
1. Table of Contents

CONFERENCE PROCEEDINGS OF THE SECOND, THIRD AND

FOURTH NORDIC CONFERENCE ON

PATTERN LANGUAGES OF PROGRAMS VIKINGPLOP

Preamble

Introduction . 3

Acknowledgements . 5

Shepherding award . 7

VikingPLoP 2003

Pattern language for sharing Systems Engineering ”best results”

Cecilia Haskins . 11

Two Simple Patterns to Support the Development of Reliable Embedded

Systems

Chisanga Mwelwa, Michael J. Pont . 17

Architecturally sensitive Usability Patterns

Eelke Folmer, Jan Bosch . 27

A Pattern Language for Supporting Wireless Communication Between

End-Points

Franco Guidi-Polanco, Claudio Cubillos F., Guiseppe Menga,
Samuel Penh . 47

A System of Patterns for Concurrent request Processing Servers

Bernhard Gröne, Peter Tabeling . 61

A Pattern Language for Standardization Work

Juha Pärssinen . 95

Factory and Disposal Methods - A Complementary and Symmetric Pair of

Patterns

Kevlin Henney . 103

The Good, the Bad, and the Koyaanisqatsi - Consideration of Some

Patterns for Value Objects

Kevlin Henney . 115

Factory and Disposal Methods - A Complementary and Symmetric Pair of

Patterns

Kevlin Henney . 123

Transformational Patterns for the Improvement of Safety Properties in

architectural Specifications

Lars Grunske . 135

2

Two sets of Patterns about Group Communication and Dynamics

Ofra Homsky . 153

Analysis Patterns Specifications: Filling the Gaps

Marta Pantoquilho, Ricardo Raminhos, Joao Araujo 169

VikingPLoP 2004

A Pattern Language for Participants of Standardization Work

Juha Pärssinen . 183

VikingPLoP 2005

Patterns for Documenting Frameworks - Part 1

Ademar Aguiar, Gabriel David . 197

Patterns of Argument Passing

Uwe Zdun . 209

Business strategy patterns for sustainable knowledge based comp

Allan Kelly http://www.allankelly.ne . 235

Load Balancing and High Availability Patterns

Kai Wei, Antti Ylä-Jääsk . 261

Applied MVC Patterns

Sergiy Alpaev . 273

Patterns for ERP-Landscapes

Florian Humplik, Peter Leitner, Wolfgang Zuser, Thomas
Grechenig . 295

Patterns of The Mature Customer

Susanne Hørby Christensen . 317

Privilege Separation - A security Pattern

Dan Forsberg . 333

Patterns for Software Release Versioning

Klaus Marquardt . 339

3

3. Introduction

Introduction

Patterns and pattern languages are ways to describe best practices, good designs, and capture
experience in a way that it is possible for others to reuse it.

In August 1993, Kent Beck, Grady Booch, Ward Cunningham, Ralph Johnson, Ken Auer, Hal
Hildebrand and Jim Coplien considered ways to apply Christopher Alexander’s ideas of patterns
for urban planning and building architecture, to object-oriented software. They started to write
object-oriented patterns and discovered an emerging desire to catalog and communicate these
themes and idioms. Now, in 2007, patterns have arguably become part of the standard vocabulary
of the software engineering community, and an essential part of any significant software project.

The first conference on pattern languages of programs, PLoP,was held in August, 1994, at
the University of Illinois. Since then, an increasing number of pattern conferences, such as
EuroPLoP, ChiliPLoP, KoalaPLoP, MensorePLoP, and SugarloafPLoP, have helped improve patt-
ern expertise in the growing patterns community around the world.

In May, 2001, Linda Rising had the idea of holding a pattern conference in Scandinavia every
year, each year at a different venue, to enable people in Scandinavia, who might not otherwise
attend a PLoP conference, to learn about patterns.

The first VikingPLoP was held in Højstrupgård, a small castlenorth of Copenhagen, Den-
mark, in September, 2002. The conference was primarily structured around writers’ workshops,
supplemented by a focus group on Christopher Alexander and two tutorials: one for first-time
PLoP participants, and the other for upcoming shepherds of pattern papers. In total, 25 papers
were submitted to the conference, of which 19 were accepted for the writers’ workshops. The
accepted papers covered the areas of the software architecture and business patterns; develop-
ment processes and methods; and software design and programming.

Since then a yearly VikingPLoP conference has been held in one of the scandinavian countries.
Rotating countries and conference chair duties.

2002: Helsingør, Denmark
2003: Bergen, Norway
2004: Uppsala, Sweden
2005: Helsinki, Finland
2006: Helsingør, Denmark
2007: Bergen, Norway

5

5. Shepherding Award

The Shepherding Award

Patterns are the essence of the PLoP conferences. The shepherding process improves the quality
of patterns submissions. Being a shepherd requires a lot of time and effort. While it usually is
a rewarding process both for shepherd and author, it can alsoinclude challenges and difficulties.
To thank the many people who have laboured as shepherds, an award was instituted. The award
is called "The Neil Harrison Shepherding Award". Neil Harrison has guided the VikingPLoP
shepherding process, and makes sure that this process succeeds at the PLoP conferences around
the world.

At VikingPLoP, the program committee members and the authors of accepted papers had the
right to nominate a shepherd.

The Neil Harrison Shepherding Award Recepients At VikingPLoP

2002: Linda Rising
2003: Alan O’Callaghan
2004: Cecilia Haskins
2005: Klaus Marquardt
2006: Andreas Rüping

7

7. Acknowledgements

Conference Chairs

2002: Pavel Hruby and Kristian Elof Sørensen
2003: Cecilia Haskins and Jason Baragry
2004: Rebecca Rikner and Daniel May
2005: Juha Parssinen and Sami Lehtonen
2006: Aino Vonge Corry, Pavel Hruby and Kristian Elof Sørensen
2007: Cecilia Haskins, Lars-Helge Netland and Yngve Espelid

Sponsors

2002: HillsideEurope
Microsoft Business Solutions Aps
PearsonPublishing

2003: HillsideEurope
Norwegian Computer Society
Microsoft Business Solutions Aps

2004: HillsideEurope
2005: HillsideEurope

VTT
2006: HillsideEurope
2007: HillsideEurope

Norwegian Computer Society

 2003VikingPLoP

11

11. Pattern language for sharing Systems Engineering "best results"

Pattern language for sharing Systems Engineering “best results”
Cecilia Haskins

Norwegian School of Information Technology
cecilia.haskins@nith.no

Pattern: Multi-disciplinary teams

Acknowledgements:

This pattern was submitted to the second VikingPLoP after thoughtful
shepherding by Jim Coplien. The author wishes to thank Jim and the members of
the workshop for their time and comments. There is much room for improvement
for this pattern, including integration into a contextual pattern language. These
shortcomings are the fault of the author and should not be attributed to others.

Abstract:

The International Council on Systems Engineering (INCOSE) has been making
good progress in the compilation of a Systems Engineering Body of Knowledge
(SEBOK). The objective of Systems Engineering is to assure the fully integrated
development and realisation of products which meet stakeholders’ expectations
within cost, schedule, and risk constraints (INCOSE).

The INCOSE struggles now with an abundance of good literature augmented
by over a decade of symposia proceedings and other good advice collected in their
quarterly newsletter INSIGHT and the Journal of Systems Engineering. Specifically,
INCOSE struggles with the question of how to share this wealth with the world as the
organization and its members attempt to communicate the value of SE to the
international community, engineers and product developers.

This is not a unique challenge. In 1977, Christopher Alexander tackled this
question with the creation of “Patterns” and Pattern Languages. This author proposes
that creation of a collection of Pattern Languages to document the wealth of Systems
Engineering experience using sources from the SEBOK will yield positive results in
the quest to share the value of Systems Engineering. This pattern has been written to
illustrate the application of patterns to share a Systems Engineering practice and is
intended as the first of many to introduce the reader to the underlying concepts of
Systems Engineering.

SE activities incorporate both the process of engineering a system and the
actual operational system itself. In 1964 a Manual written by the USAF stated that a
system must be designed and tested as a complete entity and then proceeded to list the
prime mission equipment, supporting equipment for testing and evaluation, training,
facilities and procedures for operation and maintenance, and logistics support (1). Yet
recent literature gives the impression such encompassing scope is being rediscovered.

In his foreword to the Wiley Systems Engineering series, Harold Chestnut
wrote that Systems Engineering is indispensable in meeting the challenge of
complexity, a sentiment that has been repeated frequently in the literature (2).

12

Pattern language for sharing Systems Engineering "best results"

A brief summary of the Systems Engineering Pattern Languages follows. A set
of pattern languages for Systems Engineering will address the following needs:

1. with global recognition of the complexity inherent in today’s products and
services, address how an organization copes with complexity;

2. with increased attention by consumers and customers in the quality/cost
performance of products and services, address how an organization builds in
quality for a reasonable end-user price; and,

3. provide a definition of a set of practices that improve responsiveness to
stakeholder expectations in today’s competitive environments.

The framework for the SE pattern language is grouped into 4 sections entitled Process,
Product, Production and Domain. The patterns in the Domain section identify the
practices that will be specific to defined applications. The other pattern areas serve to
establish the core of best results in SE. Each area will benefit from mining the
SEBOK and other documented pattern languages (for example, organizational).

Process
It is a basic tenet of Systems Engineering to establish an organisation that is motivated
and capable of realizing the creation of products and services. This area will cover
organizational structure, risk, cost and management issues.

1. Multi-disciplinary teams
2. unknown — It is envisioned that this section will draw heavily from organizational and

risk pattern languages already documented.

Product
Product patterns will focus on the set of practices used by systems engineers for
defining stakeholder needs, requirements management, analysis, design and
architecture. Unless otherwise specified this section will cover the creation of both
products and services.

3. unknown

Production
In the creation of a product many systems are needed to eventually deliver the end-
result. This area of the language will cover the supporting systems for a given project.
The following list represents a very small subset of the eventual pattern languages (3)
required to adequately cover this area.

4. testing
5. manufacturing
6. operations
7. maintenance
8. training
9. customer service
10. logistics support
11. disposal

13

Pattern language for sharing Systems Engineering "best results"

Domain
Over time applications developers from various industries (aerospace, transportation,
medicine, education) and domains (manufacturing) will contribute patterns that
describe successful tailoring of the patterns in the other areas.

12. Unknown

Related patterns – to be provided

References
To be provided

Pattern Name Multi-disciplinary teams

Context
Modern systems are more complex and of greater scope than was
possible to realize as recently as a century ago. Today, no single person
can design a modern system. Such systems are generally designed and
realized through projects. Projects are generally organized into small
groups with specialized talents that allow them to accomplish a specific
task. Complex systems require that the results of these efforts are
integrated into a final solution. This requires timely and precise
communication between the groups.

Problem
Groups of people working on a complex modern system design must be
technological experts but often lack the authority and skills to
communicate effectively with other specialists in order to create a
workable solution.

Forces
Groups of people who must work closely together are often confronted
with the following challenges:

Confusion about roles and responsibilities of the participants, both at
the individual and group level,
Confusion about responsibility for task that lie in the interfaces with
other groups,
Insufficient teamwork and poor inter-team communication, and
Barriers inherent in organizational structures inhibit information
exchange.

Solution
When Systems Engineering is done first, it is possible to design out
unnecessary complexity. Establish multi-disciplinary teams (MDT), often
implemented as integrated product teams (IPT), to perform concurrent
engineering. Create a responsibility assignment matrix that maps the
tasks identified in the Work Breakdown Structure onto an organization’s
project teaming chart to avoid duplication of efforts.

14

Pattern language for sharing Systems Engineering "best results"

Resulting
Context

MDTs are able to resolve project issues quickly through direct
communication between team members. Such intra-team communication
shortens the decision-making cycle and is more likely to result in
improved decisions because the multi-disciplinary perspectives are
captured early in the process. Studies have shown that group decisions are
often “riskier” resulting in the potential for greater innovation.

In a multi-disciplinary team, each member comes from a discipline with
its own perspective and focuses on representing that viewpoint. An
integrated team is generally multi-disciplinary but each member is
expected to establish the necessary relationships with the other members
and to confront the team with challenging ideas with the focus on the
final result.

As a member of the MDT, today’s informed customer becomes a partner
in a structured and disciplined process that enables the team to meet
stakeholder expectations.

Rationale
Large organizations must cope with large numbers of people and
concurrent activities. Bureaucracy is common in these organizations to
preserve order. However, the benefits of aligning groups of people such
that they share a common focus (usually determined by
technological boundaries) also can have an adverse affect on the goals of
an integrated program. Specialization leads to over- or under-design at the
expense of considerations about the relevance of the design to achieve a
given purpose. When design tasks are assigned to specialized groups,
lateral communication is either non-existent or very difficult. Too often,
systems engineering is practiced as a form of crisis management to
perform after-the-fact integration of separate components to make them
“play together.”

The barriers that inhibit close “day-to-day” working relationships also
inhibit the transfer of essential information for decision-making. The
influence of political-economic-technical-human factors plague decision-
making in bureaucratic environments thereby jeopardizing the resulting
design. (5)

From Chestnut (4, p.37) “The generation of a balanced design requires
that each major design decision be based on proper consideration of
system variables… This necessitates the closest coordination of select
personnel skilled in SE who work as a homogenous system design team.”

From Chase (5, p.14) “Only if clear communications among the varied
specialized efforts is established can there be an integrated coherent
program effort, such as is required to design and develop a system
composed of complex subsystems that must function effectively together
as a unified entity.”

15

Pattern language for sharing Systems Engineering "best results"

Chase also says that in organizing for success it is critical to facilitate
communications and “system designs are dependent upon the effective
integration of multidisciplinary efforts.”

From Chase (5, p.22) The organization of a system project should provide
opportunity for all disciplinary specialists to work together continuously
on a face-to-face basis and, most importantly, to acquire the systems
viewpoint and understanding of the role that their specific knowledge can
provide in deriving a particular system design.

Chase advocates mapping the tasks of the milestone schedule to the WBS
and identifying the lines of communication among tasks in terms of
interdependencies and mutual constraints to reveal that different phases
of the lifecycle call for different tasks and different personnel skills.
Properly used, this allows management to acquire and properly utilize the
proper combination of specialist and generalist skills. A project avoids
“bureaucratization” of the design approach by streamlining the
organization and integrating the various specialist backgrounds into
common system-oriented task groups with loyalties directed toward the
systems design effort.

Rummler and Brache (6, p.177) refer to cross-functional processes as the
horizontal system within an organization. Management looking for
performance improvements is advised to focus on the effectiveness and
efficiency of the horizontal organization. This approach recognizes
individuals and groups who understand the “big picture” and the business
of other functional areas with which they need to collaborate.
Interactions focus on win-win decision-making.

Related
Patterns

Many patterns are related to this one and will be identified and
included in later versions of this pattern. Eventually both CE and
IPT/IPPD pattern languages must be written.

Known Uses
J. Parker, 1989, “Peacekeeper IFSS – A TQM success story,” National
TQM Symposium 1989, DC: AIAA. Parker writes of Martin Marietta’s
use of “tiger teams” in crisis situations. These are cross-functional teams
that dropped traditional differences, focused on the task at hand and were
able to achieve remarkable innovations very quickly. The challenge for
MM was to use this approach in a non-crisis situation. Parker is very
clear that a major contributor to the success of the project was the
creation of opportunities for people from different disciplines to work
together face-to-face to achieve dramatic reductions in cycle time.

16

Pattern language for sharing Systems Engineering "best results"

Relevant
references
from SEBOK

1. Martin, James N. 2000. Systems Engineering Guidebook: a process
for developing systems and products. CRC Press LLC.

2. Forsberg, Kevin et al. 2000. Visualizing Project Management: A
model for business and technical success (2.ed). John Wiley & Sons,
Inc.

3. Blancard, Benjamin S. and Wolter J. Fabrycky. 1997. Systems
Engineering and Analysis, 3.ed. NJ: Prentice Hall.

4. Chestnut, Harold. 1967. Systems Engineering Methods. John Wiley &
Sons, Inc.

5. Chase, Wilton P. 1974. Management of Systems Engineering. John
Wiley & Sons, Inc.

6. Rummler, Geary A. and Alan P. Brache. 1995. Improving
Performance: How to manage the white space on the organization
chart. San Francisco, CA: Jossey-Bass Inc.

Definitions of
terms:

Concurrent Engineering – the concept that all stakeholders need to be
considered throughout the project lifecycle in order to produce the best
product. CE promotes simultaneous development of both product and
process. (2)
IPPD – Integrated Product and Process Development – a management
technique that simultaneously integrates all essential acquisition activities
through the use of multidisciplinary teams to optimize the design,
manufacturing and supportability processes. (3)

Diagram:
Below

Team member
with
background in
discipline A

Team member
with
background in
discipline Z

Works with

Works with

17

17. Two Simple Patterns to Support the Development of Reliable Embedded

Systems

PAPER PRESENTED AT VIKING PLOP 2003 (BERGEN, NORWAY - SEPTEMBER 2003)

- 1 -

Two Simple Patterns to Support the Development of Reliable Embedded
Systems

Chisanga Mwelwa1 and Michael J. Pont {cm55, M.Pont}@le.ac.uk

Embedded Systems Laboratory, Department of Engineering, University of Leicester,
University Road, LEICESTER LE1 7RH, UK

http://www.le.ac.uk/eg/embedded/

Introduction
As the title suggests, this paper is concerned with the development of software for embedded systems.
Typical application areas for this type of software range from passenger cars and aircraft through to
common domestic equipment, such as washing machines and microwave ovens.

We have previously described a “language” consisting of more than eighty patterns, which will be
referred to in this paper as the “PRES Collection2” (see Appendix A). This language is intended to
support the development of reliable embedded systems using low-cost embedded hardware with severe
memory constraints. Typical implementations will employ embedded microcontrollers with a few
kilobytes of available RAM.

Over the last few years, we have had the chance to observe many people use this collection when
developing a range of different systems: these observations have included industrial projects and
various university research projects. In this paper, we present two patterns that have resulted from
these observations: HEARTBEAT LED and ERROR LED.

1 Primary contact
2 Our original patterns focused on “time-triggered” designs and were known as the “PTTES collection” (after the

original book title: “Patterns for Time-Triggered Embedded Systems”). Since then, this collection has expanded and
has subsequently been revised, and – while the focus remains on reliable design – not all of the patterns are time-
triggered. The collection has therefore been renamed the “PRES collection” (Patterns for Reliable Embedded
Systems).

18

Two Simple Patterns to Support the Development of Reliable Embedded Systems

- 2 -

The two patterns are related. HEARTBEAT LED provides a simple, low-cost mechanism for providing
feedback on the overall health of your system: if the LED is flashing, the core of the system is running
correctly. ERROR LED goes one step further and provides a mechanism for error reporting.

Format
The other patterns referred to in this paper are from the PRES collection and are presented in a
distinctive style e.g. CO-OPERATIVE SCHEDULER. See Appendix A for a complete list of these patterns.

Acknowledgements
The authors are grateful to Alan O’ Callaghan (our Shepherd at Viking PLoP 2003) for comments and
suggestions on the first drafts of this paper. We are also grateful to the participants in our workshop at
Viking PLoP (Neil Harrison, Klaus Marquardt, Bernhard Grone and Peter Tabeling) who all provided
further useful comments.

Copyright
Copyright © 2003 Chisanga Mwelwa and Michael J. Pont. Permission is granted to copy this paper for
the purposes of Viking PLoP 2003. All other rights are reserved.

19

Two Simple Patterns to Support the Development of Reliable Embedded Systems

- 3 -

HEARTBEAT LED

Context
• You are developing (or maintaining) an embedded application based on a microcontroller or

microprocessor.

• You are programming in C (or a similar language).

• Your application has an architecture based on some form of scheduler.

Problem
How can you tell, at a glance, if your system is “alive”?

Design constraints
Many embedded systems have little or no user interface. There is not generally a screen on which you
can display error messages or warnings to the user.

If you are working on a system prototype, or performing maintenance in the field, how can you tell that
the system is “alive” – that it has power and (at least) the scheduler is running?

You could, of course, hook up a debugging link (e.g. a JTAG link), or a simpler serial link (based on
RS-232), but this takes time and including suitable ports on your production system may not be
practical or cost effective. Often a very simple, low-cost solution is required.

Solution
Every time we implement an embedded system, the first task we include is one that flashes a
“heartbeat” LED. Wherever possible, this LED stays with the system, right into production.

We tend to use a 50% duty cycle and a frequency of 0.5 Hz (that is, the LED runs continuously, on for
one second, off for one second, and so on) but this is – of course – up to you.

Use of this simple technique provides the following key benefit:

• The development team, the maintenance team and, where appropriate, the users, can tell at a glance
that the system has power, and that the scheduler is operating normally.

In addition, during development, there are two less significant (but still useful) side benefits:

• After a little practice, the developer can tell “intuitively” - by watching the LED - whether the
scheduler is running at the correct rate: if it is not, it may be that the timers have not been initialised
correctly, or that an incorrect crystal frequency has been assumed.

• By adding the “Heartbeat” task to the scheduler array after all other tasks have been included, the
developer can tell immediately if the task array is large enough to match the needs of the application
(if the array is not large enough, the LED will never flash).

20

Two Simple Patterns to Support the Development of Reliable Embedded Systems

- 4 -

Implementation
Numerous possible implementations are possible. We give an example of one possible version at the
end of this pattern.

Reliability and safety implications
Use of this simple technique may help to improve system reliability since it provides those developing
the system with an indication of its health throughout the development lifecycle.

Hardware requirements
HEARTBEAT LED has minimal hardware requirements. The only requirements are a port pin
connected to an appropriate LED (with a matching resistor if required).

Cost implications
As noted above, the hardware requirements are very limited. The time taken to implement this pattern
is also likely to be minimal. Overall, the costs are very low.

Maintenance
HEARTBEAT LED gives a developer an indication of a systems “health” during its maintenance.

Portability
Highly portable – can be implemented on a wide range of hardware platforms.

Related patterns and alternative solutions
See NAKED LED3 for hardware details.

Overall strengths and weaknesses
☺ HEARTBEAT LED provides a simple, low-cost way of determining whether your system is “alive”.

/ Uses a port pin and associated LED hardware.

