusioned and disappointed

participants if they pre-screen the list of invited speakers by asking people who have heard

them give at least one presentation. Some well-known authors are not as talented in face-to-

face or audience circumstances.

Related Pattern:

Mary Lynn Manns and Linda Rising, “BIG JOLT” from Fearless Change, MA: Boston,

Prentice Hall, 2004, pp. 107-109.

"Not Just Another Conference"

177

26 – SPEAKER HOST

“Speaker with host” Alan J. O’Callaghan (to right) with his host Jon Stefan

Fraçzak in a role-playing exercise during ROOTS 2003. (ROOTS archives)

… the organizing committee needs to attract DISTINGUISHED SPEAKERS.

Speakers of international calibre are in great demand, how can a small conference

attract them?

Speakers are first and foremost human. Even if they achieve fame as guru and author, they

value positive experiences and having a good time. They like to take holidays and meet new

people.

Speakers consider conferences to be highly impersonal. Smaller conferences can offer a

degree of intimacy for invited speakers that allow them to meet with their colleagues and with

the participants of the event. Participants can also find conferences to be impersonal and feel

very privileged when they can spend some quality time with a presenter.

If speakers are satisfied with the organization of a conference they are more willing to

consider repeating the experience. The relationships established from prior years work to the

advantage of both the speakers and organizing committee.

Therefore:

Assign each speaker a host who is responsible for creating a personal connection with

them.

Patterns in Other Fields

178

As discussed in MOTIVATED COMMITTEE, the planners have many reasons to remain active.

One of these may be the opportunity to establish a personal relationship with one or more of

the speakers by accepting the role as SPEAKER HOST. During the many communications,

speakers and host often develop friendships that transcend the conference interactions.

It is important in the first invitation to establish the fact that this conference is special and will

offer a more personalized experience. The host is responsible for all communications with a

speaker before, during and after the conference. This eliminates confusion for the speakers

regarding where to address questions and where to send materials. The behaviour of hosts

creates the atmosphere of a SAFE ENVIRONMENT for the speakers. This is important in the

discussions with the speaker about the length, format and content of their presentations.

When a speaker arrives in town, every effort is made for the host (or another member of the

committee) to meet them. This is especially important if the speaker does not speak the local

language. During the event, the host is available to assist in any matters that arise while the

speaker is in town. Usually, the host will enquire on the availability of a speaker for the

following year to kick-off the ongoing negotiations to bring back appreciated and versatile

presenters.

Occasionally a committee member becomes ill (or a father for the first time) and other

members of the planning committee will step in temporarily to provide continuity in the

hosting. Sometimes the chemistry is better between different individuals, in which case,

experience shows, the host and speaker assignments may shift from year to year – this is

normal and should not be a problem within the MOTIVATED COMMITTEE.

"Not Just Another Conference"

179

27 – ENGAGED PARTICIPANTS

“Conferences are fun and they should be, but to get the most for your

money, you need to remember the reason you are there. Your priority is to do

the best job possible representing your organization. Conference schedules

can be killers; try to avoid conference burnout. Pace yourself — Get enough

sleep — Take advantage of scheduled free time to relax.”
1

… the planning committee have DISTINGUISHED SPEAKERS and PRICELESS SPONSORS, now they

need registered participants.

How can the organizing committee help participants combat conference malaise?

Planning the program is only the half the job of a conference organizing committee. The other

half is concerned with delivering value in the total conference experience. If participants are

faced with the choice of sitting and listening to speakers all day, or taking stroll through the

downtown shopping area, or jumping on the internet to read mail, the option with the highest

enjoyment and personal payback will usually win.

With a limited budget, smaller conferences can not afford the entertainment elements found in

larger events. And if participants are idle in this day of blogging, they take the time to share

their feelings with the world.

Therefore:

Create interactive elements in the program that keep the participants interested and

engaged in the conference.

The key to warding off outside distractions is to keep a lively pace and avoid situations that

generate the feeling of fatigue. Short speaker presentations sprinkled with frequent and

generous pauses lets participants stretch their legs and interact with others. Scheduling a

question and answer period after every presentation gives participants ample time to formally

interact with the speakers and keeps listeners alert and intellectually engaged.

Exhibitors or book stalls are another way to provide a change of scenery within the

conference and away from the lure of the city. A closing lottery (drawing) with fun prizes,

such as t-shirts, free registrations or autographed books from the presenters, encourages the

participants to stay for the closing keynote plenary session.

Informal Birds-of-a-Feather gatherings are also effective to break the ice and get everyone

talking to each other. For years the PloP workshops have had regularly scheduled games

orchestrated by games-master George Platt to facilitate introductions, creativity and just fun.

“George is a ``tangential thinking co-ordinator.'' During the conference he will play some

games with us. These should provide a relaxed atmosphere that encourages open

communication and discussion, as well as keep you fit and clear-minded for all the sessions.”2

Patterns in Other Fields

180

Attention is drawn to the patterns NOISY BREAK TIME, COFFEE ALL DAY LONG and

COMFORTABLE BEDS. These address the importance of hospitality, comfortable facilities,

effective media aids, ample refreshment and time built into the program to facilitate

interactions.

There is always the possibility that something could go awry. In such situations the diligence

of the committee members is the very important. The committee should sense when people

are uncomfortable or unable to hear a presentation. Listening to the participants is the best

way to keep them engaged. As Linda Rising suggested, it is a good sign if no one is checking

their email or writing a blog. See the following URL for advice given to delegates about how

to attend a conference - http://faculty.ed.uiuc.edu/j-levin/conference-hints.html.

Acknowledgements:

[1] http://www.uwec.edu/dc/AP/complexthoughts/ConferenceAttendance.html

[2] http://www.cs.wustl.edu/~schmidt/PLoP-96/events.html, and ... /europlop-96/misc.html

"Not Just Another Conference"

181

28 – PRICELESS SPONSORS

Discounted books from the publisher attract attention during ROOTS 2003.

(ROOTS archive)

… the organizers of a niche conference must put a price on registration.

How can the organizers of a niche conference keep the registration affordable?

The planners of smaller conferences must calculate the break-even very realistically. By its

definition a niche conference does not attempt to appeal to a large audience. If the registration

fees are kept low to attract maximum participation, there is not much room in the budget for

extravagance or to buffer against things that might go wrong.

For most participants the ability to attend a conference is directly related to an affordable

price. The decision to attend an event is a complex value computation that seeks to minimize

the cost of travel and conference fees while maximizing conference content and contact with

DISTINGUISHED SPEAKERS.

Sponsorship is an alternative way to generate funding for a conference. Securing sponsors

becomes a secondary activity for all members of the planning committee. Alternative funding

is a critical success factor for the event to break even.

Therefore:

Use the financial support of sponsors to keep the event affordable. Offer value to

sponsors in exchange for their priceless support.

One way to attract sponsors is to create a quality conference that translates into prestige for

those affiliated with the event (for example, by association with DISTINGUISHED SPEAKERS).

The sponsorship program should be designed to give visibility to sponsors and to show

appreciation for their support.

Patterns in Other Fields

182

Niche conferences focus on technical themes. The participants expect all of the sessions to be

non-commercial. This means that they are able to decide for themselves when and how to be

exposed to the message of sponsors, which means they are less resistant to commercial

information when they receive it. This is the ideal communication environment for the

sponsors. Hot links from the YEAR-ROUND WEBSITE are one of the most visible and long-lasting

benefits for sponsors.

Sponsorship is an exercise in creativity. Money is not the only commodity of value to the

organizers. A publisher willing to offer book discounts, a small consultancy willing to donate

conference bags or a richer sponsor willing to pay a premium for a special conference rate all

contribute to the success of the event. A sponsorship program that allows recognition for

levels of support means that a sponsor with limited resources can also participate as a sponsor

and feel appreciated.

Examples of sponsorship alternatives to cash payments are: provide speaker gifts; provide

something of value for a lottery (drawing); provide workers for the registration table; provide

a conference bag or t-shirt; provide equipment; print the proceedings (or provide CDs);

provide discounted products (books are most popular); send a large population to participate.