Example: A “Heartbeat LED” task for an 8051 microcontroller

/*--*-

 Heartbeat_LED.C

 --

Simple 'Heartbeat LED' task for an Infineon C515C microcontroller.

 If everything is OK, flashes at 0.5 Hz
-*--*/

3 Page 254 in M. J. Pont (2001), "Patterns for Time-Triggered Embedded Systems", Addison-Wesley

21

Two Simple Patterns to Support the Development of Reliable Embedded Systems

- 5 -

#include "Main.H"
#include "Port.H"
#include "Heartbeat_LED.H"

// ------ Private variable definitions -----------------------------

static bit Heartbeat_led_state_G;

/*--*-

 HEARTBEAT_LED_Init()
 Prepare for HEARTBEAT_Update() task.

-*--*/
void HEARTBEAT_LED_Init(void)
 {
 Heartbeat_led_state_G = 0;
 }

/*--*-

 HEARTBEAT_LED_Update()

 Flashes an LED on a specified port pin.

 Must schedule at twice the required flash rate: thus, for 0.5 Hz
 flash (on for 1 second, off for 1 second) must schedule at 1 Hz.

-*--*/
void HEARTBEAT_LED_Update(void)
 {
 // Change the LED from OFF to ON (or vice versa)
 if (Heartbeat_led_state_G == 1)
 {
 Heartbeat_led_state_G = 0;
 Heartbeat_led_pin = 0;
 }
 else
 {
 Heartbeat_led_state_G = 1;
 Heartbeat_led_pin = 1;
 }
 }

/*--*-
 ---- END OF FILE ---
-*--*/

Listing 1: The source file defining the task responsible for the flashing LED

time (s)

LED Status

5

ON

OFF 0

Figure 1: Graph depicting flash rate of an implemented HEARTBEAT LED task scheduled to run every 1second

22

Two Simple Patterns to Support the Development of Reliable Embedded Systems

- 6 -

ERROR LED

Context
• You have implemented HEARTBEAT LED (see HEARTBEAT LED).

And

• You now require a means of reporting errors.

Problem
If your embedded system is not working correctly, how can you tell what is wrong?

Design constraints
See HEARTBEAT LED for the design constraints.

HEARTBEAT LED can provide a very cost-effective way of telling whether your system is “alive”. If the
system is functioning, but has detected some errors, a HEARTBEAT LED may not be of great help.

How can you report errors, without significantly increasing the system (or development) costs?

Solution
To implement ERROR LED a single LED is used to report error codes to the developer or (if
appropriate) the user. In most cases, we like to base the Error LED on a Heartbeat LED so that, if
there are no errors, we see the usual (comforting) 0.5 Hz signal. If there is a problem, the display
changes, and – by observing the different pulse rates – we can often identify the cause.

Implementation
There are many possible ways of implementing ERROR LED.

We use a (global) error variable, and maintain a list of error codes (in Main.H). In the event of an error,
we adjust the output of the ERROR LED accordingly.

We give an example of a suitable implementation at the end of this pattern.

Reliability and safety implications
Most forms of error reporting – like ERROR LED – provide a means of improving system reliability.

Hardware requirements
See HEARTBEAT LED hardware requirements.

23

Two Simple Patterns to Support the Development of Reliable Embedded Systems

- 7 -

Cost implications
Implementing a basic implementation of ERROR LED will cost you little more than implementing
HEARTBEAT LED. However, it takes time to include error reporting in your program code, and this
may add to the development costs.

Maintenance
ERROR LED can be very valuable during system maintenance as it can be used to debug reported bugs.

Portability
Highly portable – can be implemented on a wide range of hardware platforms.

Related patterns and alternative solutions
See HEARTBEAT LED for the related patterns.

As an alternative solution one could easily substitute a buzzer for the LED, and thereby draw the
attention of developers (or users) to errors using various sounds or different pulse frequencies.

Overall strengths and weaknesses
☺ ERROR LED provides a low-cost, non-invasive, means of error reporting.

/ Uses a port pin and associated LED hardware.

/ Adding error reporting takes time and hence may increase development costs.

Example: An “Error LED” task for an ARM microcontroller

/*--*-

 Error_LED.C
 --

 Simple 'Error LED' task for a Philips LPC2106

ARM microcontroller.

 If everything is OK, flashes at 0.5 Hz

 If there is an error code active, this is displayed.

-*--*/
#include "Main.H"
#include "Port.H"

#include "Error_LED.H"

// see Scheduler for definition
extern int Error_code_G;

/*--*-

 ERROR_LED_Init()

 Prepare for ERROR_LED_Update() function.

-*--*/
void ERROR_LED_Init(void)
 {
 // Set up Heartbeat_pin as GPIO
 PINSEL0 &= ~Heartbeat_pin;

24

Two Simple Patterns to Support the Development of Reliable Embedded Systems

- 8 -

 // Set Heartbeat_pin to output mode
 IODIR |= Heartbeat_pin;
 }

/*--*-

 ERROR_LED_Update()

 Flashes at 0.5 Hz if error code is zero.

 Otherwise, displays error code.

 Must schedule every second (soft deadline).

-*--*/
void ERROR_LED_Update(void)
 {
 static int LED_state = 0;
 static int Error_state = 0;

 if (Error_code_G == 0)
 {
 // No errors recorded
 // - just flash at 0.5 Hz

 // Change the LED from OFF to ON (or vice versa)
 if (LED_state == 1)
 {
 LED_state = 0;
 IOCLR = Error_pin; // Set to 0
 }
 else
 {
 LED_state = 1;
 IOSET = Error_pin; // Set to 1
 }
 return;
 }

 // If we are here, there is an error code ...
 Error_state++;

 if (Error_state < Error_code_G*2)
 {
 LED_state = 0;
 IOCLR = Error_pin; // Set to 0
 }
 else
 {
 if (Error_state < Error_code_G*4)
 {
 // Change the LED from OFF to ON (or vice versa)
 if (LED_state == 1)
 {
 LED_state = 0;
 IOCLR = Error_pin; // Set to 0
 }
 else
 {
 LED_state = 1;
 IOSET = Error_pin; // Set to 1
 }
 }
 else
 {
 Error_state = 0;
 }
 }
 }

/*--*-
 ---- END OF FILE ---
-*--*/

Listing 2: The source file defining the task responsible for the flashing error LED

25

Two Simple Patterns to Support the Development of Reliable Embedded Systems

- 9 -

time (s)

LED Status

5 10

ON

OFF
0

Figure 2: Graph depicting flash rate of implemented ERROR LED when an error has been flagged for an error code set to 1
(compare this flash rate with that of HEARTBEAT LED in Figure 1)

26

Two Simple Patterns to Support the Development of Reliable Embedded Systems

- 10 -

Appendix A: The PRES Collection
A complete list of the current patterns in the PRES collection is given in Table 1.

The present version of this collection consists of 71 patterns (see: M. J. Pont (2001), "Patterns for Time-
Triggered Embedded Systems", Addison-Wesley) plus a further 7 patterns from Pont and Ong (2002).
Please note that the 2002 patterns are identified thus [VP]. Please also note that the later patterns,
together, form a replacement for HARDWARE WATCHDOG (presented in "Patterns for Time-Triggered
Embedded Systems"): HARDWARE WATCHDOG is therefore not listed in this table.

Table 1: The “PRES Collection”

255-TICK SCHEDULER 3-LEVEL PWM A-A FILTER

ADC PRE-AMP BJT DRIVER CERAMIC OSCILLATOR

CO-OPERATIVE SCHEDULER CRYSTAL OSCILLATOR CURRENT SENSOR

DAC DRIVER DAC OUTPUT DAC SMOOTHER

DATA UNION DOMINO TASK EMR DRIVER

EXTENDED 8051 FAIL-SILENT RECOVERY [VP] HARDWARE DELAY

HARDWARE PRM HARDWARE PULSE-COUNT HARDWARE PWM

HARDWARE TIMEOUT HYBRID SCHEDULER I2C PERIPHERAL

IC BUFFER IC DRIVER KEYPAD INTERFACE

LCD CHARACTER PANEL LIMP-HOME RECOVERY [VP] LONG TASK

LOOP TIMEOUT MOSFET DRIVER MULTI-STAGE TASK

MULTI-STATE SWITCH MULTI-STATE TASK MX LED DISPLAY

NAKED LED NAKED LOAD OFF-CHIP CODE MEMORY

OFF-CHIP DATA MEMORY ON-CHIP MEMORY ONE-SHOT ADC

ONE-TASK SCHEDULER ONE-YEAR SCHEDULER ON-OFF SWITCH

OSCILLATOR WATCHDOG [VP] PC LINK (RS232) PID CONTROLLER

PORT HEADER PORT I/O PROGRAM-FLOW WATCHDOG [VP]

PROJECT HEADER PWM SMOOTHER RC RESET

RESET RECOVERY [VP] ROBUST RESET SCC SCHEDULER

SCHEDULER WATCHDOG [VP] SCI SCHEDULER (DATA) SCI SCHEDULER (TICK)

SCU SCHEDULER (LOCAL) SCU SCHEDULER (RS-232) SCU SCHEDULER (RS-485)

SEQUENTIAL ADC SMALL 8051 SOFTWARE DELAY

SOFTWARE PRM SOFTWARE PULSE-COUNT SOFTWARE PWM

SPI PERIPHERAL SSR DRIVER (AC) SSR DRIVER (DC)

STABLE SCHEDULER STANDARD 8051 SUPER LOOP

SWITCH INTERFACE (HARDWARE) SWITCH INTERFACE (SOFTWARE) WATCHDOG RECOVERY [VP]

27

27. Architecturally sensitive Usability Patterns

Architecturally Sensitive Usability Patterns
Eelke Folmer and Jan Bosch

Department of Mathematics and Computing Science

University of Groningen, PO Box 800, 9700 AV the Netherlands
mail@eelke.com, Jan.Bosch@cs.rug.nl

http://www.rug.nl/informatica/search

Abstract
The work presented in this paper is motivated by the increasing realization in the software engineering community of the
importance of software architecture for fulfilling quality requirements. Practice shows that for current software systems,
most usability issues are still only detected during testing and deployment. Some changes that affect usability, for
instance changes to the appearance of a system’s user interface, may easily be made late in the development process
without incurring too great a cost. Changes that relate to the interactions that take place between the system and the user
such as, for example, usability patterns, are likely to require a much greater degree of modification. The reason for this
shortcoming is that the software architecture of a system restricts certain patterns from being implemented after
implementation. Several of these usability patterns are “architecture-sensitive”, in the sense that such modifications are
costly to implement afterwards due through their structural impact on the system. Our research has argued the
importance of the relation between usability and software architecture. Software engineers and usability engineers
should be aware of the importance of this relation. One of the results of this research is a collection of usability patterns.
The contribution of this paper is that it has tried to capture and describe several usability patterns that may have a
positive effect on the level of usability but that are difficult to retrofit into applications because these typically require
architectural support. Our collection of patterns can be used during architectural design to determine if the architecture
needs to be modified to support such patterns. The usability patterns identified so far can be used as requirements during
architectural design

1. Keywords
Usability, software architecture, patterns.

Introduction
In recent years, usability has been increasingly recognized as an important consideration during software development.
Issues such as whether a product is easy to learn, to use or whether it is responsive to the user and whether the user can
efficiently complete tasks using it, may greatly affect a product’s acceptance and success in the marketplace. Not only
does the software need to implement its functionality, it must also satisfy its usability requirements in order to be
accepted by its users. However, how software systems can be designed so they are usable is still a topic of debate and
currently there is much ongoing research activity around this question.
A problem with many of today’s software systems is that they do not meet their quality requirements very well, many
well-known software products still suffer from poor usability. Lack of usability may have several causes. One hypothesis
is that it results from the subjective perceptions of designers, whose view on the system is generally different from that of
an end user [Berkun, 2002].
Another reason for poor usability may be the high costs associated with fixing usability issues during the later stages of
development. Studies of software engineering projects [Nielsen, 1993], [Lederer and Prassad, 1992] reveal that
organizations spend a relatively large amount of time and money on fixing usability problems. 80% of software life-cycle
costs occur during the maintenance phase, most maintenance costs are associated with “unmet or unforeseen” user
requirements and other usability problems [Pressman, 1992]. These figures show that a large amount of maintenance
costs are spent on dealing with usability issues such as frequent requests for interface changes by users, implementing
overlooked tasks and so on [Lederer and Prassad, 1992]. These high costs prevent developers from making the necessary
adjustments for meeting all the usability requirements.
We believe these high costs are due to the fact that many of the necessary adjustments require changes to the system that
cannot be easily accommodated by the software architecture. Sometimes it is very difficult to apply certain usability
improving design solutions after the majority of a system has been implemented because some of these design solutions
are ‘architecture-sensitive’, for example:
• Some changes that improve usability, for instance changes to the appearance of a system’s user interface, may easily

be made late in the development process without incurring too great a cost.

28

Architecturally sensitive Usability Patterns

• Changes that relate to the interactions between the system and the user; for example adding undo or cancel to a task
or system wide changes that improve usability such as providing a consistent interface require a much greater degree
of modification.

Restructuring the system at a late stage will typically be extremely and possibly prohibitively, expensive. The further in
back in the development process the designers go to make a change, the more it will cost [Brooks, 1995] to implement
such changes. The reason for this is that such changes typically require changes to the software architecture, i.e. “the
fundamental organization of a system embodied in its components, their relationships to each other and to the
environment and the principles guiding its design and evolution” [IEEE, 1998]
Within the software engineering community, it is generally understood that to a large extent, the quality attributes (e.g.
performance or maintainability) of a software system are determined by its software architecture [Bosch, 2000]
The work presented in this paper is motivated by the fact that this also applies to usability. In years of research, the HCI
community has invented many clever solutions such as usability patterns to all sorts of usability design problems.
However, many of these solutions are architecture-sensitive and are hard to retrofit in an existing software architecture.
Consequently, it is often hard to address usability problems in already implemented systems.
To address the issue, the HCI community has been equally innovative in development methodology and nowadays such
techniques as prototyping and rapid application development that depend on involving end-users early in the
development are commonly used for the development of new systems. While these techniques can be very effective in
addressing some common usability issues, they do not really solve the retrofit problem. Even using such techniques, it is
still possible that usability problems will surface after the system has been implemented, that require major changes in
the software architecture.
Summarizing, in our opinion poor usability and high development costs may be due to the following problems:
• The high costs associated with fixing certain usability issues during the later stages of development, prevent

developers from making the necessary adjustments for meeting all the usability requirements.
• Usability is still often associated with interface design [Berkun, 2002]. Interface design is often performed during the

last stages of software development. With this approach, we run the risk that if the interface is designed last; many
assumptions are built into the design of the architecture that unknowingly affect the interface design, which makes
systems less usable.

These two problems prompted us and the STATUS1 (SofTware Architecture That supports USability) project that is
funding our research, to closely investigate the relationship between usability and software architecture to gain a better
understanding of how the architecture may restrict usability.
The contribution of this paper is an integrated set of architecturally sensitive usability patterns, that, in most cases, have a
positive effect on the level of usability but that are difficult to retro-fit into applications because these design solutions
may require architectural support. For each of these architecturally sensitive usability patterns we have analyzed the
usability effect and the potential architectural implications.
The remainder of this paper is organized as follows. The next section discusses the relationship between usability and
software architecture. Section 3 presents the architecturally sensitive usability patterns we have identified. Finally we
discuss related work in section 4 and conclude in section 5.

2. Architecturally sensitive usability patterns
One of the products of the research into the relationship between software architecture and usability is the concept of an
architecturally sensitive usability pattern. We determined that the implementation of a usability pattern is a modification
that may solve a specific usability problem in a specific context, but which may be very hard to implement afterwards
because such a pattern may have architectural implications.
We define the term “architecturally sensitive usability pattern” to refer to a technique or mechanism that should be
applied to the design of the architecture of a software system in order to address a need identified by a usability property
at the requirements stage (or an iteration thereof).
The purpose of identifying and defining architecturally sensitive usability patterns is to capture design experience to
inform architectural design and hence avoid the retrofit problem.
There are many different types of patterns. In the context of this paper, we use the term pattern in a similar fashion as
[Buschmann et al, 1996]: “patterns document existing, well-proven design experience”. With our set of patterns, we have

1 STATUS is an ESPRIT project (IST-2001-32298) financed by the European Commission in its Information Society Technologies Program. The

partners are Information Highway Group (IHG), Universidad Politecnica de Madrid (UPM), University of Groningen (RUG), Imperial College of
Science, Technology and Medicine (ICSTM), LOGICDIS S.A.

29

Architecturally sensitive Usability Patterns

concentrated on capturing the architectural considerations that must be taken into account when deciding to implement a
usability pattern.
Our architecturally sensitive usability patterns have been derived from two sources:

• Internal case studies at the industrial partners in the STATUS project.
• Existing usability pattern collections [Brighton, 1998], [Common ground, 1999], [Welie, 2003], [PoInter, 2003].

Only those patterns are selected or defined that to our analysis require architectural support. We have merely annotated
existing usability patterns for their architectural sensitiveness.

2.1 Pattern format
 As identified by [Granlund et al, 2001] patterns are an effective way of capturing and transferring knowledge due to their
consistent format and readability. To describe our patterns we use the following format:
• Name: Whenever possible we use the names of existing patterns. However, some patterns are known under different

names and some patterns are not recognized in usability pattern literature.
• Usability context: A situation giving rise to a usability problem; the context extends the plain problem-solutions

dichotomy by describing situations in which the problems occur. This is similar to the context used in the patterns
defined in [Buschmann et al, 1996].

• Intent: A short statement that answers the following questions: what does the pattern do and what are its rationale
and intent [Gamma et al 1995].

• Architectural implications: It may be possible to use a number of different methods to implement the solution
presented in each usability pattern. Some of our architecturally sensitive usability patterns such as undo (table 5.9)
may be implemented by a design pattern. For example, the Memento pattern should be used whenever the internal
state of an object may need to be restored at a later time [Gamma et al 1995] Alternatively, an architectural pattern
may be used. For example providing multiple views (table 2.8) by using a model view controller pattern [Buschmann
et al, 1996]. Our patterns do not specify implementation details in terms of classes and objects. However, we are
contemplating a case study to analyze how companies implement the patterns we discuss in this paper. Furthermore,
we present which architectural considerations must be taken into account to implement the pattern. In the case of the
wizard example there may need to be a provision in the architecture for a wizard component, which can be connected
to other relevant components, the one triggering the operation and the one receiving the data gathered by the wizard.
This leads to architectural decisions about the way that operations are managed.

• Relationship with usability: For each pattern we state which usability attributes are affected by it. A comprehensive
survey [Folmer and Bosch, 2002] revealed that different researchers have different definitions for the term usability
attribute, but the generally accepted meaning is that a usability attribute is a precise and measurable component of
the abstract concept that is usability. After an extensive survey of the work of various authors, the following set of
usability attributes has been identified for which the software systems in our work are assessed:

o Learnability - how quickly and easily users can begin to do productive work with a system that is new
to them, combined with the ease of remembering the way a system must be operated.

o Efficiency of use - the number of tasks per unit time that the user can perform using the system.
o Reliability in use - this refers to the error rate in using the system and the time it takes to recover from

errors.
o Satisfaction - the subjective opinions of users of the system.

• Examples/known uses: Similar to patterns described in [Gamma et al 1995] and [Buschmann et al, 1996] we present
three known uses of the pattern in current software (not necessarily implemented in an architecture-sensitive way).

Our pattern format is not intended to be exhaustive. We intend to add to the collection in future work and actively engage
in discussions with the usability and software engineering communities through e.g. workshops and our website2. Future
work on this project will lead to the expansion and reworking of the set of patterns presented here. This includes work to
fill out the elements of each pattern to include more of the sections, which traditionally make up a pattern description, for
instance what the pros and cons of using each pattern may be, forces that lead to the use of the pattern, aliases etc.

2 www.designforquality.com

30

Architecturally sensitive Usability Patterns

2.2 System Feedback
Usability context: Situations where the user performs an action that may unintentionally lead to a problem

[Welie, 2003].

Intent: Communicate changes in the system to the user.

Architectural
implications:

To support the provision of alerts to the user, there may need to be a component that monitors
the behavior of the system and sends messages to an output device. Furthermore, some form
of asynchronous messaging (e.g. events) support may be needed to respond to events in other
architecture components. [Buschmann et al, 1996] suggests several architectural styles to
implement asynchronous messaging (e.g. the blackboard style).

Relationship with
Usability:

Informing the user about effects of actions that occur in the system raises user satisfaction, as
users learn what is going on. On the other hand, satisfaction may also be affected by the
decreased system performance due to alert processing. User efficiency may increase, because
they are alerted about given situations and do not have to waste time checking the system
state under these circumstances.

Examples: • If a new email arrives, the user may be alerted by means of an aural or visual cue.
• If a user makes a request to a web server that is currently off line, they will be presented

with a popup window telling them that the server is not responding
• If a user is running out of disk space, windows XP will alert the user with a popup box in

the system tray.

Figure 1: Windows XP low disk space alert

31

Architecturally sensitive Usability Patterns

2.3 Actions for Multiple Objects
Usability context: Actions need to be performed on objects, and users are likely to want to perform these

actions on two or more objects at one time [Tidwell 1998].

Intent: Provide a mechanism that allows the user to customize or aggregate actions

Architectural
implications:

A provision needs to be made in the architecture for objects to be grouped into composites, or
for it to be possible to iterate over a set of objects performing the same action for each.

Relationship with
Usability:

Providing a mechanism that allows the user to customize or aggregate his actions increases
user's control over the system. Providing the ability to perform the same action on a number
of objects at once reduces the time that it will take the user to complete a task, as the system
should be much faster at repeating actions than the human. The number of clicks (or
equivalent actions) that the user has to make to complete the task is reduced.

Examples: • In a vector based graphics package such as Corel Draw, it is possible to select multiple
graphics objects and perform the same action (e.g. change color) on all of them at the
same time.

• Copying several files from one place to another.
• Outlook allows the selection of different received emails and forward them all at once.

Figure 2: Actions on multiple objects in word

32

Architecturally sensitive Usability Patterns

2.4 Cancel
Usability context: The user invokes an operation, then no longer wants the operation to be performed [Bass et

al, 2001]

Intent: Allow the user to cancel a command that has been issued but not yet completed, to prevent
reaching an error state.