Recognition is usually instantaneous with signing an agreement. The conference webmaster

should publish the logo and establish the hot-link immediately. The committee treasurer

should issue an invoice, and follow-up that the sponsorship funds have been collected before

the end of the conference to avoid unpleasant collection negotiations that can cloud the

planning for the next event.

"Not Just Another Conference"

183

31 – FEEDBACK FORM

(Photo http://www.uniquecanes.com/new/Main_Feedback.php)

… the conference is nearly over, next year’s event is already taking shape.

How can the organizing committee for an annual event learn what they have done

correctly and where there is room for improvement?

After a long planning interval the event finally happens. Most of the committee are able to

participate and should have a good idea about the reactions of others to the program, the

speakers and the facility. But relying solely on the experience of the committee members is

too biased to be helpful for planning subsequent events. The committee members need to

hear from the other participants.

Asking the participants for their opinions is not guaranteed to solicit an honest or helpful

response. Relying on verbal feedback risks misunderstanding or not capturing the opinions of

every participant, including the speakers.

Therefore:

Insert a feedback form in every registration package, collect them before the end of the

conference and use them when planning subsequent events.

There are many things that a planning committee would like to know about how the event was

perceived by the participants. A feedback form should be designed to solicit this information

during the conference, while reactions and ideas are still fresh. The number of questions asked

needs to be balanced against the number of questions a respondent is willing to answer. The

questions should address the facilities, the program and the registration process. An area

should be provided for optional suggestions about future programs and suggestions for

improvements. Feedback from satisfied (and unsatisfied) participants is one of the best ways

to augment the creative ideas of the committee.

If the participants are convinced that their feedback will be taken into consideration by the

committee when planning future events, they will provide it gladly. It is important to remind

participants that their feedback is important, and make it easy for them to return the form. A

Patterns in Other Fields

184

fun technique to encourage returns is to offer the option of signing the feedback to be eligible

for a drawing for prizes at the end of the conference, after the closing keynote speaker.

Having feedback in physical form supports analysis of past performance, and in negotiations

with the facilities provider should improvements be required. Innovative ideas for future

presentations and presenters make the job of the MOTIVATED COMMITTEE much easier the

following year.

Use the YEAR-ROUND WEBSITE to solicit ideas not offered on the physical feedback form

during the event. Indicate in the program when a theme or speaker is the result of using the

feedback form. Encourage anonymity if it will yield more information and place a mailing

address on the form for those who inadvertently bring it home, but want to return it later.

An alternative, and fun, way to collect feedback on site is to establish a conference timeline

and conduct a mini-retrospective after the closing plenary. This option does require the

services of an experienced facilitator, and may be too cumbersome to do every year.

"Not Just Another Conference"

185

32 – ORDERLY REGISTRATION

... first impressions are lasting impressions; the registration process is the first impression

most participants receive of an event.

Registration looks deceptively simple, but any delay quickly causes a queue to form.

Arriving participants, eager to start their day, are not happy standing in line for their

conference materials.

Registration is a necessary element of every conference. The process reassures the participant

that they are welcome and expected. This may be the first acknowledgement that payment

has been received. At a minimum, most events require a conference identification to

authorize entry to the sessions, especially in venue that is shared with multiple events.

The typical registration package contains an identification tag and some materials for

navigating the conference. These usually involve multiple items. Assembling these items on

the day of the event demonstrates a lack of preparation and is discourteous to the waiting

participant who is anxious to get a cup of coffee or network with colleagues before the first

session.

Some participants, such as the speakers, should not be subjected to the standard process.

They may be preoccupied or mentally preparing to speak and should be given special

treatment.

Long queues and confusion in the registration process sets an expectation that the conference

will be poorly managed and tedious.

Therefore:

Plan early for an orderly registration.

An orderly registration begins with the very first contact the participant has with the event.

Seemingly unrelated factors, such as the ease of understanding of the program, can influence

the process. As a technical note, a poorly defined or unreliable database creates stress for

those preparing invoices, attendance lists, and name tags.

In the final days of preparation before the event, the committee and volunteers should have a

joint meeting during which they prepare all materials that will be handled during registration.

Patterns in Other Fields

186

These include a name tag (with holder), handouts from sponsors with the program, site map,

proceedings CD, feedback form, and other give-aways, such as a conference bag. Arrange to

receive these materials at least one week before this meeting.

It is also very important that the correct name tags and receipts are given to each individual,

and that a record is maintained of who has arrived and registered. As people may not think to

stagger their arrival, expect that there will be some queuing, but make provision to form 2-4

lines to handle peak times.

Persons staffing the registration desk should be trained and know the procedure without

needing to ask unnecessary questions. The procedure should be as smooth as possible, with

minimum verbal exchange, to shorten the time required with each participant. Staff should

arrive at least 30 minutes before the first participants are expected during which they should

set up the registration staging area and receive final instructions. A written checklist can be

helpful if there are many details or exceptions.

The committee member in charge of registration should be nearby during registration to

handle exceptions promptly. Other committee members should also loiter in the registration

area to greet DISTINGUISHED SPEAKERS and PRICELESS SPONSORS. When practical, their materials

should be maintained separately, and given to them by a committee member so that they can

avoid any queue.

Most participants should be pre-registered, but develop a form to handle onsite registration,

and customize some blank name tags for hand-written id. These blank tags also may be

needed to handle the situation where someone forgets or looses their pre-printed id during the

event.

Finally, arrange for the area to look attractive and be well marked so that participants can

quickly determine where they should be, and feel welcome. Flowers and banners help achieve

these goals. Provide adequate signage to reduce the number of queries for directions during

the busy registration period.

Orderly registration is closely linked to COURAGEOUS VOLUNTEERS and YEAR-ROUND WEBSITE.

The former most often staff the registration area, and the latter is the mechanism by which

registration information is received from the participants.

Some other items that are useful to have in the registration area are extra name id holders,

tape or other affixer for posters, cough drops, pens, and markers. In preparation for

equipment malfunctions or other emergencies, also have on hand blank CD-ROM or USB

memory, laser pointer, and backup PC.

"Not Just Another Conference"

187

33 – RETURN OF PARTICIPANTS

... the committee has implemented BEES TO THE FLOWERS; HONEY TO THE HIVE, SAFE

ENVIRONMENT, and NOISY BREAK TIME.

How does a niche conference survive in the competitive market?

Marketing literature is filled with advice on the importance of keeping a customer and the

relatively lower energy and cost threshold for selling to an existing customer over generating

a new customer. The attendees of a conference are the customers and their repeat business is

core to the survival of an event.

Software professionals are deluged with opportunities to attend conferences, vendor training

and university sponsored courses. Since most professionals must also do real work, and the

cost of these events is sometimes quite high, they must exercise discretion in selecting how to

invest their time and money. The length and cost of an event or training session are usually

important factors. But the return on investment measured in the value of the learning and the

opportunity to build a professional network are also important.

Therefore:

Create an atmosphere and continuity in the program that entices participants to return

annually.

One advantage of a small conference is that people have a much better chance to meet and

become acquainted, especially if the pauses are long enough to facilitate conversations – see

NOISY BREAK TIME. The opportunity to meet with professional colleagues and friends

becomes additional motivation to return to an event.

One advantage of a niche conference is that the theme is focused and the audience is defined

by professionals who have an interest in the area. This allows the organizing committee to

create continuity in their planning by building on previous years’ programs. This continuity

helps participants justify their decision to attend and to invite colleagues and team mates

when they return, especially if they can point to something valuable to the job that they

Patterns in Other Fields

188

learned from the previous event – see BEES TO FLOWERS; HONEY TO THE HIVE. Even if they are

not able to persuade friends, their attitude translates into positive word of mouth advertising.

A positive experience creates a predisposition to attend an event annually. Make participants

feel welcome from their first moments – see ORDERLY REGISTRATION. This pattern is

reinforced during the conference by ENGAGED PARTICIPANTS and after the conference by

maintaining a YEAR-ROUND WEBSITE.