Architectural
implications:

There needs to be provision in the architecture for the component(s) monitoring the user
input to run independently from and concurrently with the components that carry out the
processing of actions. The components processing actions need to be able to be interrupted
and the consequences of the actions may need to be rolled back.

Relationship with
Usability:

Being able to cancel commands helps with error management. If the user realises that they
have done something wrong then the user can interrupt and cancel an action before the
reaching the error state. It also gives the user the feeling that it is in control of the interaction.

Examples: • In most web browsers, if the user types a URL incorrectly, and the web browser spends a
long time searching for a page that does not exist, the user can cancel the action by
pressing the “stop” button before the browser presents the user with a “404” page, or a
dialog saying that they server could not be found.

• When copying files with windows explorer the user is able to press the cancel button to
abort the file copy process

• Norton antivirus allows the user to interrupt or cancel the virus scanning process

Figure 3: Cancel operation in windows commander

2.5 Data Validation
Usability context: The user needs to supply the application with data, but may be unfamiliar with which data is

required or what syntax should be used. [Welie and Trætteberg, 2000]
Users have to input data where errors are likely to occur.

Intent: Verify whether (multiple) items of data in a form or field have been entered correctly.

Architectural
implications:

To ensure that the integrity of the data stored in the system is maintained, a mechanism is
needed to validate both the data entered by the user and the processed data. Solutions that
may be employed include the use of XML and XML schemas. Furthermore, a data integrity
layer consisting of business-objects may be implemented to shield application code from the
underlying database. Finally, there may be some client or server components that verify the
data entered by users.

Relationship with
Usability:

This pattern relates to a provision for the management of errors. The application of this
pattern reduces the number of errors, increasing reliability and user efficiency.

33

Architecturally sensitive Usability Patterns

Examples: • This pattern is often employed in forms on websites where the user has to enter a number
of different data items, for example, when registering for a new service, or buying
something.

• Large content management systems often use XML to define objects. Some WYSIWYG
tools that allow the user to edit these objects use the XML definition (DTD or schema) to
prevent users from entering invalid data.

• Use of a data integrity layer in multi tiered applications to shield user interface code from
database.

Figure 4: Form Validation

2.6 History logging
Usability context: • How can the software help save the user time and effort? [Tidwell 1998]

• How can the artifact support the user's need to navigate through it in ways not directly
supported by the artifact 's structure? [Tidwell 1998]

• The user performs a sequence of actions with the software, or navigates through it.
[Tidwell 1998]

Intent: Record a log of the actions of the user (and possibly the system) to be able to look back over
what was done.

Architectural
implications:

In order to implement this, a repository must be provided where information about actions
can be stored. Consideration should be given to how long the data is required. Actions must
be represented in a suitable way for recording in the log. Additionally, such features may
have some privacy/security implications.

Relationship with
Usability:

Providing a log helps the user to see what went wrong if an error occurs and may help the
user to correct that error. Being able to refer to actions that were carried out may help with
“recognition rather than recall”. The provision of this pattern improves reliability in use, as it
provides the user with information on how to correct errors. It also has a positive effect on
learnability, as the user learns how to work with the system

34

Architecturally sensitive Usability Patterns

Examples: • Web browsers create a history file listing all the websites that the user has visited. Most
web browsers also include functionality for purging this data.

• Windows XP keeps track of recently accessed documents.
• Automatic Form completion in Mozilla and Internet Explorer based upon previously

inserted information.

Figure 5: Browser history in Internet explorer

2.7 Scripting
Usability context: The user needs to perform the same sequence of actions over and over again with little or no

variability [Tidwell 1998].

Intent: Provide a mechanism that allows the user to perform a sequence of commands or actions to a
number of different objects.

Architectural
implications:

A provision needs to be made in the architecture for grouping commands into composites or
for recording and playing back sequences of commands in some way. There needs to be an
appropriate representation of commands, and a repository for storing the macros. Typically,
some sort of scripting language is often used to implement such functionality. This implies
that all features must scriptable.

Relationship with
Usability:

Providing the ability to group a set of actions into one higher-level action reduces the user’s
cognitive load, as the user does not need to remember how to execute the individual steps of
the process once the user has created a script. The user just needs to remember how to trigger
the script.

35

Architecturally sensitive Usability Patterns

Examples: • All Microsoft’s Office applications provide the ability to record macros, or to create them
using the Visual Basic for Applications language.

• Mozilla Firebird allows users to install extensions that extend the features of the program
using scripts.

• Open Office has Java bindings, that allows users to write Java programs that extend open
office. Open office also supports a subset of VB.

Figure 6: Record macros in Microsoft Word

2.8 Multiple views
Usability context: The same software functionality is required to be presented using different human-computer

interface styles for different user preferences, needs or disabilities. [Brighton, 1998]

Intent: Provide multiple views for different users and uses.

Architectural
implications:

The architecture must be constructed so that components that hold the model of the data that
is currently being processed are separated from components that are responsible for
representing this data to the user (view) and those that handle input events (controller). The
model component needs to notify the view component when the model is updated, so that the
display can be redrawn. Multiple views is often facilitated through the use of the MVC
pattern [Buschmann et al, 1996]

Relationship with
Usability:

Separating the model of the data from the view aids consistency across multiple views when
these are employed. Separating out the controller allows different types of input devices to be
used by different users, which may be useful for disabled users. Having data-specific views
available at any time provides the user with guidance and will contribute to error prevention.
Error prevention improves user efficiency, and increases satisfaction. Additionally, specific
views usually consume fewer resources than the original action, which increases user
efficiency.

36

Architecturally sensitive Usability Patterns

Examples: • Microsoft Word has a number of different views that the user can select (normal view,
outline view, print layout view…) and switch between these at will, which all represent
the same underlying data.

• Rational Rose uses a single model for various UML diagrams. Changes in one diagram
affects related entities in other diagrams.

• Nautilus file manager of the Gnome desktop software for Linux allows multiple views on
the file system.

Figure 7: Multiple views in Microsoft Word 2002

2.9 Multi-Channeling
Usability context: Users want or require (e.g. because of disabilities) access to the system using different types

of devices (input/output).

Intent: Provide a mechanism that allows access using different types of devices (such as
desktop/laptop/WAP/web/interactive TV).

Architectural
implications:

There may need to be a component that monitors how users access the application.
Depending on which channel is used, the system should make adjustments. For example, by
presenting a different navigation controls or by limiting the number of images/data sent to the
user.

Relationship with
Usability:

This pattern improves system accessibility by supporting different devices. User satisfaction
may be increased by enabling access to the system through different devices. However, if
system performance falls because of having to manage these devices, satisfaction may
decrease.

37

Architecturally sensitive Usability Patterns

Examples: • Auction sites such as eBay or weather forecasts can be accessed from a desktop/laptop,
but this information can also be obtained using interactive TV or a mobile phone.

• Some set top boxes allow users to surf the Internet using an ordinary TV.
• Disabled users may use special input devices that allow them to control the application.

Figure 8: EBay access through a mobile phone (WAP)

2.10 Undo
Usability context: Users may perform actions they want to reverse. [Welie, 2003]

Intent: Allow the user to undo the effects of an action and return to the previous state.

Architectural
implications:

In order to implement undo, a component must be present that can record the sequence of
actions carried out by the user and the system, and also sufficient detail about the state of the
system between each action in order that the previous state can be recovered.

Relationship with
Usability:

Providing the ability to undo an action helps the user to correct errors if the user makes a
mistake. It helps the user to feel that it is in control of the interaction. This pattern improves
reliability, as it makes it possible to correct any errors made by the system and improves user
efficiency. Users may become more comfortable exploring the application knowing that undo
can be applied to any action, improving learnability.

Examples: • Microsoft Word provides the ability to undo and redo (repeatedly) almost all actions
while the user is working on a document.

• Emacs allows all changes made in the text of a buffer to be undone, up to a certain
amount of change.

• Photoshop provides a multi level undo, which allows the user to set the number of steps
that can be undone. This is necessary because storing the information required to do the
operations requires a substantial amount of memory.

Figure 9: Undo in word

38

Architecturally sensitive Usability Patterns

2.11 User Modes
Usability context: The application is very complex and many of its functions can be tuned to the user's

preference. Not enough is known about the user's preferences to assume defaults that will suit
all users. Potential users may range from novice to expert [Welie, 2003]

Intent: Provide different modes corresponding to different feature sets required by different types of
users, or by the same user when performing different tasks.

Architectural
implications:

Depending on the mode, the same set of controls may be mapped to different actions, via
different sets of connectors, or more or fewer user interface components may be displayed.
Using e.g. [Buschmann et al, 1996] Broker style may be required to implement this.

Relationship with
Usability:

Supporting different modes allows personalization of the software to the user’s needs or
expertise. Expert users can tweak the application for their particular purposes, which
increases satisfaction and possible performance, but this solution decreases learnability
[Welie, 2003]

Examples: • WinZip allows the user to switch between “wizard” and “classic” modes, where the
wizard mode gives more guidance, but the classic mode lets the expert user work more
efficiently.

• Many websites have different modes for different people, e.g. guests, normal, logged-in
users or administrators.

• ICQ allows the user to switch from novice (limited functionality) to advanced enabling all
functionality.

Figure 10: User modes in ICQ

2.12 User Profiles
Usability context: The application will be used by users with differing abilities, cultures, and tastes [Tidwell

1998].

Intent: Build and record a profile of each (type of) user, so that specific attributes of the system (for
example the layout of the user interface, the amount of data or options to show) can be set
and reset each time for a different user. Different users may have different roles, and require
different things from the software.

Architectural
implications:

A repository for user data needs to be provided. This data may be added or altered either by
having the user setting a preference, or by the system. User profiles often have a security
impact that has major architectural implications.

Relationship with
Usability:

Providing the facility to model different users allows a user to express preferences which is a
form of adaptability. Satisfaction is raised because users are allowed to customize the
application to their needs and wishes.

39

Architecturally sensitive Usability Patterns

Examples: • Many websites recognize different types of users (e.g. customers or administrators) and
present different functionality depending on the current user.

• Amazon.com builds detailed profiles for each of its customers so that it can recommend
products the user might like.

• .NET security model. By means of attribute oriented programming users can set security
modes for three types of profiles.

Figure 11: User profiles in windows XP

2.13 Wizard
Usability context: A non-expert user needs to perform an infrequent complex task consisting of several subtasks

where decisions need to be made in each subtask [Welie, 2003].

Intent: Presents the user with a structured sequence of steps for carrying out a task and guide the
user through them one by one. The task as a whole is separated into a series of more
manageable subtasks. At any time, the user can go back and change steps in the process.

Architectural
implications:

There needs to be provision in the architecture for a wizard component that can be connected
to other relevant components, for example, the one triggering the operation and the one
receiving the data gathered by the wizard.

Relationship with
Usability:

The wizard shows the user each consecutive step in the process. The task sequence informs
the user which steps will need to be taken and where the user currently is. The learnability of
the task is improved, but it may have a negative impact on the efficiency of users forced to
follow the sequence.

40

Architecturally sensitive Usability Patterns

Examples: • The install wizard used by most Windows programs guides the user through choosing
various options for installation.

• When partitioning hard disks during Mandrake Linux install a user can use Disk Druid,
which is a disk partition wizard.

• Blogger.com allows a user to create a new web log (online publishing system) in four
simple steps using a wizard. Advanced users may customize their web log afterwards by
editing templates.

Figure 12: Program compatibility wizard in windows XP

2.14 Workflow model
Usability context: A user who is part of a workflow chain (based on some company process), should perform its

specific task efficiently and reliable.

Intent: Provide different only the tools or actions that they need in order to perform their specific
task on a piece of data before passing it to the next person in the workflow chain.

Architectural
implications:

A component or set of connectors that model the workflow is required, describing the data
flows. A model of each user in the system is also required, so the actions they need to
perform on the data can be provided (see also user profile).

Relationship with
Usability:

This pattern improves user efficiency and reliability, as the user will only see the information
and tasks corresponding to the operations to be done.

41

Architecturally sensitive Usability Patterns

Examples: • Most CMS and ERP systems are workflow model based.
• A typical example of an administrative process that is workflow based is the handling of

an expense account form. An employee fills in the proper information; the form is routed
to the employee's manager for approval and then on to the accounting department to
disburse the appropriate check and mail it to the employee.

• Online publishing: a journalist writes an article and submits it online to an editor for
review before it is published on the website of a newspaper. This process is often
automated in a workflow model.

Figure 13: Workflow model in Microsoft Content Management Server 2001

2.15 Emulation
Usability context: Users are familiar with a particular system and now require consistency in terms of interface

and behavior between different pieces of software

Intent: Emulate the appearance and/or behavior of a different system.

Architectural
implications:

Command interfaces and views but also behavior needs to be replaceable and
interchangeable, or there needs to be provision for a translation from one command language
and view to another in order to enable emulation. This differs from the providing multiple
views diagram because the behavior of the application should be replaceable.

Relationship with
Usability:

Emulation can provide consistency in terms of interface and behavior between different
pieces of software, which may aid learnability

42

Architecturally sensitive Usability Patterns

Examples: • Microsoft Word 97 can be made to emulate WordPerfect, so that it is easier to use for
users who are used to that system.

• Windows XP offers a new configuration menu; however, it is possible to switch to the
“classic view” for users more familiar with windows 2000 or windows 98.

• Jedit (Open Source programmer's text editor) can have EMACS and VI key bindings
modes.

Figure 14: Windows XP control panel

2.16 Context Sensitive Help
Usability context: When help in the context of the current task would be useful.

Intent: Monitor what the user is currently doing, and make documentation available that is relevant
to the completion of that task.

Architectural
implications:

There needs to be provision in the architecture for a component that tracks what the user is
doing at any time and targets a relevant portion of the available help.

Relationship with
Usability:

The provision of context sensitive help can give the user guidance. This pattern will improve
reliability and efficiency, as well as learnability for non-expert users.

43

Architecturally sensitive Usability Patterns

Examples: • Microsoft Word includes context sensitive help. Depending on what feature the user is
currently using (entering text, manipulating an image, selecting a font style) the Office
Assistant will offer different pieces of advice (although some users feel that it is too
forceful in its advice).

• Depending upon what the cursor is currently pointing to; Word will pop up a small
description or explanation of that feature.

• Eclipse (a popular Java development environment) allows the user to consult context
sensitive info (such as specific API specifications)

Figure 15: Context sensitive help

3. Related work
In our work, the concept of a pattern is used to define an architecturally sensitive usability pattern. Software patterns first
became popular with the object-oriented Design Patterns book [Gamma et al 1995]. Since then a pattern community has
emerged that produced specifies patterns for all sorts of problems (e.g. architectural styles [Buschmann et al, 1996] and
object oriented frameworks [Coplien and Schmidt, 1995].
An architecturally sensitive usability pattern as defined in our work is not the same as a design pattern [Gamma et al
1995] Unlike the design patterns, architecturally sensitive patterns do not specify a specific design solution in terms of
objects and classes. Instead, we outline potential architectural implications that face developers looking to solve the
problem the architecturally sensitive pattern represents.
One aspect that architecturally sensitive usability patterns share with design patterns is that they capture design
experience in a form that can be effectively reused by software designers to improve the usability of their software,
without having to address each problem from scratch. The aim is to capture what was previously very much the “art” of
designing usable software and turn it into a repeatable engineering process.
Previous work has been done in the area of usability patterns, by [Tidwell 1998], [Perzel and Kane 1999], [Welie and
Trætteberg, 2000]. Several usability pattern collections [Brighton, 1998], [Common ground, 1999], [Welie, 2003],
[PoInter, 2003] can be found on the web3. Most of these usability patterns collections refrain from providing or
discussing implementation details. Our paper is not different in that respect because it does not provide specific
implementation details. However, we do discuss potential architectural implications. Our work has been influenced by
the earlier work, but takes a different standpoint, concentrating on the architectural impact that patterns may have on a
system. We consider only patterns that should be applied during the design of a system’s software architecture, rather
than during the detailed design stage.
[Bass et al, 2002] give examples of architectural patterns that may aid usability. They have identified scenarios that
illustrate particular aspects of usability that are architecture-sensitive and present architectural patterns for implementing
these aspects of usability

4. Conclusions
This paper describes an integrated set of architecturally sensitive usability patterns, that in most cases, are considered to
have a positive effect on the level of usability but that are difficult to retro-fit into applications because these design
solutions may require architectural support. For each of our architecturally sensitive usability patterns we have analyzed
the usability effect and the potential architectural implications. The architecturally sensitive usability patterns have been

3 for a complete overview: http://www.pliant.org/personal/Tom_Erickson/InteractionPatterns.html

44

Architecturally sensitive Usability Patterns

derived from internal case studies at the industrial partners in the STATUS project and from existing usability pattern
collections.
We believe that it is vital that usability issues are taken into account during the architecture design phase to as large an
extent as is possible to prevent the high costs incurring adaptive maintenance activities once the system has been
implemented. Our collection of patterns can be used during architectural design to heuristically evaluate if the
architecture needs to be modified to support the use of such patterns. However, we do not claim that a particular pattern
will always improve usability. It is up to the architect to assess whether implementing a pattern at the architectural level
will improve usability. In addition, the architect will have to balance usability optimizing solutions with other quality
attributes such as performance, maintainability or security.
Future research should focus on verifying our assumptions concerning the architectural sensitiveness of the usability
patterns. Proving the architecture sensitivity of a usability pattern is difficult because the patterns we presented may be
implemented in different ways, influencing architectural sensitiveness.
Practice shows that patterns such as cancel, undo and history logging may be implemented by the command pattern
[Gamma et al 1995], emulation and providing multiple views may be implemented by the MVC pattern [Buschmann et
al, 1996]. Actions for multiple objects may be implemented by the composite pattern [Gamma et al 1995] or the visitor
pattern [Gamma et al 1995]. Investigating how our usability patterns may be implemented by design patterns or
architectural patterns is considered as future work.
In addition to the patterns that we identified, there are some techniques that can be applied to the way that the
development team designs and builds the software and that may lead to improvements in usability for the end user. For
example, the use of an application framework as a baseline on which to construct applications may be of benefit,
promoting consistency in the appearance and behavior of components across a number of applications. For instance,
using the Microsoft Foundation Classes when building a Windows application will provide “common” Windows
functionality that will be familiar to users who have previously used other applications build on this library. This is not a
pattern that can be applied to the architecture in the same way as those presented in section 5, but it is nonetheless
something which will be considered during the further study of the relationship between software architecture and
usability during the remaining parts of this project.

5. Acknowledgements
We would like to thank the partners in the STATUS project for their input and their cooperation.

6. References
[IEEE, 1998]

 IEEE Architecture Working Group. Recommended practice for architectural description. Draft IEEE Standard
P1471/D4.1, IEEE, 1998,

[Bass et al, 2001]
 Bass, Lenn; Kates, Jessie & John, Bonnie. E. Achieving Usability through software architecture, 2002,

http://www.sei.cmu.edu/publications/documents/01.reports/01tr005.html

[Berkun, 2002]
 Berkun, S., The list of fourteen reasons ease of use doesn't happen on engineering projects,

http://www.uiweb.com/issues/issue22.htm

[Bosch, 2000]
 Bosch, J., 2000. Design and Use of Software Architectures: Adopting and Evolving a Product Line Approach,

Pearson Education (Addison-Wesley and ACM Press).

[Brooks, 1995]
 Brooks, F. P. jr., 1995. The Mythical Man-Month: Essays on Software Engineering, Twentieth Anniversary

Edition, Addison-Wesly.

[Buschmann et al, 1996]
 Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., 1996. Pattern-Oriented Software

Architecture: A System of Patterns, John Wiley and Son Ltd.

[Coplien and Schmidt, 1995]
 Coplien, J. O., Schmidt, D. C., 1995. Pattern Languages of Program Design, Addison-Wesley (Software

Patterns Series).

45

Architecturally sensitive Usability Patterns

[Folmer and Bosch, 2002]
 Folmer, E. & Bosch, J. Architecting for usability; a survey. Journal of systems and software0-0, 2002.

[Gamma et al 1995]
 Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns Elements of Reusable Object-Orientated

Software., Addison -Wesley.

[Granlund et al, 2001]
 Granlund, Å.; Lafrenière, D. & Carr, D. A., 2001, Pattern-Supported Approach to the User Interface Design

Process, Proceedings of HCI International 2001 9th international Conference on Human-Computer interaction.

[PoInter, 2003]
 Lancaster University, PoInter: Patterns of INTERaction collection,

http://www.comp.lancs.ac.uk/computing/research/cseg/projects/pointer/patterns.html

[Lederer and Prassad, 1992]
 Lederer, A. L. P. J. Nine Management Guidelines for Better cost Estimating. Communications of the ACM51-

59, 1992.

[Nielsen, 1993]
 Nielsen, J., 1993. Usability Engineering, Academic press,San Diego CA.

[Perzel and Kane 1999]
 Perzel, K. & Kane, D., 1999, Usability Patterns for Applications on the World Wide Web.

[Pressman, 1992]
 Pressman, R. S., 1992. Software Engineering: A Practitioner's Approach, McGraw-Hill, NY.

[Brighton, 1998]
 The Usability Group at the University of Brighton, UK., The Brighton Usability Pattern Collection.

http://www.cmis.brighton.ac.uk/research/patterns/home.html

[Tidwell 1998]
 Tidwell, J., 1998, Interaction Design Patterns, Conference on Pattern Languages of Programming 1998.

[Common ground, 1999]
 Tidwell, J., Common ground: Pattern Language for Human-Computer Interface Design,

http://www.mit.edu/~jtidwell/interaction_patterns.html

[Welie, 2003]
 Welie, M., GUI Design patterns, http://www.welie.com/

 [Welie and Trætteberg, 2000]
 Welie, M. & Trætteberg, H., 2000, Interaction Patterns in User Interfaces, Conference on Pattern Languages of

Programming (PloP) 7th.