When the number of participants is small, it is possible for the members of the organizing

committee to actually get to know some of the participants. This creates a reciprocating

relationship between planners and attendees who continue to return, like boomerangs.

The planning committee must be rigorous in their use of the FEEDBACK FORM when planning

each year’s event to maintain continuity while adding innovative elements suggested by the

participants themselves.

Here is an example of the desired effect the event wants to have on its participants;

Ahh EuroPloP. My most favouritest of conferences. I've been looking

forwards to getting back there for years, and I really will make it in just a

forthnight. … the venue is great, the people wonderful, the drinks are strong. I

could go on and on. Almost a perfect conference to attend: "whether you like food

or sleep, or story-telling or singing, or just sitting and thinking best, or a pleasant

mixture of them all." -- JamesNoble

Photo acknowledgement: http://www.boomerangpassion.com/decouvrez/histoire.php

"Not Just Another Conference"

189

34 – SOMETHING TO REMEMBER US BY

... when an event is concluded, a souvenir reminds us of special people and places.

The conference will create special memories, but how can the committee thank the

speakers for their time and efforts in a small, but tangible way that keeps these

memories alive?

Planning for an annual event includes planning for its continuity. Continuity is related to

returning participants, both speakers and their audience. Paying participants have received a

valuable package during registration including proceedings and other give-aways. However,

as contributors to the knowledge materials, speakers probably will not use the proceedings

very often in the time between events. Add to this the challenge that frequent conference-

goers receive many items and are hard to please.

Therefore:

Select a tasteful souvenir that speakers can take away with them as a memento to

remember the conference and the people they met.

Souvenirs are a matter of individual taste. Criteria for choosing an object are size, practicality,

and the ability to be imprinted or embossed with the conference logo. Many speakers use only

carry-on luggage, so small items are appreciated. Avoid items that have sharp points or lasers

as these are confiscated during air travel, and would entail an extra mailing expense. Items

that are fragile also may not survive the return home.

The ROOTS committee has given letter openers, laser pointers, key chains, coffee mugs, and

umbrellas as speaker and committee gifts. As you can see, we learned about the lasers and

sharp objects first hand! It is not possible to predict what will happen with the items, but

things that can be put on a desk and are symbolic are recommended. Other items may be

given to children or friends and not kept.

This pattern is related to DISTINGUISHED SPEAKERS, MOTIVATED COMMITTEE, and RETURNING

PARTICIPANTS.

Patterns in Other Fields

190

35 – ENVIRONMENTALLY CONSCIOUS CHOICES

... the best way to conserve resources and raw materials is not to use them in the first place.

Many decisions that a conference planning committee makes influence cost and

environmental impact.

Some actions are both expensive and make ineffective use of natural resources. The most

wasteful use of raw materials is the extensive printing of brochures and other mailing pieces

that fail to hit their target and become trash, with no guarantee of recycling. The cost of

printing and mailing is often the largest single expense for an event. The second largest

expense is printed proceedings, unless they are very small.

Name tag holders and compact discs are plastic, which is made from fossil-fuel sources.

Therefore:

When making decisions consider environmentally conscious options that are also cost

effective.

A cost conscious committee can easily avoid expensive postage and printing costs by not

mailing any promotional materials or printing conference proceedings. The only exceptions to

this paperless policy are the program and feedback form. The former should be condensed, 2

pages to a side and front and back to form a portable program, easy to slip into a pocket. The

latter is archived by the committee, which justifies printing; unless a mode for collecting

online feedback is in place. Provide the proceedings via download from the YEAR-ROUND

WEBSITE.

Continue in this practice by limiting the volume allocated to sponsors hand-outs in the

registration package. The conference bag can be smaller, and the paperless message is

reinforced. Consider cloth registration bags over plastic; they are just as easy to emboss with

the conference logo.

Collect the plastic name holders at the end of the conference for reuse in the next event. At

ROOTS, over 50% of the plastic is returned every year. A feedback question regarding a

paperless conference receives overwhelming approval every year, with only 1-2 persons

expressing a desire for more paper.