47

47. A Pattern Language for Supporting Wireless Communication Between End-

Points

 1

A Pattern Language for Supporting Wireless
Communication Between End-Points

Franco Guidi-Polanco, Claudio Cubillos F., Giuseppe Menga, and Samuel Penha

Dip. Automatica e Informatica, Politecnico di Torino, Italy
C.so Duca degli Abruzzi 24, I-10129 Turin, Italy

Phone: +39 011 564 7084 Fax: +39 011 564 7099
E-mail : {franco.guidi, claudio.cubillos, menga}@polito.it

I. Introduction

Development in information and communication technologies has made possible the vision of
pervasive computing as the paradigm for the beginning of the 21st century [12]: computing
devices are evolving to “wearable” forms, everyday objects are becoming “intelligent”, and
their traditional functions are being shared through omnipresent networks, linking local
environments with global worldwide services. Different physical communication
technologies, such as Wireless LAN (IEEE 802.11b), General Packet Radio Service (GPRS),
or Universal Mobile Telecommunication System (UMTS) [8], are currently available, and
multi-interface devices are taking advantage of them. Universal communication is possible
due to the diffusion and adoption of Internet protocols as open inter-applications standards.

 As consequence of these trends in information and communication technologies, we
envisioned the concept of “Global Automation” [2]. Global Automation means transferring
and extending classical process control and factory automation ideas to large scale distributed
environments, allowing the creation of flat interconnections of autonomous, decentralized
and highly interacting decision making/control modules. As enabling architecture for the
implementation of global automation systems we started developing the Global Automation
Platform (GAP), a middleware framework made up by a communication infrastructure that
conceives, under a common architectural reference model, the integration of fixed and mobile
services, using a wide range of communication technologies. From the point of view of the
execution environment, the GAP platform has been designed to integrate a network of
heterogeneous devices, from embedded processors with limited processing power, memory,
networking capabilities, to large enterprise servers. The programming languages that we are
using to implement the architecture are Java and G++ (our extension of C++ for automation
systems) [7], C++ for Windows CE, G++ for Windows CE, Java 2 Standard Edition (J2SE),
and Java 2 Micro Edition.

 The pattern language presented in this article is the result of our efforts towards the
design of the communication infrastructure for the GAP platform, and the experience we
have made with it in the fields of automation systems and mobile robotics. In particular, our
“laboratory” experiences regarded the integration of mobile robots that have to interact
among them and with external services -as directory services, human or automated
controllers, etc.- using mainly wireless connections.

 Finally, the resulting architecture –and the design patterns that describe it- can be applied
in other networking scenarios, not necessary related to the field of mobile robotics. In
particular, we believe that the patterns described in this article can be useful for developers
interested in the integration of distributed applications using different networking
technologies, especially wireless networks.

48

A Pattern Language for Supporting Wireless Communication Between End-Points

 2

II The Pattern Language

The concrete problems addressed by this pattern language involve the design of software
systems that requires establishing and managing communication between two end-points
relying on different (mainly wireless) networking technologies.

 The first pattern, called Communicator/Session/Channel describes an architecture that
provides high-level connectivity for applications, maintaining the state of the message
transmission independently from the state of the underlying network channel. The adoption of
this pattern allows the development of applications that do not require awareness of both, the
network channel stack, and the state of the communications in case of brief interruptions.

 The second pattern, Channel with Configurable Protocols describes how a
communication channel can be structured in terms of different combinations of messaging
formats and networking protocols, that can be separately plugged-in the system.

 The third pattern, the URL-Based Connection Factory presents a common interface for
the specification and initialization of the appropriate combination of network classes in terms
of network protocols and message formats.

 Figure 1 shows the relationships between the different design patterns pertaining to this
pattern language.

 As a way to introduce this patterns, a metaphor based on everyday communication
between people is presented: Consider a common case of direct communication between two
friends that frequently communicate writing e-mails, letters, chatting lines, phone calls, and
so on. They can maintain a conversation along the time using these different means. We can
view each treated topic (vacations, health, work, etc.) as a “session”, and the state of each
session depends on the development of the conversation about that topic. Each specific
communication means is what we call “channel”, and a channel is required to develop a
conversation. In this context we can imagine one of the friends telling the other one in a letter
that is sick, then in the next communication (e.g a phone call) that friend will (probably) ask
him about his illness (case of the channel change in a session). On the other hand, in the same
phone call they can talk about other things, like politics, family, jokes, etc. (case of channel
sharing between sessions).

 This pattern language aims to provide a similar flexible communication model for
software applications.

1. Communicator/Session/
Channel

2. Channels with
Configurble Protocols

3. URL-Based Connection
Factory

Figure 1 The pattern language for designing communication between end-points.

49

A Pattern Language for Supporting Wireless Communication Between End-Points

 3

Pattern 1: The Communicator/Session/Channel

This pattern describes an architecture for the management of communication sessions
between objects interacting through a (wireless) network. It hides to the application the
complexity regarding networking protocols and the state of the communications.

Problem
Due to radio interferences and signal loosing, connections between some mobile systems over
wireless networks are subject to interruptions and possible on-the-fly changes in the network
configuration. In this way, a mobile system could try to restore a broken channel or, even
more, could try to switch to different predefined channels (relaying on a different
communication technology) in order to reestablish the communication. If a sort of timeout is
defined to retry a reconnection or an interrupted message transmission, the application
doesn’t need to be aware about brief interruptions or channel switching procedures that do
not result in disconnectedness time or transmission delays longer than the allowed timeout.

 The problem addressed by this pattern is: How to manage the continuity of
communication over non-continuous network connections?

Context
You are developing a system that requires creating connections between two end-points using
mainly wireless networking protocols. The system should support automatic mechanisms for
connection reestablishment and/or vertical handoff [9].

Forces
- A system running on a mobile unit can be designed to handle a broken connection trying

either to restore it or to switch to a different wireless network.

- An application can require that brief network interruptions -to handle reconnections or
channel switching- do not affect the state of communication. In other words, the
application should know which messages have already been sent and received in order to
allow, after interruptions, the communication reestablishment and continuity.

- In some cases can be also convenient to share a communication channel between two or
more processes running in the same systems.

- Programming languages and execution platforms usually offer low-level components,
classes or routines to achieve connectivity across a network, which do not provide
support for network interruptions and more advanced channel management.

Example
Consider a mobile robot that has to explore a certain area (Figure 2), communicating
measurements obtained from its sensors (temperature, obstacles and their positions, intruders,
etc.) to its remote monitoring station. The robot is enabled with two or more network
interfaces -let’s say Wireless LAN and GPRS- allowing it to select the most suitable under
each circumstance, and to make the change even during a communication (due to the larger
bandwidth and lower cost of the W-LAN compared to the GPRS, the robot will prefer the
former any time is possible). This means that the robot needs to maintain accurate
information about the state of the communication, that is, which messages have been sent and
which ones have already been received, independently from the changes in the network used.

50

A Pattern Language for Supporting Wireless Communication Between End-Points

 4

Solution
This design pattern provides an architecture in which the message transmission (messages
sent, received, etc.) is decoupled from the network channel, allowing the first one not to be
affected by non-permanent interruptions or changes in the network access. This decoupling is
based on the implementation of a session-level protocol, on top of the already existing
protocols in the communication network.

 Figure 3 presents the class diagram that describes this pattern, where the following
participants are recognized:

a) Application

It is the system that requires maintaining communications with other remote systems. To
establish a connection with a remote system, the application asks to the Communicator
for the creation of a new Session. The application sends and receives messages
through the network interacting directly with Session instances.

b) Communicator

It is the base class from which can be derived all classes with communication
capabilities. It acts as a façade pattern hiding to the application all complexities related to
networking. For the creation of new Session instances this class offers two methods:
createSessionAcceptor, to create server-side connections; and
createSessionConnector, to create client-side connections. In both cases
parameters describing the connection (e.g. URLs) have to be given.

W-LAN access point

GPRS cell antenna

WLAN coverage area

GPRS coverage area

InternetInternet

Monitoring station

Figure 2. Mobile robot example.

Communicator

createSessionConnector(URL)
createSessionAcceptor(localURL)

Session

setChannel(channel)
read()
write(message)
close()

SessionMessagesListOut

Channel

ChannelManager

assignAcceptorChannel(session)
assignConnectorChannel(session)
releaseChannel(session)

SessionWriterThread

SessionMessagesListIn <<reads>>

<<updates>>

<<writes>>

ChannelReaderThread

*

*

addSession(session)
connectTo (remoteURL)
acceptOn(localURL)
read()
write(message)
close ()

Application

Figure 3. The Communicator class diagram.

51

A Pattern Language for Supporting Wireless Communication Between End-Points

 5

b) Channel Manager

It is the class that encapsulates both, the connection reestablishment and the change of the
channel assigned to a session. The criteria used to reestablish a broken channel or to
switch among channels could be implemented as simple external requests, or as an
intelligent autonomous decision that takes into consideration the state of communication
and some quality of service metrics of the network.

c) Session

It is the class that maintains the state of transmitted messages between two end-points.
Sessions receive from the Communicator (or directly from the application)
messages to deliver across the network, which are first stored in the list of out coming
messages, and then sent through the Channel. Sessions are prepared to stop writing
to a Channel before initiating a change of Channel, and, after the change, to restore
the state of connection. Even more, messages sent using one Channel could receive its
acknowledgement through another Channel.

d) Session Messages Lists (In and Out)

Each Session holds two lists, the SessionMessageListIn, and the
SessionMessageListOut. The former stores incoming messages, and the
ChannelReaderThread updates it through the Session. The latter list manages out
coming messages, and it is updated with new messages every time the write method of
the Session is invoked. Messages are not removed from the list of out coming
messages until acknowledgements are received or a request of closing the session is
accepted. Correspondingly, incoming messages are not deleted from the In list until they
are read by the application.

e) Session writer thread

It is the tread that runs in the Session. It takes the first message from the
SessionMessageListOut and sends it to the receiver invoking the write method of
the Channel.

f) Channel

It is the class in charge of sending the message across the network, representing one side
of a connection between two end-points. It acts as an interface for the Session,
providing methods to read from and write to the network. It encapsulates the stack of
underlying network protocols needed for the communication, together with the control
mechanism for data transmission. Decoupling the session state from the channel state
allows Channel sharing among two or more Sessions, as it is shown in Figure 4.

Object A

Session1 Session2 Session 3

Session1

Session 2 Session3

Session 5Session 5

Channel

Channel

Channel

Session 4

Session4

Channel

Channel

Channel

Channel

Channel

Processes

Object B Object C

Figure 4 A communication example

52

A Pattern Language for Supporting Wireless Communication Between End-Points

 6

g) Channel Reader Thread

It is the thread that runs inside the Channel. It receives messages from the network and
stores them in the SessionMessagesListIn.

Notes:

Dynamics- In the first part of Figure 5 is shown the message sequence that describes the
creation of a new session (in server mode). When the opening of a new session in server
mode is requested, the Communicator creates a new Session instance, and then it asks
the ChannelManager for the creation of a new Channel instance, which is further
associated to the Session. Then the specific procedure for opening the Channel in the
server mode is called through the method waitForConnection, which includes as
parameter the configuration of the local protocol and port where the system must listen for an
incoming connection. Opening a client connection is done in a similar way, the Application
calls the Communicator’s connectToRemote method, which performs the same
initialization of the Session and the Channel, but instead of calling in this the
waitForConnection method, it is called the method connectToRemote. This method
activates the low-level client side connection.

 In the same figure is described the closing connection procedure, which is the same
independently from the role (client/server) played by the party that initiates the procedure.
Due to the fact that a Channel could be shared between different Sessions, the
Channel is first released from the Session and it is closed when there are no other
Sessions using it.

Architecture overhead- The reading and writing procedures rely in an asynchronous
communication model, supported by the ChannelReaderThread and the
SessionWriterThread. When the application has to communicate through synchronous
connections, this approach incurs in an unnecessary overhead, as the input and output flows
can be handled in the same thread. It is also important to notice that when a Channel is
shared among two or more Sessions, an overhead exists for distinguishing which message
goes to which Session. In practice this means that the head of each message has to include
the target Session identifier, and the Channel has to provide a mechanism for sending
the message to the corresponding destination Session.

:Application :Communicator

newSession
:Session

newChannel
:Channel

:Channel
Manager

createSessionAcceptor(LocalURL)
<<create>>

assignAcceptorChannel(Session)
<<create>>

Session

waitForConnection(URL)

connectionOK

close ()

releaseChannel(Session)

close()

closeOK

sessionOK

setChannel (Channel)
addSession (Session)

channelOK

C
re

at
in

g
a

se
rv

er
 s

es
si

on
C

lo
si

ng
 th

e
se

ss
io

n

Figure 5 Message sequence diagram for session creation and closing using a new channel

53

A Pattern Language for Supporting Wireless Communication Between End-Points

 7

Resulting context
Applications can manage communications over different networks, without awareness of
either temporal interruptions or the network handover procedure.

Known uses
- In [6] is described the experience of an exploration robot Pioneer DX2 running a C++

control program that accepts commands from a remote operator through TCP sockets on
a Wireless LAN, and HTTP/WAP over GPRS. The robot can switch between them
accordingly with the kind of network signal received in its position.

Related patterns
- Channel with Configurable Protocols: The networking functions encapsulated by the

class Channel can be implemented using the Channel with Configurable Protocols
pattern, which provides access to the network selecting the adequate protocol.

- Façade: The Communicator class acts as a Façade pattern [3], providing to the
application a simplified interface for the session creation and management.

Pattern 2: Channels with Configurable Protocols
It provides a way to handle message formats over different network protocols.

Problem
A distributed application usually requires the adoption of a common message protocol (e.g
XML, DAML+OIL, FIPA-SL, etc.) for its communication system. This message protocol has
to be implemented on top of certain stacks of network protocols (e.g. HTTP over TCP-IP
over IEEE802.11b, XML over SMSs, etc.), which vary depending on the kind of
communicating device and their networking capabilities. If the whole system has a high
degree of heterogeneity, then it could be necessary to implement the same message protocol
over different network protocol stacks, increasing the complexity of the system.

 This pattern solves the problem about how to combine message and networking
protocols, making possible: (1) an efficient implementation of a common message protocol
over different networking protocols; and (2) the reuse of network protocol management
models for supporting different messaging protocols.

Context
You are developing a system that has to be prepared to interact with remote systems. These
systems are running on a heterogeneous environment of devices and networks, and you have
to provide message exchange formats over different networking protocols.

Forces
- Some execution platforms provide certain classes or functions to manage standard

protocol stacks that can be used to format and send messages across the network.
However, these stacks are not always shared by all the execution environments integrated
by the communication system.

- Developing the own protocol stacks as single components can produce a simple
architecture if just one stack is required for the entire system.

- Developing components for each level of the network protocol stack produces a more
flexible but complex architecture.

54

A Pattern Language for Supporting Wireless Communication Between End-Points

 8

- Most systems require a few combinations of protocol stacks.

Example
A team of in field technicians is in charge of measuring the pollution levels during an
environmental emergency. The technicians are equipped with different instruments according
to the polluting agents to quantify. These instruments are capable to transmit in real time their
data to a central monitoring station that summarizes them and generates the entire map of
pollution levels for the given area under emergency. The instruments run on different mobile
platforms (e.g. J2ME, Windows CE, PALM-OS, etc.) and use different network stacks to
transmit the information, combining different protocols and technologies (e.g. HTTP over
Wireless LAN, SMSs over a GSM network, etc.) The central monitoring station has to be
prepared to interact with these devices and new ones, without the need of further
modifications at the application level.

Solution
This pattern divides the implementation of the stack of communication protocols into two
interacting classes: a message protocol class that encapsulates the format (or language) of the
message, and a network protocol class that encapsulates the underlying networking protocols.
This decouples the message protocol from the network protocols, allowing the first one to
rely on different configurations of the second one.

The participants involved in this pattern are (see Figure 6):

a) Application

It is the final user of the network services. It instantiates a Channel object, and asks it to
create new connections for sending and receiving messages.

b) Channel

This class represents a high-level abstraction for a connection between two end-points,
and acts as an interface for applications, providing methods to write to and read from the
network. At the beginning of a new communication this class is responsible for the
instantiation of the concrete ChannelProtocol class, according to the desired
network protocol and message format. The Channel offers to the application two
complementary ways to open new connections. The first, a server-side connection, is
supported by the method acceptOn that waits for an incoming connection received in
the local address specified as parameter of the method. The second, a client-side
connection, is provided by the method connectTo that tries to open a session as a
client connecting to the address received as parameter (establishing a connection requires
one part acting as server and the other as client). The class also provides methods for
reading (read) and writing (write) messages, and closing (close) the connection. All
of these methods are mapped to the corresponding methods of the associated
ConcreteMessageProtocol instance.

c) Channel Protocol

It is an abstract class that holds a reference to a stack composed by a message protocol
and a network protocol. Its subclasses have to bind together a message–network protocol
pair (instances of MessageProtocol and NetworkProtocol subclasses).

d) Concrete Channel Protocol

By extending the ChannelProtocol abstract class, the concrete channel protocol
provides one instance of concrete message protocol with another instance of concrete
network protocol. This allows a quick instantiation of a specific stack of protocols. The
Concrete channel protocols depend on the configurations that are expected to be
supported by the device or system.

55

A Pattern Language for Supporting Wireless Communication Between End-Points

 9

e) Message Protocol

The pattern provides this abstract class from which concrete message protocols must be
derived. The abstract class MessageProtocol holds a reference to a
NetworkProtocol subclass instance. The class provides the implementation of the
concrete methods setNetworkProtocol, which sets the network protocol to use;
acceptOn and connectTo, which forward to the concrete network protocol the
opening of a channel in server or client mode respectively, using the address provided as
parameter; and the close method, which forwards the closing of the channel to the
underlying concrete network protocol. This class also declares abstracts methods for
writing (write) and reading (read) messages to/from the network protocol, which
have to be implemented in its subclasses.

f) Concrete Message Protocol

The pattern delegates to subclasses of MessageProtocol the implementation of the
message format and control logic of the protocol used to exchange messages between the
communicating systems. Concrete message protocol classes must implement the write
and read methods that perform encoding and decoding of messages. Both operations
have to be implemented according to the selected message format (e.g. SQL, XML,
SOAP, FIPA-SL, etc). A concrete message protocol can specify only a format for the
messages (e.g. FIPA, KIF, or KQML formats) or can define a specific grammar or
language to use for the messages (e.g. XML, DAML Prolog, SQL, etc). In the end, each
concrete message protocol class can be considered as a specific parser for a certain kind
of messages.

g) Network Protocol

This is an abstract class from which classes that encapsulate the stack of network
protocols have to be derived. The abstract class NetworkProtocol holds a reference
to a MessageProtocol subclass instance. It also implements the concrete method
setMessageProtocol, which sets the Concrete Message Protocol instance. It also
declares the abstract methods acceptOn and connectTo for the creation of
connections as server or client, using the address received as parameter; the method
close to close the opened channel; and the methods write and read, for data
transmission.

Channel

acceptOn(localURL)
connectTo (remoteURL)
read()
write(message)
close ()

<<abstract>>
NetworkProtocol

setMessageProtocol(mProt)
acceptOn(URL)
connectTo(URL)
read ()
write (message)
close ()

ConcreteNetworkProtocol

Application

<<abstract>>
MessageProtocol

setNetworkProtocol(nProt)
acceptOn(URL)
connectTo(URL)
read ()
write (message)
close ()

ConcreteMessageProtocol

<<abstract>>
ChannelProtocol

init()

ConcreteChannelProtocol

ChannelReaderThread

<<creates>>

<<creates>>

Figure 6 The Channel with Configurable Protocol.

56

A Pattern Language for Supporting Wireless Communication Between End-Points

 10

h) Concrete Network Protocol

It extends the abstract NetworkProtocol class. It encapsulates a concrete stack of
networking protocols, and implements the abstract methods declared in its base class for
opening and closing connections, and for sending and receiving data through the network.

Figure 7 shows the message sequence diagram that describes the loading of protocols during
the channel opening. Instances of concrete implementations of message protocol and network
protocols are created when the init method of the concrete channel protocol is invocated.
After initialization an acceptOn command is forwarded from the Channel instance to the
concrete network protocol, which is responsible for the creation and activation of the specific
objects that perform the low level communication. Closing the channel is performed by first
closing the network protocol and then the message protocol. Further use of this stack requires
a new invocation of the init method of the concrete channel protocol object.

Resulting context
When applying this pattern, message protocols (message format) and network protocols are
defined separately and can be combined in runtime to create the desired network stacks.

Known uses
- In the world of Multi-Agent Systems, the Foundation for Intelligent Physical Agents

(FIPA) has defined a format for the message exchange between agents [5]. In this way, a
common format is used over different communication protocols.

- A similar approach is one followed in the Knowledge Sharing Effort (KSE) initiative in
which they developed KQML [4], a message format and a set of interaction protocols for
agents and platforms to adopt in its communications.

:Application :Channel

:concreteMessageProtocol

:ConcreteNetworkProtocol

:ConcreteChannelProtocol
waitForConnection(URL)

<<create>>

<<create>>

<<create>>

close()
close()

close()

closeOKcloseOK
closeOK

setMessageProtocol(MP)
setNetworkProtocol(NP)

acceptOn(URL*)
accepOn(URL*)

acceptOK
acceptOK

acceptOK

init()

initOK

C
re

at
in

g
a

se
rv

er
 c

on
ne

ct
io

n
C

lo
si

ng
 th

e
ch

an
ne

l

Figure 7 Opening and closing a Channel.

57

A Pattern Language for Supporting Wireless Communication Between End-Points

 11

Related patterns
- URL-Based Connection factory: provides the mechanism for specification and

instantiation of the desired concrete protocol object, using a common interface.

- Composite: The Channel class can use this pattern to define a composite message.
Therefore it will be able to manage messages with different granularities, that is, of
different length and type.

- Prototype: The Prototype pattern can be used to maintain the instances of all the Channel
Protocols that have to be supported by an application.

Pattern 3: The URL-Based Connection Factory
It provides a single interface for opening communication connections using different protocol
stacks.

Problem
Communication protocols evolve through time. Therefore communication applications should
be flexible enough to adopt new protocols without incurring into modifications. Common
applications, instead, include as part of their code the instantiation of classes associated to the
protocols to use. As consequence, this simpler but more inflexible approach requires
maintenance in order to deal with new protocols.

 The problem is how to manage communication protocols dynamically, in such a way that
they do not require the maintenance of the application.

Context
You are developing a system that has to interact with remote systems using different stacks of
protocols. These protocols can be known or unknown at design time.

Forces
- Different stacks of communication protocols have specific sets of parameters that

describe how a connection has to be done, but this requires managing different sets of
parameters for the different communication protocols.

- The application should be able to manage new communication protocols, so it is desirable
that this is done without incurring into further modifications.

- The GoF’s Factory Method [3] defines in a class a common interface for delegating
object instantiation to it subclasses.

- Internet resources can be accessed in different ways, but the use of Uniform Resource
Locators provides a unique way to access them.

Example
An agent platform (such as JADE [11]) has to be able to connect to other platforms, agents
and external resources using different protocols, such as IIOP/GIOP, RMI, HTTP, and so on.
As soon as new protocols are decided to be incorporated, the platform should be able to adopt
them without any changes in its existing code.

Solution
Objectify the connections and provide a factory class able to instantiate them with a single
method. In addition, the protocol selection can be done by specifying a URL that describes
the connection. The Figure 8 shows the class diagram of this pattern.

58

A Pattern Language for Supporting Wireless Communication Between End-Points

 12

 In this way, only the corresponding concrete connection class has to be created in face of
a new protocol, implementing the common interface between the application and concrete
connections. This common interface (Connection) together with the single method for
connections instantiation enables the rest of the application to gain protocol independence.

 The following participants compose the pattern:

a) Connection Factory

This class provides two methods to create instances of Connections: connectTo, which
initiates a client-side connection to the address specified in the URL received as
parameter; and acceptOn, for the creation of server-side connections that accepts as
parameter the local URL, where the system will be listening to an incoming connection.
For example, an application could ask for a TCP socket connection using the following
method call (Java code):

Connection c;
c = ConnectionFactory.connectTo(“tcpsocket://lab.polito.it:8590”);

This represents the request to open a TCP socket to the host called lab.polito.it in the
remote port 8590. As a result of the invocation of each method, a concrete connection is
returned.

b) Connection

It is the interface that concrete connections have to implement. Applications manage
concrete connections through this interface. The interface specifies the methods that
connections must manage. These methods depend on the concrete application under
development. Usually operations to read and write messages, together with a method to
close the connection are included.

c) Concrete Connection

This class represents a concrete connection that implements a specific stack of
networking protocols (e.g. HTTP over TCP). It provides implementation for all the
methods declared in the Connection interface. It encapsulates all the classes required
to manage a connection (e.g. TCP socket related classes).

d) Application

Invokes the factory methods to get connections from the ConnectionFactory, and
manages the returned concrete connection through the Connection interface.

ConnectionFactory

waitForConnection(localURL)
connectTo(remoteURL)

Application <<interface>>
Connection

ConcreteConnection
<<creates>>

Figure 8 The Connection Factory.

59

A Pattern Language for Supporting Wireless Communication Between End-Points

 13

Implementation
The implementation of the ConnectionFactory considers the adoption of a simple
parser for the interpretation of the URL given as parameter in the methods connectTo and
acceptOn. This parser has to identify the different parts of the URL. For example, in the
case of an URL like XXX://hostname:port the parser should recognize XXX as the connection
protocol, hostname as the target host, and port as the remote port to reach (other structures of
URL should be also supported).

 Creating the connection requires instantiation of the adequate concrete connection class,
based on the protocol name. Languages that support reflection (e.g. Java) could take direct
benefit of this capability using dynamic class resolution and loading. Consider the case of an
implementation in Java, where classes to manage connections could follow the name
structure XXXConnection, where XXX represents a string of characters of any length but
equals to the name of the protocol part indicated in the URL. In this way, resolving the
address “tcpsocket://lab.polito.it:8590” could be translated to the creation of an instance of
“TCPSOCKETConnection”), and then the instantiation of the corresponding object can be
done in this way:

1 connectionName = getProtocol(URL) + “Connection”;
2 Class connCl = Class.forName(connectionName);
3 Constructor cnst = connCl.getConstructor(argsClass);
4 Connection con = (Connection) cnst.newInstance(instArgs);

In line 1 the method getProtocol extracts the protocol name part from the URL and
returns it in uppercase (for simplicity). In line 2, the class corresponding to the name given in
variable connectionName is loaded. In line 3 the variable cnst gets a reference to the
constructor of the selected connection having the types of parameters indicated in array
argsClass. Finally, in line 4 the selected connection with values of parameters indicated in
array instArgs is instantiated.

 The runtime instantiation of the concrete connections, in languages that do not support
reflection, can be approached using the Prototype pattern described by Gamma et al [3].

Resulting context
A single interface is used to specify and instantiate different stacks of protocols.

Known uses
- The Sun’s Generic Connection Framework [10] adopted this model to open

communication from wireless mobile devices enabled with the Java 2 Micro Edition
(J2ME). It was conceived to offer an extensible infrastructure for input/output and
network operations.

- This pattern was also adopted in the Java Reflective Broker (JRB) [1], a distributed
object model for the Java language developed by Telecom Italia Laboratory (formerly
CSELT), when is required to get references from remote objects.

- A similar approach is also used by JADE [11], a software framework fully implemented
in Java, designed to simplify the implementation of multi-agent systems. Its agents and
the agent platform can establish different connections with the use of MTPs (Message
Transport Protocol).

60

A Pattern Language for Supporting Wireless Communication Between End-Points

 14

Related patterns
- Channel with Configurable Protocols: Both patterns can be integrated in order to provide

a more flexible selection of channel protocols.

Acknowledgements
The authors would like to thank the VikingPLoP 2003 shepherd Michael Pont, and all the
people in the VikingPLoP 2003 workshop for their useful comments and suggestions.

 The work presented here has been supported by the Centro di Eccellenza per le Radio
Comunicazioni (CERCOM) at the Politecnico di Torino.

References
[1] Cselt (Telecom Italia Lab). Java Reflective Broker Specifications. Available on-line:

http://andromeda.cselt.it/users/g/grasso/bin/jrb.zip

[2] Brugali D. and Menga G. Architectural models for global automation systems. In IEEE Transactions on
Robotics and Automation, Vol. 18, No. 4,pp 487-493, 2002.

[3] Gamma E., Helm R., Johnson R., and Villisides J. Design Patterns: Elements of Reusable Object
oriented Software. Addison-Wesley, NY, 1994

[4] Finin T., Labrou Y. and Mayfield J. KQML as an Agent Communication Language. In: Software
Agents, J.M. Bradshaw (Ed.), Menlo Park, Calif., AAAI Press, 1997, pages 291-316.

[5] Foundation for Intelligent Physical Agents (FIPA). “FIPA Communicative Act Library Specification”.
Doc. No. SC00037J, 03/12/2002. Available at: http://www.fipa.org/specs/fipa00037J/

[6] Lamanna M. Una Piattaforma di Automazione Globale per l’interazione fra unita mobile autonome,
Politecnico di Torino, September 2003.

[7] Menga G., Elia G., and Mancin M. G++: An Environment for Object Oriented design and Prototyping
of Manufacturing systems. In W. Gruver and G. Bordeaux, eds., Intelligent Manufacturing:
Programming Environments for CIM. NY: Springer-Verlag. 1993.

[8] Huber A.J., Huber J.F.: UMTS and mobile computing. Artech House, Inc, Norwood (2002).

[9] Stemm M., Katz R.H.: Vertical handoffs in wireless overlay networks. In Mobile Networks and
applications, Special Issue: mobile networking in the Internet, Vol 3, Issue 4, (1999) 335-350.

[10] Sun: J2ME Generic Connection Framework. Available on-line: http://java.sun.com.

[11] TILAB (Telecom Italia Lab). JADE (Java Agent DEvelopment Framework). Available on-line:
http://sharon.cselt.it/projects/jade/

[12] Weiser M.: The Computer for the 21st Century. In Scientific American, September (1991) 94-100.

61

61. A System of Patterns for Concurrent request Processing Servers

Abstract
This paper addresses architectures of concurrent request processing servers, which are typically implemented using
multitasking capabilities of an underlying operating system. Request processing servers should respond quickly to
concurrent requests of an open number of clients without wasting server resources. This paper describes a small sys-
tem of patterns for request processing servers, covering a relative wide range of architectures. Certain types of
dependencies between the patterns are identified which are important for understanding and selecting the patterns.
As the patterns deal with the conceptual architecture, they are mostly independent from programming languages
and paradigms. The examples presented in this paper show applications of typical pattern combinations which can
be found in productive servers. The pattern language is completed by a simple pattern selection guideline. The sys-
tematical compilation of server patterns, together with the guideline, can help both choosing and evaluating a server
architecture.

1 Introduction
1.1 Application Domain
The patterns discussed in this paper focus on request processing servers which offer services to an
open number of clients simultaneously.

Requests and Sessions.

Figure 1 presents an abstract conceptual model of the server type under consideration. For each
client, it shows a dedicated session server inside the server. Each session server represents an ab-
stract agent which exclusively handles requests of a corresponding client, holding the session–
related state in a local storage. This abstract view leaves open if a session server is implemented
by a task (process or thread) or not. A session starts with the first request of the client and repre-

1

A System of Patterns for
Concurrent Request Processing Servers

Bernhard Gröne, Peter Tabeling
Hasso-Plattner-Institute for Software Systems Engineering

P.O. Box 90 04 60, 14440 Potsdam, Germany
{bernhard.groene, peter.tabeling}@hpi.uni-potsdam.de

Figure 1 Clients and its corresponding servers (Block diagram legend: See figure 2)

client client client

R request

data
listener

&
session
control

session
server

session
state

R

session
server

session
state

R

session
server

session
state

session
data

create &
control
session
servers

R session
request

62

A System of Patterns for Concurrent request Processing Servers

sents the context of all further re-
quests of the client until either the
client or the server decides to finish
it, which usually depends on the
service and its protocol. Because
each session server is only needed
for the duration of the session it
handles, session servers can be cre-
ated and removed by the session
controller on demand.

During a session, a client can
send one or many requests to the server. For each
request the server returns a response. In the follow-
ing, we will exclusively focus on protocols where
each client sends a sequence of requests and the
server reacts with a response per request.

In this context, we have to distinguish between
one-request-sessions and multiple-request-ses-
sions. In case of one-request-sessions, the “session” is
limited to the processing of only one single request,
see figure 3. This is a typical feature of “stateless”
protocols like HTTP. In contrast, a multiple-request-
session like a FTP or a SMB session spans several re-
quests, see figure 4. In this case, a session server re-
peatedly enters an idle state, keeping the session
state for subsequent request processing until it is fi-
nally removed. If the client manages the session
state, it sends the context to the server with every
request, therefore the server can be simpler as it
only has to manage single request sessions (The
KEEP SESSION DATA IN THE CLIENT pattern in [Sore02]),
but this solution has many drawbacks. In this pa-
per, we will focus on the server's point of view of
multiple request sessions which results in the KEEP

SESSION DATA IN THE SERVER pattern [Sore02].

2

Figure 2 Legend of a block diagram

C

y

agent: active
component

storage, channel:
passive component

B

x

A

R

agentchannel

storage

write
access

read
access

request-response
channel

create / modify
structure structure variance place

Figure 3 Single-request-session: Behavior of
client, session server and session con-
trol (Petri Net)

request session
start

process service
request

return result

service request

process result

request session
end

create session
server

remove session
server

session
server

session
control

session
control

client

63

A System of Patterns for Concurrent request Processing Servers

Setting up Connections
If a dedicated connection between client and server (e.g. a TCP/IP connection) is used for com-
munication during a session, the first request is a connection request sent by the client to the ses-
sion controller. This request sets up the connection which can then be used to send service re-
quests and return results. To set up the connection, the server has to accept the connection re-
quest. After establishing the connection, the TCP/IP service creates a new handle (socket) to ac-
cess the new connection. The LISTENER / WORKER pattern shows this behavior in detail.

Multitasking
To serve multiple clients simultaneously, a server is usually implemented using processes or
threads (tasks) of a given operating system. While the maximum number of concurrent clients is
open in principle, it is actually constrained by the resource limitations of the server platform.

1.2 Forces
There are some forces which are common to all patterns described in this paper:

Response time. A network server should accept connection requests almost immediately and
process requests as fast as possible. From the client's point of view, these time intervals matter:

1. Connect time (tconn): The time from sending a connection request until the connection has
been established.

3

Figure 4 Multiple-request-session: Behavior of client, session server
and session control (Petri Net)

request session
start

request session
end

create session
server

remove session
server

session
server

session
control

session
control

client

process service
request

return result

service request

process result

session
server idle

64

A System of Patterns for Concurrent request Processing Servers

2. First response time (tres1): The time between sending the first request and receiving the
response.

3. Next response times (tres2+): The time between sending a subsequent request using an
established connection and receiving a response.

The connect time tconn usually should be short, especially for interactive systems. Minimizing the
first response time tres1 is important for single-request sessions.

Limited Resources. Processes or threads, even when suspended, consume resources such as
memory, task control blocks, database or network connections. Hence, it might be necessary to
minimize the number of processes or threads.

Controlling the server. The administrator wants to shut down or restart the server without hav-
ing to care for all processes or threads belonging to the server. Usually one of them is respons-
ible for all other processes or threads of the server. This one receives the administrator's com-
mands and may need some bookkeeping of the processes or threads belonging to the server.

1.3 Pattern Form
The pattern form used in this paper follows the Canonical Form. The graphical representations
of architectural models are important parts of the solution's description. These diagrams follow
the syntax and semantics of the Fundamental Modeling Concepts1, while UML diagrams [UML]
and code fragments are included as examples or hints for possible implementations. In order to
reflect the cohesion within the pattern system, pattern dependencies (as discussed below) are
explicitely identified.

1.4 Conceptual Focus of the Pattern Language
The patterns presented in this paper are not design patterns [GHJV94] in the narrow sense, i.e.
they do not suggest a certain program structure such as a set of interfaces or classes. Instead,
each pattern's solution is described as (part of) a conceptual architecture, i.e. as a dynamic system
consisting of active and passive components without implying the actual implementation in
terms of code elements written in some programming language. The resulting models mostly
focus on the “conceptual view” or “execution view” according to [HNS99], but not the “module
view” or “code view”. While this approach leaves some (design) burden for a developer, it al-
lows presenting the patterns in their wide applicability — they are not limited to a certain pro-
gramming paradigm, but in practice can be found in a variety of implementations, including
non–object oriented systems.

Because the patterns are related to a common application domain, they form a system with
strong dependencies between the patterns: A pattern language. In this paper, three basic de-
pendency types are relevant:

Independent patterns share a common application domain but address different problems.
Both can be applied within the same project.

Alternative patterns present different solutions for the same problem. Only one of the two pat-
terns can be applied, depending on which of the force(s) comes out to be the dominant one(s). In
case of such patterns, the dominant force(s) is/are identified as such and the alternative patterns
are put in contrast.

Consecutive patterns: In this case, pattern B (the consecutive pattern) can only be applied if
pattern A has already been applied/chosen, i.e. the resulting context of A is the (given) context
of B. Such patterns are described in order of applicability (A first, then B) with B explicitely ref-
erencing to A as a pre-requisite. This aids sorting out “secondary” patterns which become relev-
ant at later stages or won't be applicable at all.

1 See [KTA+02]],[KeWe03],[Tabe02],[FMC]

4

65

A System of Patterns for Concurrent request Processing Servers

2 A Pattern Language for Request Processing Servers
2.1 Overview
In the following, a system of seven patterns for request processing servers is presented. Table 1
and figure 5 give an overview. The Listener /Worker describes the separation of connection re-
quest and service request processing. Then there are two alternative task usage patterns, namely
FORKING SERVER and WORKER POOL. For the latter, two alternative job transfer patterns are present-
ed which are consecutive to the WORKER POOL pattern — JOB QUEUE and LEADER/FOLLOWER. As an
additional, independent pattern, the SESSION CONTEXT MANAGER is discussed.

Pattern Name Problem Solution
LISTENER /
WORKER

How do you use processes or threads to
implement a server offering services for an
open number of clients concurrently?

Provide different tasks for listening to and
processing requests: One listener for connection
requests and many workers for the service
requests

FORKING SERVER You need a simple implementation of the
LISTENER / WORKER server. How can this ser-
ver respond to an open number of concur-
rent requests in a simple way without using
many resources?

Provide a master server listening to connection
requests. After accepting and establishing a
connection, the master server creates (forks) a
child server which reads the request from this
connection, processes the request, sends the
response and terminates. In the meantime, the
master server listens for connection requests
again.

WORKER POOL How can you implement a LISTENER /
WORKER server providing a short response
time?

Provide a pool of idle worker processes or threads
ready to process a request. Use a mutex or another
means to resume the next idle worker when the
listener receives a request. A worker processes a
request and becomes idle again, which means that
his task is suspended.

WORKER POOL

MANAGER

How do you manage and monitor the
workers in a WORKER POOL?

Provide a WORKER POOL MANAGER who creates and
terminates the workers and controls their status
using shared worker pool management data.
To save resources, the Worker Pool Manager can
adapt the number of workers to the server load.

JOB QUEUE How do you hand over connection data
from listener to worker in a WORKER POOL
server and keep the listener latency time
low?

Provide a JOB QUEUE between the listener and the
idle worker. The listener pushes a new job, the
connection data, into the queue. The idle worker
next in line fetches a job from the queue, reads the
service request using the connection, processes it
and sends a response back to the client.

LEADER /
FOLLOWERS

How do you hand over connection data
from listener to worker in a WORKER POOL
server using operating system processes?
How do you keep the handover time low?

Let the listener process the request himself by
changing his role to ”worker“ after receiving a
connection request. The idle worker next in line
becomes the new listener while the old listener
reads the request, processes it and sends a
response back to the client.

SESSION CONTEXT

MANAGER

How does a worker get the session context
data for his current request if there are mul-
tiple-request-sessions and he just processed
the request of another client?

Introduce a session context manager. Identify the
session by the connection or by a session ID sent
with the request. The session identifier is used by
the session context manager to store and retrieve
the session context as needed.

Table 1: Pattern Thumbnails

5

66

A System of Patterns for Concurrent request Processing Servers

2.2 Patterns for Request Processing Servers in Literature
For this domain, several patterns of this system have already been published in different forms.
A good source is [POSA2] — in fact, most patterns described in this paper can be found in this
book in some form. Some, like the LEADER/FOLLOWERS pattern, can be found directly, others only
appear as variant (HALF-SYNC/HALF-REACTIVE) or are mentioned as part of one pattern although
they could be considered as patterns of their own (like the THREAD POOL in LEADER / FOLLOWERS).

Apart from books, some pattern papers published for PLoP workshops cover aspects of re-
quest processing servers: The REQUEST HANDLER pattern [VKZ02] describes what client and server
have to do to post and reply to requests in general. The POOLING [KiJa02a], LAZY ACQUISITION

[KiJa02b] and EAGER ACQUISITION patterns describe aspects of the WORKER POOL mechanisms. The
KEEP SESSION DATA IN SERVER and SESSION SCOPE Patterns [Sore02] are related to the SESSION CONTEXT

MANAGER.

2.3 The Patterns
On the following pages, we will present the patterns as described above, each pattern starting
on a new page. The guideline in section 2.4 gives hints when to choose which pattern.

6

Figure 5 Overview of the Patterns in this document

support multiple
request sessions SESSION

CONTEXT
MANAGER

FORKING
SERVER

WORKER POOL server
incl.

Worker Selection Strategy

job transfer strategy

JOB QUEUE
LEADER /

FOLLOWERS

minimize resource usage minimize response time

buffered transfer no transfer

LISTENER /
WORKER

server

WORKER
POOL

MANAGER

adapt # of workers to load

67

A System of Patterns for Concurrent request Processing Servers

Listener / Worker

Context
You want to offer services to an open number of clients using connection-oriented networking
(for example TCP/IP). You use a multitasking operating system.

Problem
How do you use tasks (processes or threads) to implement a server offering services for an open
number of clients concurrently?

Forces
• It is important to keep the time between connection request and establishing the connection

small (connect time tconn). No connection request should be refused as long as there is any
computing capacity left on the server machine.

• For each server port there is only one network resource, a socket, available to all processes or
threads. You have to make sure that only one task has access to a server port.

Solution
Provide different tasks for listening to connection requests and processing service requests:

• One listener listens to a server port and establishes a connection to the client after receiving a
connection request.

• A worker uses the connection to the client to receive its service requests and process them.
Many workers can work in parallel, each can process a request from a client.

Consequences
Benefits: As the listener's only task is to accept connection requests, the server is able to respond
to connection requests quickly. Therefore it doesn't matter much that there is only one listener
task per server port or even for all ports. A client sends its connection request and encounters

7

Figure 6 Listener / Worker pattern

client client client

R1. : connection request
2+.: service request

data

listener

worker

R

worker

R

worker

transfer job data
(incl.connection)

R TCP connection
request

Network communication service conn. data
(e.g. sockets)

68

A System of Patterns for Concurrent request Processing Servers

that the connection will be established quickly and that he is connected to a worker exclusively
listening to his request.

Liabilities: Although it is obvious that the listener has to exist with the server's start, you can
still decide when to create the workers. You can either choose the FORKING SERVER pattern where
the listener creates the worker on demand, that is for every connection request. Or choose the
WORKER POOL pattern and create the workers in advance.

Transferring the job data (in this case, just the connection to the client) from listener to worker
must also be implemented. For this, the patterns FORKING SERVER, JOB QUEUE and LEADER /FOLLOWERS

offer three different solutions.

Response time. There are 4 time intervals to be considered for a LISTENER / WORKER Server:

1. Listener response time (t1): The time the listener needs after receiving a connection request
until he establishes the connection.

2. Listener latency (t2): The time the listener needs after establishing a connection until he is
again ready to listen.

3. Connection handover (t3): The time between the listener establishes the connection and the
worker is ready to receive the service request using this connection.

4. Worker response time (t4): How long it takes for the worker from receiving a request until
sending the response.

The values of t1, t2 and t3 are only dependent from the multitasking strategy of the server, while
t4 is heavily dependent from the actual service request. All of them depend on the current server
and network load, of course. Their effect on the response time intervals from the client's point of
view (see section 1.2) is as follows: The listener needs t1+t2 for each connection request, so this
sets his connection request rate and influences tconn. The connection handover time t3 is impor-
tant for the first request on a new connection (tres1); subsequent requests using this connection
will be handled in t4.

Known Uses
Most request processing servers on multitasking operating system platforms use the LISTENER /
WORKER pattern. Some examples: The inetd, HTTP/FTP/SMB servers, the R/3 application
server, database servers, etc.