"Not Just Another Conference"

191

This pattern contributes to maintaining the lowest cost possible, which is a key factor for the

success of niche conferences. A paperless policy is possible by making responsible use of

email to alert potential participants to updates in the YEAR-ROUND WEBSITE. The website also

supports an eventual progress to eliminate distributing the proceedings on a CD-ROM (a

fossil-based material).

Patterns in Other Fields

192

36 – YEAR-ROUND WEBSITE

http://roots.dnd.no

... an annual event needs to keep potential participants interested and informed.

Online registration is expected of a technology event. How can the cost of a temporary

web presence be justified?

Organizing a successful annual event involves building a “brand recognition” that facilitates

word-of-mouth advertising. Positioning the event as a source of new ideas and trends requires

more than a once-a-year contact with the professional community. Media relations are also

important, and journalists have their own schedule for collecting and reporting news.

The cost of a domain name and an internet server location are generally based on annual rates,

so temporary usage is not cost effective. Likewise, inconsistencies in user interfaces creep

into the implementation each time a site is re-constructed.

Therefore:

Maintain a year-round website, with a professional user interface and continuously

updated content.

A permanent web presence allows prior and potential participants to visit the site whenever

they wish. They can receive newsworthy updates about relevant events in the field, or

download the materials from a prior conference. Maintaining an archive of the conference

proceedings online ensures that professionals in the area will visit year-round to retrieve

information when they need it. For example, in 2006, the ROOTS committee discontinued the

practice of putting proceedings on a CD-ROM (fossil-based material) and only provide papers

and session materials online.

People with questions can reach the committee at any time. Providing access to a forum that

accepts contributions from visitors also stimulates year-round visitations to the site. Visitors

who create a site registration login are also readily accessible for notifications about

upcoming events from the committee.

PRICELESS SPONSORS also benefit from a year-round presence. Having their logo continuously

on display demonstrates their support and commitment to a quality event.

eCommerce gurus stress the importance of continuously updating a website’s content. This

puts year-round pressure on the committee to keep providing updates or risk the consequence

that the site will only be visited in a time-window surrounding the event.

Communication experts also stress the importance of the tone in communications, or the

PERSONAL VOICE. This means the committee needs both a professional and competent

webmaster and at least one member willing to serve as content editor for the site. The

webmaster maintains a consistent style, consistent use of the logo, and fluid navigation.

"Not Just Another Conference"

193

Some of the participants will arrive from another city. They will rely on the website to keep

them informed of travel and weather information. Providing an UNOFFICIAL GUIDE TO GET

AROUND can be used to create an informal connection with new visitors to the city.

A conference committee using this pattern language has no paper contact with potential

participants (ENVIRONMENTALLY CONSCIOUS CHOICES); uses online collection to ensure an

ORDERLY REGISTRATION; and relies heavily on RETURN OF PARTICIPANTS. All of these patterns

are supported by a year-round web presence.

Patterns in Other Fields

194

	Title Page
	Table of Contents
	Introduction
	Conference Organization
	Shepherding Award
	Applying Patterns
	Gunter Mussbacher, Michael Weiss and Daniel Amyot: Formalizing Architectural Patterns with the Goal-oriented Requirement Language
	James Siddle: Using Patterns to Create a Service-Oriented Component Middleware

	Software Patterns
	Michael Weiss: Credential Delegation: Towards Grid Security Patterns
	Lars-Helge Netland, Yngve Espelid, Khalid Azmim Mughal: Security Pattern for Input Validation
	Andreas Rüping: Software Architectures for Web Content Management: Patterns for Deployment and Infrastructure
	Jürgen Salecker: Hybrid Parser

	Patterns in Other Fields
	Birgit Zimmermann, Christoph Rensing, Ralf Steinmetz: Patterns for Tailoring E-Learning Materials to Make them Suited for Changed Requirements
	Cecilia Haskins: “Not Just Another Conference”, Pattern Language for Conducting a Successful Niche Conference