Related Patterns
FORKING SERVER and WORKER POOL are two alternative consecutive patterns to address creation of
the workers. SESSION CONTEXT MANAGER deals with the session data if workers should be able to
alternately process requests of different sessions.

The ACCEPTOR—CONNECTOR pattern in [POSA2, p. 285] describes the separation of a server into
acceptors and service handlers. The REACTOR pattern [POSA2, p. 179] is useful if one listener has
to guard more than one port.

8

69

A System of Patterns for Concurrent request Processing Servers

Forking Server

Context
You implement a LISTENER / WORKER server using tasks of the operating system.

Problem
You need a simple implementation of the LISTENER / WORKER server. How can this server respond
to an open number of concurrent requests in a simple way without using many resources?

Forces
• Each operating system task (process or thread) consumes resources like memory and CPU

cycles. Each unused and suspended task is a waste of resources.
• Transferring connection data (the newly established connection to the client) from listener to

worker can be a problem if they are implemented with operating system processes.

Solution
Provide a master server listening to connection requests. After accepting and establishing a
connection, the master server creates (forks) a child server which reads the service request from
this connection, processes the request, sends the response and terminates. In the meantime, the
master server listens for connection requests again. The forking server provides a worker task
for each client's connection.

Figure 7 shows the runtime system structure of the FORKING SERVER. The structure variance area
(inside the dashed line) indicates that the number of Child Servers varies and that the Master
Server creates new Child Servers.

The master server task is the listener who receives connection requests from clients. He
accepts a connection request, establishes a connection and then executes a “fork” system call
which creates another task, a child server that also has access to the connection socket. While the
listener returns to wait for the next connection request, the new child server uses the connection
to receive service requests from the client. Figure 8 shows this behavior.

9

Figure 7 The forking server pattern

Child
Server 1
(worker)

Child
Server n
(worker)

Master
Server

(listener)

Rconnection
request

create
worker

Network communication service Sockets

client

Data

R

client

R

client

R

70

A System of Patterns for Concurrent request Processing Servers

Consequences
Benefits: The usage of server resources corresponds to the number of connected clients. A
FORKING SERVER's implementation is simple:

• Connection handover: As fork() copies all process's data from parent to child process, this
also includes the new connection to the client. If tasks are implemented with threads, it's
even simpler because all threads of a process share connection handles.

• An idle FORKING SERVER needs very little system resources as it creates tasks on demand only.
• The Master Server only needs to know which workers are not terminated yet — this aids in

limiting the total number of sessions (and therfore active workers) and makes shutting down
the server quite simple.

• Handling multiple request sessions is easy because a worker can keep the session context
and handle all service requests of a client exclusively until the session terminates.

Liabilities: A severe drawback of this kind of server is its response time. Creating a new task
takes some time depending on the current server load. This will increase both the listener

10

Figure 9 Example sequence of the forking server

Figure 8 Behavior of the forking server

set up
server

sockets

Listener Worker

receive conn.
request

create worker

receive & process
service requests

establish
connection

Child Server 3
(worker)

Child Server 2
(worker)

Child Server 1
(worker)

Master Server
(listener)

fork()

fork()

fork()

connection
request

connection
request

connection
request

service
request

service
request

service
request

71

A System of Patterns for Concurrent request Processing Servers

latency time t2 and the job handover time t3, which results in a bad connection response time and
(first) request response time. If you need a more stable response time, use the WORKER POOL.

This also applies if you want to limit resource allocation and provide less workers than client
connections. In this case you need a scheduler for the workers and a context management, for
example the SESSION CONTEXT MANAGER.

Known uses
Internet Daemon. The Internet Daemon (inetd) is the prototype for the forking server which
starts handlers for many different protocol types like FTP, Telnet, CVS — see section 3.1.

Samba smbd: Using the smbd, a Unix server provides Windows networking (file and printer
shares) to clients. The Samba server forks a server process for every client.

Common Gateway Interface (CGI): An HTTP server which receives a request for a CGI pro-
gram forks a new process executing the CGI program for every request.

Related Patterns
The WORKER POOL pattern offers an alternative solution, if a short response time is a critical issue.
The SESSION CONTEXT MANAGER is an independent pattern which can be combined with FORKING

SERVER, if a session spans multiple requests and it is not desirable to keep the according worker
task for the complete session (for example, because the session lasts several hours or days).

The THREAD–PER–REQUEST pattern in [PeSo97] is very similar to the FORKING SERVER. The THREAD–
PER–SESSION pattern in [PeSo97] describes the solution where session data is kept in the worker
task instead of using a SESSION CONTEXT MANAGER.

Example Code
while (TRUE) {
 /* Wait for a connection request */
 newSocket = accept(ServerSocket, ...);
 pid = fork();
 if (pid == 0)
 {
 /* Child Process: worker */
 process_request(NewSocket);
 exit(0);
 }
 [...]
}

11

72

A System of Patterns for Concurrent request Processing Servers

Worker Pool

Context
You implement a LISTENER / WORKER server using tasks of the operating system.

Problem
How can you implement a LISTENER / WORKER server providing a short response time?

Forces
• To minimize the listener latency time t2, you have to make sure that the listener is quickly

ready to receive new connection requests after having established a connection. Any actions
that could block the listener in this phase increase the listener latency time.

• Creating a new worker task after establishing the connection increases the connection
handover time t3.

Solution
Provide a pool of idle worker tasks ready to process a request. Use a mutex or another means to
resume the next idle worker when the listener receives a request. A worker processes a request
and becomes idle again, which means that his task is suspended.

Additionally, the strategy in choosing the next worker can be customized to gain better per-
formance. The straightforward way is using a mutex. This usually results in a FIFO order or a
random order, depending on the operating system resource in use. Another strategy could im-
plement a LIFO order to avoid paging of task contexts.

The WORKER POOL pattern is a good solution if the server's response time should be minimized and
if it can be afforded to keep processes or threads “alive” in a pool between requests. In contrast
to the FORKING SERVER, this avoids creating a process or thread for every session or request, which
increases the response time.

12

Figure 10 The Worker Pool pattern

 Worker Pool

Workers
processing
requests

Network communication service Sockets

Data

worker

worker

idle workeridle worker

listener

idle worker

R

client client client

R R R

connection
request

conn.
hand-
over

73

A System of Patterns for Concurrent request Processing Servers

Consequences
Benefits:

• As the worker tasks are created in advance, the time to create a task doesn't affect the
response time anymore.

• You can limit the usage of server resources in case of a high server load. It is even possible to
provide less workers than clients.

Liabilities:

• You need a way to hand over the connection data from the listener to an existing worker.
This strategy will affect the listener latency time t2 and the connection handover time t3. The
two alternatives to do so are the JOB QUEUE and the LEADER / FOLLOWERS patterns.

• A static number of workers in the pool might be a problem for a varying server load. To
adapt the number of workers to the current server load, use a WORKER POOL MANAGER.

Known Uses
Apache Web Server. All variants of the Apache HTTP server use a WORKER POOL. Most of them
use a WORKER POOL MANAGER to adapt the number of workers to the server load. See section 3.2
for further details.

SAP R/3. The application server architecture of SAP R/3 contains several so-called “work pro-
cesses” which are created at a server's start-up and stay alive afterwards to process requests.
Usually there are less work processes in the pool than clients. As R/3 sessions usually span
multiple requests, the work processes use a SESSION CONTEXT MANAGER. See section 3.3 for a more
detailed description.

Related Patterns
The FORKING SERVER pattern is an alternative pattern which minimizes resource consumption but
increases response time. WORKER POOL MANAGER is a consecutive pattern which provides a
manager to control the workers. The SESSION CONTEXT MANAGER is an independent pattern which
can be combined with WORKER POOL if a session spans multiple requests. JOB QUEUE and LEADER /
FOLLOWERS are consecutive patterns which deal with the transfer of job-related data from listener
to worker.

A detailed description of a thread pool can be found in [SV96] and in the LEADER / FOLLOWERS

pattern in [POSA2, p. 450ff]. It is also mentioned in a variant of the ACTIVE OBJECT pattern
[POSA2, p. 393] .

The POOLING Pattern [KiJa02a] describes more general how to manage resources in a pool. The
creation of idle worker tasks at start-up is an example of EAGER ACQUISITION [KiJa02b].

13

74

A System of Patterns for Concurrent request Processing Servers

Worker Pool Manager

Context
You have applied the WORKER POOL pattern.

Problem
How do you manage and monitor the workers in a WORKER POOL?

Forces
• At the server start, a certain number of worker tasks (processes or threads) have to be created

before the first request is received.
• To shut down the server, only one task should receive the shutdown signal which will then

tell the others to shutdown too.
• If a worker dies, he must be replaced by a new one.
• Workers consume resources, so there should be a strategy to adapt resource usage to the

server load without reducing server response time.

Solution
Provide a WORKER POOL MANAGER who creates and terminates the workers and controls their
status using shared worker pool management data.

To save resources, the Worker Pool Manager can adapt the number of workers to the server
load: If the number of idle workers is too low or no idle worker available, he creates new
workers. If the number of idle workers is too high, he terminates some idle workers.

Figure 11 shows a WORKER POOL and its manager: The worker pool manager creates all tasks in
the pool. For every task in the pool, it creates an entry in the worker pool management data.
This storage is shared by the workers in the pool. Whenever an idle worker is activated or a
worker becomes idle, it changes its state entry in the worker pool management data. The worker
pool manager can count the number of idle and busy tasks and create new tasks or terminate

14

Figure 11 Worker Pool with manager

Worker Pool

Workers
processing
requests

Data

worker

worker

idle workeridle worker

listener

idle worker

job
hand-
over

Worker Pool
Manager worker pool management data

set statecreate/terminate
workers

75

A System of Patterns for Concurrent request Processing Servers

idle tasks, depending on the server load. Additionally it can observe the “sanity” of the workers.
If one doesn't show any life signs anymore or terminates because of a crash, the manager can
replace it with a new one.

Figure 12 shows the behavior of the worker pool manager and the workers: After creating the
workers, the worker pool manager enters the maintenance loop where he counts the number of
idle workers and terminates or creates workers, depending on the limits. The workers set their
current state information in the worker pool management data.

Don't implement the WORKER POOL

MANAGER in the same task as the listener, or
you'll get the same problems as with the
FORKING SERVER: Creating a new process
may take some time which may increase
the listener latency time t2 dramatically.

Figure 13 shows an example sequence
where the worker pool manager replaces a
worker which terminated unexpectedly.

Consequences
Benefits: The Worker Pool Manager takes
care of the workers and makes it easier to
shutdown a server in a well—defined way.
By constantly monitoring the status of the
workers, he helps to increase the stability
of the server. If he controls the number of
workers depending on the current server
load, he helps to react to sudden changes
in the server load and still keeps resource
usage low.

15

Figure 12 Interaction between Worker Pool Manager and Workers

Figure 13 Example sequence: Worker Pool Manager
creates, replaces and terminates workers

worker 2'

Worker Pool
Manager

worker n

fork()

fork()
worker 2

termination
signal

fork()

kill()

worker 1

create worker pool

Worker 1 Worker nWorker Pool Manager

set state
"busy"

process
request

receive
request

set state
"idle"

count idle
workers

create
worker

terminate
idle worker

set state
"busy"

process
request

receive
request

set state
"idle"

terminate terminateterminate all workers

too many too few

OK

maintenance loop

76

A System of Patterns for Concurrent request Processing Servers

Liabilities: A worker now has to update its state entry in the worker pool management data
storage whenever he enters another phase. This storage should be a shared memory. It is impor-
tant to avoid blocking the workers while they update their state.

The Worker Pool Manager is an additional task which consumes resources as it has to run
regularly.

Known Uses
Apache Web Server. All Apache MPMs have a dedicated process for worker pool management.
Only the Windows version has a static worker pool while all other variants let the worker pool
manager adapt the number of workers in the pool to the current server load.

SAP R/3 Dispatcher. The Dispatcher in an R/3 system manages the worker pool: He starts,
shuts down and monitors the work processes and can even change their role in the system,
depending on the current server load and the kind of pending requests.

Example Code
This example code has been taken from the Apache HTTP server (see section 3.2) and adapted to
stress the main aspects of the pattern.

The child_main() code is not shown here as it depends on the job transfer strategy (JOB

QUEUE or LEADER / FOLLOWERS). Each worker updates his state in the scoreboard as shown in figure
12.

make_child(slot) {
[...]
 pid = fork();
 if (pid == 0)
 {
 /* Child Process: worker */
 scoreboard[slot].status = STARTING;
 child_main(slot);
 exit(0);
 }
 [...]
 scoreboard[i].pid = pid;
}

manage_worker_pool() {
 [...]
 scoreboard = create_scoreboard();
 /* create workers */
 for (i = 0 ; i < to_start ; ++i) {
 make_child(i);
 }
 for (i = to_start ; i < limit ; ++i) {
 scoreboard[i].status = DEAD;
 }

 /* Control Loop */
 while(!shutdown) {
 /* wait for termination signal or let some time pass */
 pid = wait_or_timeout();
 if (pid != 0) {
 /* replace dead worker */
 slot = find_child_by_pid(pid);
 make_child(slot);
 }
 else {
 /* check number of workers */

16

77

A System of Patterns for Concurrent request Processing Servers

 idle_count = 0;
 for (i = 0 ; i < limit ; ++i) {
 if (scoreboard[i].status == IDLE)
 {
 idle_count++;
 to_kill = i;
 }
 if (scoreboard[i].status == DEAD)
 free_slot = i;
 }
 if (idle_count < min_idle) {
 make_child(free_slot);
 }
 if (idle_count > max_idle) {
 kill(scoreboard[to_kill].pid);
 scoreboard[to_kill].status = DEAD;
 }
 }
 } /* while(!shutdown) */

 /* Terminate server */
 for (i = 0 ; i < limit ; ++i) {
 if (scoreboard[i].status != DEAD)
 kill(scoreboard[i].pid);
 }
}

17

78

A System of Patterns for Concurrent request Processing Servers

Job Queue

Context
You have applied the WORKER POOL pattern to implement a LISTENER / WORKER server.

Problem
How do you hand over connection data from listener to worker in a WORKER POOL server and
keep the listener latency time low?

Forces
• To decrease the listener latency time t2, the listener should not have to wait for a worker to

fetch a new job. This happens when the listener has just established a connection to the client
and needs to hand over the connection data to a worker.

Solution
Provide a JOB QUEUE between the listener and the idle worker. The listener pushes a new job, the
connection data, into the queue. The idle worker next in line fetches a job from the queue, reads
the service request using the connection, processes it and sends a response back to the client.

One or many listeners have access to the network sockets, either one listener per socket or one
for all, as shown in figure 14. Instead of creating a worker task (like the Forking Server), he puts
the connection data into the job queue and waits for the next connection request, see figure 15.
All idle workers wait for a job in the queue. The first one to fetch a job waits for and processes
service requests on that connection. After that, he becomes idle again and waits for his next job
in the queue.

18

Figure 14 The job queue pattern

Worker Pool

Workers
processing
requests

Network communication service Sockets

Data

worker

worker

idle workeridle worker

listener

idle worker

job
queue

R

client client client

R R R

conn.
request

Worker Pool
Manager worker pool management data

set state

79

A System of Patterns for Concurrent request Processing Servers

Consequences
Benefits: The listener just has to push a job into a queue and then return to listen again. The
listener latency time t2 is therefore low.

Liabilities: The job handover time t3 is not optimal as the operating system has to switch tasks
between listener, worker and queue mutex. When using operating system processes, the JOB

QUEUE is not applicable, as there is no way to transfer a socket file descriptor (corresponding to
the connection to the client) between two processes. In both cases, use the LEADER / FOLLOWERS

pattern.

Known Uses
Apache Web Server. The Windows version (since Apache 1.3) and the WinNT MPM implement
the JOB QUEUE with a fix number of worker threads. The worker MPM uses a JOB QUEUE on thread
level (inside each process) while the processes concurrently apply for the server sockets using a
mutex (section 3.2).

SAP R/3. On each application server of an R/3 system, requests are placed into a queue. These
requests are removed from the queue by the “work proceses” for job processing, see section 3.3.

Related Patterns
JOB QUEUE is applicable as consecutive pattern to the WORKER POOL pattern. LEADER / FOLLOWERS is an
alternative pattern which does not introduce a queue and avoids the transfer of job-related data
between tasks.

The HALF-SYNC / HALF REACTIVE pattern in [POSA2, p.440] describes the mechanism to de-
couple the listener (asynchronous service, reacting to network events) from the workers
(synchronous services) using a message queue combined with the thread pool variant of the
ACTIVE OBJECT pattern [POSA2, p. 393]. A description of the THREAD POOL with JOB QUEUE can be
found in [SV96], including an evaluation of some implementation variants (C, C++ and
CORBA).

Example Code
This example only shows the code executed in the listener and worker threads. The creation of
the threads and the queue is not shown here.

The job queue transports the file descriptor of the connection socket to the workers and servers
as a means to select the next worker.

19

Figure 15 Behavior of Listener and Worker using a job queue

set up
server

sockets

Listener Worker

receive
connection
requests

put job into
queue

Job
Queue

receive job
data

process
service

requests

worker
busy

worker
idle

80

A System of Patterns for Concurrent request Processing Servers

Listener Thread:
while(TRUE) {
 [...]
 /* wait for connection request */
 NewSocket = accept(ServerSocket, ...);
 /* put job into job queue */
 queue_push(job_queue, NewSocket);
}

Worker Thread:
while (TRUE) {
 /* idle worker: wait for job */
 scoreboard[myslot].status = IDLE;
 [...]
 ConnSocket = queue_pop(job_queue);

 /* worker: process request */
 scoreboard[myslot].status = BUSY;
 process_request(ConnSocket);
}

20

81

A System of Patterns for Concurrent request Processing Servers

Leader / Followers

Context
You have applied the WORKER POOL pattern to implement a LISTENER / WORKER server.

Problem
How do you hand over connection data from listener to worker in a WORKER POOL server using
operating system processes? How do you keep the handover time low?

Forces
• To access a new connection to the client, a task has to use a file descriptor which is bound to

the process. It is not possible to transfer a file descriptor between processes.

• Switching tasks (processes or threads) between listener and worker increases the connection
handover time t3.

Solution
Let the listener process the service request himself by changing his role to ”worker“ after receiv-
ing a connection request. The idle worker next in line becomes the new listener while the old lis-
tener reads the service request, processes it and sends a response back to the client.

All tasks in the worker pool transmute from listener to worker to idle worker eliminating the
need for a job queue: Using a mutex, the idle workers (the followers) try to become the listener
(the leader). After receiving a connection request, the listener establishes the connection, releases

21

Figure 16 The Leader / Followers pattern

Worker
Pool

Workers
processing
requests

Followers

Network communication service Sockets

Data

worker

worker

idle workeridle worker

Leader:
listener

idle worker

R

client client client

R R R

1.

2.

3.

connection
request

1. wake up and
 become listener

2. become a worker
 processing the request

3. idle worker:
 queue in and sleepWorker Pool

Manager worker pool management data

set state

82

A System of Patterns for Concurrent request Processing Servers

the mutex and becomes a worker processing the service request he then receives. Afterwards, he
becomes an idle worker and tries to get the mutex to become the leader again. Hence, there is no
need to transport information about the connection as the listener transmutes into a worker task
keeping this information.

Figure 16 shows the structure: The processes or threads in the WORKER POOL have 3 different
states: worker, idle worker and listener. The listener is the one to react to connection requests,
while workers and idle workers process service requests or wait for new jobs, respectively.

The corresponding dynamics are shown in figure 17. Initially, all tasks of the pool are idle
workers. Listener selection is done by a task acquiring the mutex which is released as soon as
the listener changes his role to become a worker.

Consequences
Benefits: The listener changes his role by just executing the worker's code. This keeps the con-
nection handover time t3 very low as every information remains in this task. As file descriptors
needed to get access to the connection to the clients don't leave the task, the LEADER /FOLLOWERS

pattern enables the use of operating system processes to implement the WORKER POOL pattern.

Liabilities: The election of the next listener is handled via a mutex or a similar mechanism. This
requires a task switch and leads to a non-optimal listener latency time t2. The LEADER / FOLLOWERS

pattern avoids transferring job-related data, but introduces the problem of dynamically chang-
ing a process' or thread's role; for example, the server sockets must be accessible to all workers to
allow each of them to be the listener. Both listener and worker functionality must be implement-
ed inside one task.

Known Uses
Apache Web Server. A very prominent user of LEADER / FOLLOWERS pattern is the preforking vari-
ant of the Apache HTTP server (see section 3.2).

22

Figure 17 Behavior of the tasks in the Leader / Followers pattern

w
orker

Idle
w

orker
Listener

acquire
mutex

receive conn.
request

release
mutex

process ser-
vice requests

Task 1 Task n mutex
w

orker
Idle

w
orker

Listener

acquire
mutex

receive conn.
request

release
mutex

process ser-
vice requests

83

A System of Patterns for Concurrent request Processing Servers

Call center. In a customer support center, an employee has to respond to support requests of
customers. The customer's call will be received by the next available employee.

Taxi stands. Taxis form a queue at an airport or a train station. The taxi at the top of the queue
gets the next customers while the others have to wait.

Related Patterns
LEADER / FOLLOWERS is applicable as consecutive pattern to the WORKER POOL pattern. JOB QUEUE is an
alternative pattern which uses a queue for job transfer between tasks with static roles.

The LEADER / FOLLOWERS pattern has originally been described in [POSA2], p. 447.

Example code:
while (1) {
 /* Become idle worker */
 scoreboard[myslot].status = IDLE;
 [...]
 acquire_mutex(accept_mutex);
 /* Got mutex! Now I'm Listener! */
 scoreboard[myslot].status = LISTENING;
 newSocket = accept(ServerSocket, ...);
 [...]
 /* Become worker ... */
 release_mutex(accept_mutex);
 /* ... and process request */
 scoreboard[myslot].status = BUSY;
 process_request(NewSocket);
}

23

84

A System of Patterns for Concurrent request Processing Servers

Session Context Manager

Context
You implement a LISTENER / WORKER server for multiple-request sessions.

Problem
If a worker processes service requests from different clients and a session can contain multiple
requests, how does a worker get the session context data for his current service request?

Forces
Keeping session context data within a worker can be a problem:

• If a worker task is assigned exclusively for one session, it is unnable to handle requests from
other clients. This is usually a waste of resources and interferes with limiting the number of
workers.

• You have to consider that the connection to the client may be interrupted during the session
without terminating the session. The same applies to the worker task which can die unex-
pectedly. Therefore you might need to save and resume a session state.

Solution
Introduce a session context manager. Identify the session by the connection or by a session ID sent
with the request. The session identifier is used by the session context manager to store and
retrieve the session context as needed.

24

Figure 18 Session Context Manager (Central Manager Variant).

network communication service

client client client

R RR

sockets

session context manager

session
context

session
context

session
context

worker

worker

session
context

session
context

create / delete / store / retrieve
session

session
list

data

R

85

A System of Patterns for Concurrent request Processing Servers

This is a specialized variant of the MEMENTO pattern [GHJV94] . Figure 18 shows a solution
using a central session context manager: Each worker has a local storage for a session context.
Before he processes a request, he asks the context manager to retrieve the session context corre-
sponding to the client's session using the session ID extracted from the request. After processing
the request, he asks the context manager to store the altered session context. In case of a new ses-
sion, he has to create a new session context and assign a session ID to it. In case of the last re-
quest of a session, the worker has to delete the session context. The session context shaded grey
in figure 18 belongs to the grey client. The grey worker currently processes a request of this
client and works on a copy of its session context.

Figure 19 shows how to extend the behavior of the worker to support session context man-
agement. An example sequence is shown in figure 20.

Variants. Central Session Context Manager: There is a single context manager for all tasks. If, for
example, the session is bound to the connection, the listener not only reacts to connection re-
quests but also to requests on open connections. The functionality of the session context man-
ager can then be included in the listener.

Local Session Context Manager: Each worker manages the sessions and the session list. The
functionality of the session context manager in figure 18 is then included in every worker task.
The storage for the session contexts is shared between all workers.

Consequences
Benefits.

• Any worker can process a request in its session context. This enables an efficient usage of
workers, especially in a WORKER POOL server.

• If the session ID is sent with every request, the connection can be interrupted during the
session. This is useful for long sessions (from a few minutes to several days).

• Using a dedicated context manager helps separating the request-related and context-related
aspects of request processing. For each request to be processed, session context management
requires a sequence of (1) retrieving (creating) a session context, (2) job processing and (3)
saving (deleting) the context.

25

Figure 19 Session Context Management in the
worker loop

session
context

management

session
context

management

get job

process
request

extract
sessionID

create
session
context

retrieve
session
context

no sessionID
given

delete
session
context

store
session
context

session
terminated

Figure 20 Example sequence for session context
management

session context
managerworker 2A client worker 1

request

request

(last) request

create s.c.

store s.c.

retrieve s.c.

retrieve s.c.

store s.c.

delete s.c.

86

A System of Patterns for Concurrent request Processing Servers

Liabilities.

• A garbage collection strategy might be needed to remove session contexts of “orphan” ses-
sions.

• Session context storage and retrieval increases the response time.

Known Uses
SAP R/3. Each application server of an SAP R/3 system contains workers, each of them having
its own local session context manager (the so-called taskhandler, see section 3.3).

CORBA portable object adapter. CORBA-based servers can use objects (not tasks) as workers
similar to a Worker Pool. In such configurations the so-called object adapters play the role of ses-
sion context managers, see section 3.4.

CGI applications. An HTTP server starts a new CGI program for every request, like the FORKING

SERVER. The CGI program extracts the session ID from the request (for example by reading a
cookie) and then gets the session context from a file or database.

Related Patterns
The pattern is consecutive to FORKING SERVER or WORKER POOL. To realize access to session contexts
of workers, the MEMENTO pattern [GHJV94] could be used. In case of local context management,
TEMPLATE METHOD [GHJV94] could be applied to enforce the retrieve–process–save sequence for
each request. The KEEP SESSION DATA IN SERVER and SESSION SCOPE Patterns [Sore02] describe session
management in a more general context.

26

87

A System of Patterns for Concurrent request Processing Servers

2.4 Guideline for Choosing an Architecture
In the following, a simple guideline for selecting patterns from the pattern system is presented.
It helps deriving a server architecture by choosing a pattern combination appropriate for the in-
tended server usage. The guideline presents the patterns according to their dependencies and
fosters pattern selection by questions aiming at dominant forces.

1. Clarify the basic context for LISTENER / WORKER.
• Is the server's type a request processing server or a different one, e.g. a streaming server?

Should threads or processes provided by the operating system be used, including IPC
mechanisms? If not, the pattern system might be not appropriate.

• Does a session span multiple requests? Then consider 4.
2. Select the task usage pattern.

Is saving resources more important than minimizing the response time? If yes, choose a FORKING

SERVER. If not, apply the WORKER POOL pattern instead.
3. When using a WORKER POOL,

• Choose a Job Transfer pattern. Is transferring job data between tasks easier than changing
their role? If yes, introduce a JOB QUEUE. If not, apply the LEADER/FOLLOWER pattern.

• Does the number of concurrent requests vary in a wide range? Then use a dynamic pool
instead of a static pool. In this case the WORKER POOL MANAGER dynamically adapts the
number of workers to the server load.

• Choose a strategy to select the next worker task from the idle worker set: FIFO, LIFO,
priority-based, indetermined.

4. If a session spans multiple requests:
• Does the number of concurrent sessions or their duration allow to keep a worker task

exclusively for the session? If not, introduce a SESSION CONTEXT MANAGER.
• Can the listener retrieve the session ID of a client's request? Then choose central context

management, else local.

The following table shows that the possible pattern combinations yield six basic architecture
types:

without SESSION CONTEXT

MANAGER

with SESSION CONTEXT MANAGER

FORKING SERVER Type 1
inetd, samba server, CGI

Type 2
CGI applications

WORKER

POOL

JOB QUEUE Type 3
Apache (Win32, Worker)

Type 4
SAP R/3

LEADER/FOLLOWER Type 5
Apache (Preforking) Type 6

Table 2 Architectures covered by the pattern system

27

88

A System of Patterns for Concurrent request Processing Servers

3 Example Applications
3.1 Internet Daemon
The Internet Daemon (inetd) is a typical representative of the FORKING SERVER without SESSION

CONTEXT MANAGER (Type 1).

Figure 21 shows the structure of the inetd server: It waits for requests on a set of TCP ports
defined in the configuration file /etc/inetd.conf. Whenever it receives a connection request,
it starts the server program defined for this port in the configuration file which handles the re-
quest(s) of this connection. The inetd starts a server program by the fork() – exec() se-
quence which creates a new process and then loads the server program into the process. The file
descriptor table is the only data which won't be deleted by exec(). A server program to be
started by the inetd must therefore use the first file descriptor entry (#0) to access the connection
socket.

3.2 Apache HTTP Server
The Apache HTTP server [Apache] is a typical request processing server which has been ported
to many platforms. The early versions use the preforking server strategy as described below.
Since version 1.3, Apache supports the WindowsTM platform using threads which forced another
server strategy (JOB QUEUE).

Apache 2 now offers a variety of server strategies called MPMs (Multi–Processing Modules)
which adapts Apache to the multitasking capabilities of the platform and may offer different
server strategies on one platform. The most interesting MPMs are:

• Preforking (Type 5):
LEADER / FOLLOWERS using processes with dynamic worker pool management. The promotion
of the followers is done with a mutex (results in a FIFO order).

• WinNT (Type 3):
JOB QUEUE using a static thread pool.

• Worker MPM (Type 3 on thread level):
Each process provides a JOB QUEUE using a static thread pool. The process pool is dynamically
adapted to the server load by a WORKER POOL MANAGER (Master Server). The listener threads of
the processes use a mutex to become listener. (see section 3.2)

All MPMs use a WORKER POOL with processes or threads or even nest a thread pool in each pro-
cess of a process pool. They separate the listener from the WORKER POOL MANAGER. A so-called

28

Figure 21 The inetd — a typical FORKING SERVER

Sockets

ClientClient

server

connection
TCP/IP Communication Service

Child
Server 1

Child
Server n

Master
Server
(inetd)

R

R

Filesconfig

R

89

A System of Patterns for Concurrent request Processing Servers

Scoreboard is used to note the state of each worker task. Most Worker Pool managers adapt the
number of worker tasks to the current server load.

A detailed description of the Apache MPMs and of their implementation can be found in the
Apache Modeling Project [AMP].

The Preforking MPM of Apache
Since its early versions in 1995, Apache uses the so-called Preforking strategy — a LEADER /
FOLLOWERS pattern. A master server starts (forks) a set of child server processes doing the actual
server tasks: listen for connection requests, process service requests. The master server is respon-
sible for adjusting the number of child servers to the server load by assuring that the number of
idle child servers will remain within a given interval.

Figure 22 shows the conceptual architecture of a preforking Apache server. At the top we see
the clients, usually web browsers, sending HTTP requests via a TCP connection. HTTP is a state-
less protocol, therefore there's no need to keep a session context. At the right-hand side we see
the data to be served: Documents to be sent to the client or scripts to be executed which produce
data to be sent to the client. The Scoreboard at the bottom keeps the Worker Pool management
data as mentioned in the WORKER POOL pattern.

The master server is not involved in listening or request processing. Instead, he creates, con-
trols and terminates the child server processes and reacts to the commands of the administrator
(the agent at the left side). The master server also processes the configuration files and compiles
the configuration data. Whenever he creates a child server process, the new process gets a copy
of this configuration data. After the adminstrator has changed a configuration file, he has to ad-
vise the master server to re-read the configuration and replace the existing child servers with
new ones including a copy of the new configuation data. It is possible to do this without inter-
rupting busy child servers: The master server just terminates idle child servers and increments
the generation number in the scoreboard. As every child server has an entry including its gene-

29

Figure 22 The Apache server using the Preforking MPM

Apache HTTP Server
Signals:
- stop (TERM)
- restart (HUP)
- grc.rst.(USR1)

HTTP

Client Client

TCP/IP Communication Service

R R

Sockets

Child
Server 1

Child
Server n

con-
fig.

Master
Server

Files

con-
fig.

Documents

Scripts

local
configuration
(.htaccess)con-

fig.

Files

global
config.

R

shared
 memory

Scoreboard
server status generation ...

gener-
ation accept

mutex

shutdown:
pipe of
death +
signals

90

A System of Patterns for Concurrent request Processing Servers

ration in the scoreboard, it checks after each request if its generation is equal to the current gene-
ration and terminates otherwise.

The child servers use a mutex to assign the next listener, according to the LEADER / FOLLOWERS

pattern. In contrast to figure 16, the different roles of the workers in the pool are not shown.

The Worker MPM of Apache
Figure 23 shows the system structure of the Apache HTTP server using the worker MPM. The
center shows multiple child server processes which all have an identical structure. They are the
tasks of the WORKER POOL on process level, like in the preforking MPM. Inside each Child Server
Process we find an extended JOB QUEUE structure: A listener thread waits for connection requests
and supplies a job queue. (Idle) worker threads wait for new jobs. The idle worker queue signals
to the listener if there is an idle worker ready to process the next job. If there is none, the listener
doesn't apply to the accept mutex.

The child_main thread creates the listener and worker threads by creating the starter thread
(which terminates after setting up listener, workers and the queues) and after that just waits for
a termination token on the 'pipe of death'. This results in setting the “exit flag” which is being
read by all threads.

Only one process' listener gets access to the server sockets. This is done by applying for the
accept mutex. In contrast to the LEADER / FOLLOWERS pattern, the listener task doesn't change his
role and processes the request. Instead, he checks if there is another idle worker waiting and ap-
plies for the accept mutex again.

30

Figure 23 The Apache server using the Worker MPM

Apache HTTP Server

Child Server Process

Files

shared memory

Scoreboard

TCP/IP Communication ServiceSockets

server status generation ...

Files

local
config. data
(.htacess)

Documents

Admin

Scripts

global
config.
data

Signals:
- shudown
- restart
- gr. restart

client

HTTP

Master
Server

Process

Signal:
- signal parent

wait for &
accept connection

generation

accept mutex

conf.

client ...

Child Server Process

child_main

starter

Listener

worker threads

worker 1

worker N

job queue

idle worker
queue

configurationexit flag

RR
add job

remove
job

handle
request

R R

pipe of
death

91

A System of Patterns for Concurrent request Processing Servers

3.3 SAP R/3
SAP's System R/3 [SAP94] is a scalable ERP system with an overall three tier architecture as
shown in figure 24. The diagram also shows the inner architecture of an R/3 application server.
(In practice, R/3 installations often include additional applications servers — these are omitted
here for simplicity reasons.) The application server can be categorized as a Type 4 server (cp.
Table 2), because three of the patterns discussed above are actually applied.

The server's basic architecture is designed after the WORKER POOL pattern. The so-called dis-
patcher (a process) plays the role of the listener and forwards requests (sent by the “SAP GUI”
clients) to worker tasks called “dialog work processes”. (There are further types of work pro-
cesses, but these are of no interest here.)

Beside other purposes, the request queue is used for forwarding requests from the dispatcher
to the work processes, i.e. it represents a JOB QUEUE. While the work processes read request data
from the queue by themselves, initial worker selection is actually done by the dispatcher.

Because an R/3 session (called a transaction in SAP's terms) spans multiple requests, a local
SESSION CONTEXT MANAGER called taskhandler is included in each work process. Before a request can
be processed by the DYNP processor and the ABAP processor, the taskhandler retreives the ap-
propriate context from the roll out area (or creates a new one) and stores it in the work process'
roll area. Afterwards, the taskhandler saves the context to the roll out area (at session end, it
would be deleted).

3.4 Related Applications at Object Level
All of the above patterns have been discussed under the assumption of processes or threads be-
ing the building blocks for server implementations. However, some of the patterns are even ap-
plicable if we look at a system at the level of objects instead of tasks. When realizing a server's re-
quest processing capabilities by a set of objects, these objects can be “pooled” similar to a WORKER

POOL. Instead of creating objects for the duration of a session or a single request, “worker ob-
jects” are kept in a pool and activated on demand. This helps controlling resource consumption
and avoids (potentially) expensive operations for creating or deleting objects.

31

Figure 24 SAP R/3 Application Server Architecture

database server

application server
dialog work process

...
R

dispatcher

taskhandler

DYNP processor

ABAP processor

request
queue

dialog work process

taskhandler

DYNP processor

ABAP processor

roll
out

area

roll
area

roll
area ...

(to other
work pro-
cesses)

SAP GUI

R

SAP GUI

R

SAP GUI

R

DBMS

...

...

database

R

92

A System of Patterns for Concurrent request Processing Servers

For example, this idea has been put into practice with Sun's J2EE server architecture [J2EE].
Here, the “stateless session beans” are kept in a pool while the so-called “container” plays the
listener role, activating beans on demand and forwarding requests to them.

Another example are the so-called “servants” from the CORBA 3.0 portable object adapter
specification [CORBA]. These are server-side worker objects which can also be kept in a pool
managed by the “object adapter” (if the right “server retention policy” has been chosen, see the
POA section in [CORBA]). The object adapter (in cooperation with an optional “servant man-
ager”) does not only play the listener role — it also acts as SESSION CONTEXT MANAGER for the ser-
vants.

4 Conclusion and Further Research
Design patterns in the narrow sense are often discussed in a pure object-oriented context. Hence,
they often present object-oriented code structures as solution, typically classes, interfaces or
fragments of methods. In contrast, the patterns presented in this paper are conceptual patterns
which deliberately leave open most of the coding problem. This initially seems to be a draw-
back, but it also widens the applicability of a pattern and increases the possibility to identify a
pattern within a given system. In fact, most of the industrial applications (known uses) ex-
amined in this paper are not implemented with an object-oriented language (although some OO
concepts can be found). Furthermore, central ideas and topics (e.g. scheduling, task and session
management) behind the patterns have already been described in the literature about transac-
tion processing systems [GrRe93].

Designing a good code structure is often a secondary problem with additional forces such as
given languages, frameworks or legacy code. In order to remain “paradigm–neutral”, conceptu-
al architecture patterns should be presented using appropriate notations like FMC. Object–Ori-
ented implementation of conceptual architecture models is an important research topic in this
context [TaGr03].

The integrated description of pattern systems has been developed together with the pattern
system presented here. Further research is necessary to prove that this is applicable to pattern
systems in general. This approach, backed by corresponding guidelines, may support software
architects in applying patterns.

5 Acknowledgements
We wish to thank Uwe Zdun who gave us many valuable hints as our shepherd, and the partici-
pants in the writer's workshop, especially Neil Harrison, who gave us lots of very useful advice
and suggestions for improvement.

References

[Apache] Apache Group, The Apache HTTP Server , http://httpd.apache.org
[AMP] Bernhard Gröne et al., The Apache Modeling Project, http://apache.hpi.uni-potsdam.de
[CORBA] The Common Object Request Broker Architecture, version 3.0.2, The Object Management Group, 2002
[FMC] Siegfried Wendt et al: The Fundamental Modeling Concepts Home Page, http://fmc.hpi.uni-potsdam.de/
[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Patterns: Elements of Reusable Ob-

ject-Oriented Software, Addison-Wesley, 1994
[GrRe93] J. Gray, A. Reuter, Transaction Processing: Concepts and Techniques, Morgan Kaufmann, 1993
[HNS99] Christine Hofmeister, Robert Nord and Dilip Soni, Applied Software Architecture, Addison Wesley, 1999
[J2EE] Java 2 Platform: Enterprise Edition, Sun Microsystems Inc., http://java.sun.com/j2ee
[KeWe03] Frank Keller, Siegfried Wendt, FMC: An Approach Towards Architecture-Centric System Development, IEEE

Symposium and Workshop on Engineering of Computer Based Systems, Huntsville, 2003

32

93

A System of Patterns for Concurrent request Processing Servers

[KiJa02a] Michael Kircher and Prashant Jain, Pooling, EuroPLoP 2002
[KiJa02b] Michael Kircher and Prashant Jain, Eager Acquisition, EuroPLoP 2002
[KTA+02] Frank Keller, Peter Tabeling, Rémy Apfelbacher, Bernhard Gröne, Andreas Knöpfel Rudolf Kugel and

Oliver Schmidt, Improving Knowledge Transfer at the Architectural Level: Concepts and Notations, International
Conference on Software Engineering Research and Practice (SERP), Las Vegas, 2002

[Lea97] D. Lea, Concurrent Programming in Java, Addison-Wesley, 1997
[POSA1] F. Buschmann et al., Pattern-Oriented Software Architecture: A System of Patterns, Wiley, 1996
[POSA2] D. Schmidt et al., Pattern-Oriented Software Architecture: Patterns for Concurrent and Networked Objects, Wiley,

2000
[PeSo97] Dorina Petriu and Gurudas Somadder, A Pattern Language For Improving the Capacity of Layered Client/Server

Systems with Multi-Threaded Servers, EuroPLoP 1997
[SAP94] Introduction to Concepts of the R/3 Basis System, SAP AG (Basis Modelling Dept.), 1994
[Sore02] Kristian Elof Sørensen, Session Patterns, EuroPLoP 2002
[SV96] Douglas C. Schmidt and Steve Vinoski: Object Interconnections: Comparing Alternative Programming Tech-

niques for Multi-threaded Servers (Column 5-7). SIGS C++ Report Magazine, Feb.–Aug. 1996.
[Tabe02] Peter Tabeling, Ein Metamodell zur architekturorientierten Beschreibung komplexer Systeme, Modellierung 2002,

GI-Edition - Lecture Notes in Informatics (LNI) - Proceedings, 2002
[TaGr03] Peter Tabeling, Bernhard Gröne, Mappings Between Object-oriented Technology and Architecture-based Models,

International Conference on Software Engineering Research and Practice, Las Vegas, 2003
[UML] G. Booch et al., The Unified Modeling Language User Guide, Addison Wesley, 1998
[VKZ02] Markus Völter, Michael Kircher, Uwe Zdun, Object-Oriented Remoting — Basic Infrastructure Patterns, Vik-

ingPLoP 2002
[VSW02] M. Völter, A. Schmid, E. Wolff, Server Component Patterns, Wiley, 2002

33

95

95. A Pattern Language for Standardization Work

A Pattern Language for Standardization
Work

Juha Pärssinen
juha.parssinen@vtt.fi

Abstract
This paper presents a pattern language for people who are going to participate in stand-
ardization work. In this paper, the technical details of communication protocols or other
standardization artifacts are not the primary focus. Working on standardization means
working in a heterogeneous group, and decisions that are made need to balance conflict-
ing forces. The resulting solutions tend to be compromises from proposals made by one
or more participants of the standardization effort. This pattern language gives advice to
readers to reach the best possible compromise.

Introduction
This paper presents a pattern language for people who are participating in standardiza-
tion work. It gives advice to readers who are not professional consensus makers (or
politicians), but technical experts who participate in standardization work, and are the
main responsible persons of their company.

There are four typical cases why an individual want to participate in standardization: to
learn a standard as early as possible; to investigate what others have invented; to protect
own work to avoid major changes (to protect investments to implementation); to delay
or even stop the standardization work. This language doesn't consider the last case,
which can be seen as a non-generative activity. Readers are advised to read Machiavelli
[2] if they want to master also those aspects of politics.

The idea of this pattern language occurred to the author when he was writing with his
co-author their previous pattern language for the specification of communication proto-
cols [3].

Patterns in this language are presented in the sequence they are usually applied. Com-
promises Anyway is a starting-point for this language. It sets the context for all patterns.
Other patterns are in two groups: patterns used before standardization meetings and pat-
terns used during standardization meetings.

Compromises Anyway : Accept the fact that you (and hopefully other participants too)
have to be ready to make compromises.

Before standardization meeting

Do Your Homework: Prepare well before meeting. Different phases of preparation are
divided to three pattern: Know Things, Know People and Know Yourself.

Know Things: Start from pure technical values, and leave the rest for a moment. Study
in advance all relevant technical aspects of standardization.

Know People: Study carefully the people who participate in standardization work in ad-
vance. In this pattern, people or participants can be considered as individuals and as the
whole company.

96

A Pattern Language for Standardization Work

Know Yourself: Know yourself well before you need to make any decisions. In this pat-
tern “knowing yourself” means knowing not only you, but also the company or the or-
ganization you are working for.

Back-up team ready: You need to be able to alert your back-up team during the meet-
ings.

During standardization meeting

Concepts over Names: If needed, ease your demands a little: keep the concept as it is,
but accept a new name for it.

Power of Examples: Examples make things easier to understand.

Use Straw Poll: Straw poll can be used during meetings to see how things are going,
and to avoid formal voting.

Pattern language

Compromises Anyway

The goal of standardization work is a standard that can be accepted by participants of a
working group and at least majority of the voters of the concerned standardization body.
If a standardization project is working in an area that is very far away from commercial
products, or the area is so new that none has done anything, this is the rare case when
the work can be based purely on solving emerging technical questions.

However, in the real world typically at least some of the participants have something
important for them to push and/or protect during standardization work. They have
already implemented first prototypes, and they want the standard to reflect what they
have implemented to protect their investment and also benefit to be first in the market.

Therefore:

The only way to participate in standardization work and get it done is to accept the fact
that you (and hopefully other participants too) have to be ready to make compromises.
There are typically two ways to make a compromise: give-and-take and take-all. Of
course, in real life standards, there can be sections that use give-and take and sections
that use take-all.

In a give-and-take compromise every participant needs to make trade-offs, they work
together towards a single standard, starting possibly from several conflicting initial pro-
posals. Standards made using this approach are typically smaller, easier to understand,
and more consistent than those made using take-all approach. The author strongly re-
commends give-and-take compromise for standardization work.

Unfortunately, it is not always possible to make trade-offs, and for this reason a take-all
compromise is used. In a take-all compromise several conflicting initial proposals are
put together, but they are not harmonized as in a give-and-take compromise. Conflicting
parts can be hidden as alternative sections or as optional sections of the standard. A
take-all compromise should be used only if the other choice is a long (possibly infinite)
delay of the standard.

In this pattern language some advice is given to the reader for reaching the best give-
and-take compromise possible. However, these patterns are useful if the take-all ap-
proach is taken. Patterns appear in two groups; those used before the meeting and those
used during the meeting.

97

A Pattern Language for Standardization Work

Before the Meeting

Do Your Homework

In standardization work, as in any other creative activity, people are in the middle of a
swift information flow. They need to calculate the net effect of many conflicting forces
of all technical aspects of concern. For most of the people, it is not possible to evaluate
these things correctly when they are met the first time. Typically time and advice are
needed from other experts to find a relevant solution.

Therefore:

Do your homework. Homework in this particular case is a plan or a procedure
explaining what you want to achieve and avoid during standardization work. It contains
information about particular points which are negotiable and which are not. To do your
homework, collect information about all relevant things in advance, and spend time to
analyze them with your colleagues. This includes also debriefing of the previous
meetings. Homework has to be done well; this fact was written down by Sun Tzu, a
general from ancient China:

“If you know the enemy and know yourself, you need not fear the result of a hun-
dred battles. If you know yourself but not the enemy, for every victory gained you
will also suffer a defeat. If you know neither the enemy nor yourself, you will suc-
cumb in every battle.”

Sun Tzu

As it was in elementary school, a written document is much better homework than any
other.

“The strongest memory is no match to the palest ink.”

Chinese Proverb

You should spend time to make your plan, one made during the flight to the meeting
place is usually made too late. You need time to read reference material and to talk with
people in your home organization. You also need time to make things clear for yourself.

People who don't do their homework (properly) very often follow strategy: “If I don't
say anything, I will appear to understand everything”. However, this is only a short term
solution. Sooner or later there will be time to decide and then you won't have anything
you can use to proceed wisely. Other people can guide and potentially mislead you if
they want. If you like the concept of an anti-pattern, this could be one.

There are several aspects which you should sort out before participating in the meeting,
these are considered one by one in the next patterns. These aspect are divided into three
patterns following one of Sun Tzu's most quoted sentences:

“Hence the saying: If you know the enemy and know yourself, your victory will
not stand in doubt; if you know Heaven and know Earth, you may make your vic-
tory complete.”

Sun Tzu

In the previous quotation, the enemy can be the other participants or people, yourself
(obviously) is yourself, heaven (explained as a climate in [1]) as a techno-political situ-
ation, and earth as a technology in standardization area. Heaven (techno-politics) and
earth (technology itself) together define domain for standardization.

98

A Pattern Language for Standardization Work

In the following three patterns these four aspects are explained in the standardization
context. Know Things pattern contains earth, Know People pattern contains enemy, and
Know Yourself pattern contains yourself. These patterns will help you to do your home-
work. Heaven is divided between Know People and Knowing Yourself.

Know Things

It does not matter whether a standardization project is starting from a white sheet or
there is a lot of existing prework, in any case you need to understand (and possibly
solve) emerging technical questions during standardization work.

As explained in the Do Your Homework pattern, standardization domain contains two
parts: heaven and earth. You see this clearly when you are evaluating any technical is-
sue. There are always two sides to take into consideration: “engineering” values (earth)
e.g. feasibility and performance , and “techno-political” values (heaven) e.g. who owns
patents and who has invented technology. If you try to understand and evaluate both
sides at once it can be overwhelming.

Therefore:

Start from pure technical values, and leave the rest for a moment. Study all relevant
technical aspects of standardization in advance. You don't have to be an expert in
everything, but you should know enough to understand the documents and to be able to
participate in discussions. However, at the same time when you are studying technical
information, collect also such information as who has invented things, who owns pos-
sibly patents, and which companies use those. That information is used in next patterns,
Know People and Know Yourself.

A good example of this pattern is 3rd generation mobile phone standardization. There are
two technologies strive to better utilize the radio spectrum by allowing multiple mobile
phone users to share the same physical channel: TDMA (Time Division Multiple Ac-
cess) and CDMA (Code Division Multiple Access). They have several fundamental
technical differences, but also one (among others) interesting techno-political differ-
ence: one single company owns majority of CDMA patents. If you follow this pattern,
you study TDMA and CDMA from engineering viewpoint. And make note for yourself
about interesting patent issue.

Know People

During your studies of technical aspects in Know Things pattern, you have also collec-
ted related non-technical information. In this pattern, people or participants can be con-
sidered as an individual or as the whole company.

In a standardization body there are typically several participants from different interest
groups which usually have conflicting goals. To do you homework properly, it is im-
portant to know other participant's goals as early as possible:

“By discovering the enemy's dispositions and remaining invisible ourselves, we
can keep our forces concentrated, while the enemy's must be divided.”

Sun Tzu

You can estimate that result of work will be a compromise made by people, but you
want to push it as much as possible in one direction and avoid other ones.

99

A Pattern Language for Standardization Work

Therefore:

Study carefully the people who participate in standardization work. You should know
participants' work history, e.g. what kind of education they have, what publications they
have written, and have they participated in this kind of work before. Usually people are
kind enough to tell all this in their WWW home page. If you have time skim through
their publications. It is also important to know what kind of character the person is. The
only reliable way to find out this is to get to know them, other people's opinions are not
so trustworthy.

If the inventors of technical aspects in concern participate in work, they typically defend
their work rigorously. People tend to think that what they have done is like their child,
and nobody else than themselves are allowed to change it or really understand it. You
should also know who are the real leaders of the work to know to whom you should talk
to make any kind of progress.

Study also the participating companies, e.g. which are their core technology areas and
which are their business segments. For example a manufacturer typically has a com-
pletely different kind of interests than a service provider. You can expect companies to
try to lead the work in direction which is most important to them.

If we continue our TDMA vs. CDMA example from the previous pattern, now it is time
for you to analyze effects of patents and other non-engineering values of each techno-
logy. In the previous pattern you make a note that one single company owns majority of
CDMA patents. For this reason it can be expected that this company wants CDMA tech-
nology to be used in standard.

It is also important to know why people (or companies) participate in this particular pro-
ject. There are four typical cases: they want to learn standard as early as possible; they
want to investigate what others have invented; they want to protect their own work to
avoid major changes (to protect their investments to implementation); they want to
delay or even stop the standardization work because they have their own reasons not to
have standard in this area. What to do with this information of course depends on your
own goal.

Know Yourself

During your studies of technical aspects in Know Things pattern, you have also collec-
ted related non-technical information. In this pattern “knowing yourself” means know-
ing not only you, but also the company or the organization you are working for.

When you are preparing yourself for the meeting you are not only studying technical is-
sues, you are also learning the strategy of your company. Information about technical is-
sues is useless if you don't know motive for decisions and value of artifacts behind of
them.

Therefore:

Read technical documents made in your own company and interview people who wrote
them. Interview also people who are (or will be) implementors of prototypes, or end-
user products. They typically have a lot of opinions, and quite often they are not docu-
mented anywhere.

Read also strategy documents and interview people who have wrote them. Strategy doc-
uments usually explain long-term goals of company, but do not explain why these are
chosen.

100

A Pattern Language for Standardization Work

An example of a typical case is that your company have a prototype ready, and as much
as possible should be re-used in a final product. In this case you need to know enough
details of it to understand what kind of changes in standard will render your prototype
useless, and what kind of changes are only cosmetic. However, sometimes it is just bet-
ter to throw the prototypes away. Unfortunately you are not typically the person to make
that decision.

You should also carefully study motives of your company to participate in standardiza-
tion effort. Four typical cases are mentioned at the end of pattern Know People.

When you know yourself it is obviously easier to set goals, and give to each of them
preferences. However, you should not reveal any information about your list of prefer-
ence before you really have to. Otherwise you will loose amount of important currency
you can use in bargains, as written by Sun Tzu:

“By discovering the enemy's dispositions and remaining invisible ourselves, we
can keep our forces concentrated, while the enemy's must be divided.”

Sun Tzu

Now it is time to continue TDMA vs. CDMA example. You have studied in previous
pattern both of these technologies, and you have studied in this pattern the strategy of
your company. Now it is time to choose your side based on this information.

Back-up Team Ready

No matter how well you prepare, there could always be a case for which you haven't
prepared.

Therefore:

You should have a possibility to alert your back-up team during the meetings (at least
virtually) anytime. Organize a team, which is available all the time during meeting days
(and evenings, remember time-zones) for a quick teleconference, and who are ready to
find and to send you those parts of reference material you have forgotten to take with
you.

During Meeting

First Version is Important

Several fields of the modern technology have one common force: backward compatibil-
ity. Sometimes there are technical reasons for that, sometimes reasons are more politic-
al. In standardization work people tend to play an important role related to this force.
Any kind of significant change is not possible in subsequent versions of standard be-
cause people who did the original work will not be pleased and will be strongly against
any changes.

Therefore:

Work hard to get the first version as close to the right one for you as possible, later on it
is difficult to make any significant change to it because it have to be “backward compat-
ible”. This means that you should do your homework properly and when an issue is
taken into discussion you should have your opinion ready. If you have accepted
something, it will be very difficult to remove it later.

101

A Pattern Language for Standardization Work

You should understand that anything added to standard will not just go away. The size
of the standard always increases, never decreases. The only possibility to decrease the
size of a standard is when people who put things in (inventors) eventually go away.

The well-known KISS (Keep It Simple and Straightforward) principle works also in
standardization work.

Concepts over Names

You are working in the group whose aim is to create a standard. During the process
new concepts are found and possibly added. However, participants of the work group
are from different kind of interest groups and some of them have already those new
things included to their goals, some may try to avoid to have them included. Typically
this will wind up in a long and sometimes tense discussion.

You are in the situation that something you like to be added to standard is at stake. In
the ideal situation new concepts added to standard are named as you like.

Therefore:

If there is strong resistance against something you want to be added to the standard, you
can try to ease your demands a little: keep the concept as it is, but accept a new name
for it. In some cases people are not against the thing itself, they are against how it is
named in proposal. If the name of concept in concern is changed they could accept it
without thinking twice. The reason behind this phenomena is that for many people
names are most important things, and the first name given during standardization is the
most important one. They potentially guide thoughts to particular direction or area, and
some of them they want to avoid. For this reason they cannot even accept any names
from that area. Of course this don't work if you are the one who want a particular name
to the standard.

Power of Examples

You are working in the group whose aim is to create a standard. There are things in-
cluded in the standard that are complicated to understand if there is only textual descrip-
tion of it.

Therefore:

Use examples to make things easier to understand. Do not forget that carefully chosen
examples guide people understanding, and usually people stick to their first impression.

Use Straw Poll

Participants of the work group are from different interest groups which usually have
conflicting goals. Often discussion about different issues will be long and sometimes
tense. If people have taken a strong opinion they have difficulties to change it afterward.
Especially an individual vote (even your own) is very difficult to change afterward.

Therefore:

During meetings use straw poll to see how things are going – try to reach “strong con-
sensus”. People have easier to change their opinion if they can do it without loosing
their face. For this reason do not put anything to the vote if not absolutely necessary.

102

A Pattern Language for Standardization Work

Acknowledgments
During the years many people have supported me and facilitated my work with patterns
in protocol engineering with comments, ideas, encouragements, and resources. Espe-
cially I would like to thank my shepherds who helped me in this quest: Neil Harrison
(VikingPLoP2003), Rick Dewar (EuroPLoP2002), Norm Kerth (EuroPLoP2001), and
Michael Stall (PLoP2000). I would also like to thank my long time co-author, Markku
Turunen, participating this (seems to be) never ending story.

This paper has been workshopped at VikingPLoP2003 in Bergen, Norway. I would like
to thank especially Richard Gabriel for his excellent work as a moderator and to Linda
Rising for her numerous comments on my paper.

For this pattern language I have interviewed experts who have experience from different
standardization organizations: Morgan Björkander, Antti Huima, and Steve Randall.

References
[1] Sun Tzu, The Art of War, Project Gutenberg Etext #132, 1994.

[2] Niccolo Machiavelli, The Prince, Project Gutenberg Etext #1232, 1998.

[3] J. Pärssinen, M. Turunen, Pattern Language for Architecture of Protocol Systems, a
pattern workshop paper presented at EuroPLoP2001, 4 - 8 July 2001, Irsee, Germany.

103

103. Factory and Disposal Methods - A Complementary and Symmetric Pair of

Patterns

Factory and Disposal Methods
A Complementary and Symmetric Pair of Patterns

Kevlin Henney
kevlin@curbralan.com

kevlin@acm.org

May 2004

Abstract

complementary (of two or more different things) combining in such a way as
to form a complete whole or to enhance or emphasize each other's qualities.

symmetry the quality of being made up of exactly similar parts facing each
other or around an axis.

 correct or pleasing proportion of the parts of a thing.
 similarity of exact correspondence between different things.

The New Oxford Dictionary of English

Manual object creation may be in conflict with information hiding or instance-controlling
requirements. The consequences of such separation and encapsulation can be addressed by
the FACTORY METHOD pattern. Further control, economy, and symmetry may be found in
the DISPOSAL METHOD pattern, in effect a mirror of FACTORY METHOD.

This paper revisits the classic FACTORY METHOD pattern, broadening the scope of this
general pattern in line with the common usage of its name. Four specific variants are
examined: PLAIN FACTORY METHOD, CLASS FACTORY METHOD, POLYMORPHIC FACTORY
METHOD, and CLONING METHOD. FACTORY METHOD is accompanied by DISPOSAL METHOD,
making the consideration of object lifecycle more clearly balanced. Two specific variants
are examined: FACTORY DISPOSAL METHOD and SELF-DISPOSAL METHOD.

FACTORY METHOD and DISPOSAL METHOD are, in essence, quite high level whereas each of
their variants is a more specific pattern. In the context of a specific pattern language or
sequence it often makes more sense to zoom in on the specific variants rather than refer
abstractly to the zoomed-out generalizations. This paper does not present a specific pattern
language or a complete pattern sequence, more of a generative phrase or expression that
can be incorporated and reified in a language or sequence.

104

Factory and Disposal Methods - A Complementary and Symmetric Pair of Patterns

Introduction

There is an inherent tension between data hiding and object creation. For example, if you
hide object use behind an interface, how do you know which concrete class to use for
creation? With any luck, if you are an experienced OO developer, you will now be sitting
back in your seat, confident in the knowledge of at least one good answer. There is a good
chance that this answer is FACTORY METHOD [Gamma+1995]:

Define an interface for creating an object, but let subclasses decide which class to
instantiate. FACTORY METHOD lets a class defer instantiation to subclasses.

Well, you can lean forward now: this pattern deserves a revisit and revision to free it from
a purely inheritance-centric view; it also warrants a counterpart to make it part of a greater
design whole.

Both before and since the Gang of Four published FACTORY METHOD, the term factory has
been used by programmers in a slightly broader sense, one not necessarily restricted to
class hierarchies. Programmers will happily name a non-polymorphic method a factory
method, so long as the obvious creational role indicated by a literal reading of the pattern
name is followed. A factory is therefore generally a defined location with responsibility for
encapsulating object creation.

There is also something missing from the common discussion of object creation through
factories: object disposal. Contemplating the sound of one hand clapping is a spiritual
question not always well suited to the classically utilitarian materialism of objects. The
absence of symmetry in the discussion of FACTORY METHOD suggests DISPOSAL METHOD.
This relationship is not so much a tiny pattern language or short pattern sequence as a
simple generative pattern phrase or subsequence, something that might be uttered in
conversation in a language or included in a longer, domain-specific sequence. The
symmetric pairing marries and mirrors FACTORY METHOD with DISPOSAL METHOD: one
seeks closure in the other. As with any real mirror or marriage, the reflection is not perfect:
in the detail of these patterns there is a great deal of independent variation that contrasts
with the sketch-level symmetry.

Symmetry is a fundamental consideration [Alexander2002, Henney2003, Zhao+2003] that
typically has the effect of simplifying a design, making it easier to comprehend and work
with, not to mention more elegant and more whole. The simplification comes from the
resulting regularity: something that is regular is easier to recall or second-guess than
something that is not. Symmetry encourages consistency, becoming its own design map.
This does not mean that designs should be globally and thoroughly symmetric but that,
where transparency is not possible, a design should be predominantly and locally
symmetric. A purely symmetric design is typically quite a dull one; a purely asymmetric
one is unmemorable for different reasons.

A common question confronting both pattern authors and readers is that of specificity.
Each occurrence of a pattern in a system is clearly highly specific, but at what level should
the pattern itself be described? How specific should the problem be? What differentiates a
variant of a pattern from the core pattern? Both the level and context of interest often
dictate whether a pattern should be expressed at the most general level, e.g. a FACTORY
METHOD is a method responsible for the creation of objects, or whether different flavors
should be singled out and named, e.g. a POLYMORPHIC FACTORY METHOD defers the
knowledge of exact creation type to be pushed down a class hierarchy. In the context of a
specific pattern language it tends to make sense to focus on specific variants because the
problems they address in the context of the language are similarly specific, e.g. while
FACTORY METHOD offers a general heading for describing an approach to creational

105

Factory and Disposal Methods - A Complementary and Symmetric Pair of Patterns

encapsulation, a PLAIN FACTORY METHOD does not solve quite the same problem as a CLASS
FACTORY METHOD, nor does it have quite the same consequences.

In this paper the focus is not a pattern language but on two patterns that, at a general level,
form part of a vocabulary for object lifecycle design. PLAIN FACTORY METHOD, CLASS
FACTORY METHOD, and POLYMORPHIC FACTORY METHOD are presented in the context of the
more general FACTORY METHOD, with CLONING METHOD as a further flavor of
POLYMORPHIC FACTORY METHOD. FACTORY DISPOSAL METHOD and SELF-DISPOSAL METHOD
are presented in the context of DISPOSAL METHOD. The following diagram illustrates the
relationships:

A low-ceremony pattern form is used. In general, the focus of the patterns is on the
statically typed OO model of Java, C++, and C#. Specifically, code fragments are in Java.

Disposal Method

Plain Factory
Method

Class Factory
Method

Factory Disposal
Method

Self-Disposal
Method

Cloning Factory
Method

Polymorphic
Factory Method

Factory Method

106

Factory and Disposal Methods - A Complementary and Symmetric Pair of Patterns

FACTORY METHOD

Encapsulate the concrete details of object creation by providing a method for object creation instead
of letting object users instantiate the concrete class themselves.

Problem: Code that depends on instances of a class or from a class hierarchy may need to
create the objects itself. This may not be as easy as simply using a new expression:

 What if the creational logic cannot be contained easily inside a constructor? What if
external validation is needed or object relationships must be established that might be
considered beyond the scope of the object's immediate responsibility? For example, the
constructor of a bank account object should not be responsible for allocating its account
number, running a credit check, or ensuring that the instance is persisted by its
associated bank.

 What if the class must be instance controlled, so that unconstrained use of new would
be inappropriate? For example, neither ENUMERATION VALUES [Henney2000a,
Henney2000b] nor SINGLETON objects [Gamma+1995] should be created manually or
directly by their users.

 What if the appropriate concrete class is unknown to the user because the user
manipulates an object only via a declared interface and not via its concrete class? For
example, an object whose actual type depends on the actual type of another object
should not cause the user to copy and paste repetitious type-dependent code.
Cascaded if else if statements that hardwire instanceof, dynamic_cast, or is runtime
type checks are a good way of obscuring a method's intent and reducing a class's
openness and extensibility.

 A more specific example of needing object creation in the presence of hierarchical
abstraction is the wish to take a proper copy of an object without knowing its concrete
type.

These different scenarios are unified under a common pair of opposing forces:

 Objects are most simply and intuitively created using a new expression, specifying a
concrete class and constructor arguments. This provides the user of a class with full
control over instantiation.

 Direct object creation may inadvertently obfuscate and reduce the independence of the
calling code if any of the necessary ingredients for correct object creation are not
readily available. The concrete class, the full set of constructor arguments or the
enforcement of other constraints may not be known at the point of call; to require them
would increase the complexity of the calling code.

Solution: Provide a method for fully and correctly creating the appropriate object instead
of relying on a new expression. The knowledge of creation is encapsulated within this
factory method. The ability to create instances directly is hidden from the caller either by
making constructors non-public or by pushing it down a class hierarchy.

However, unless created specifically for the purpose, including the role of creator in a
class's repertoire can sometimes be considered an addition that dilutes its cohesiveness.
The solution is certainly more encapsulated than the alternatives, but the cohesion can be
considered a little lower than in a design where such creation was never needed.

There are three basic and one extended variant of FACTORY METHOD that determine how
the different roles of product and creator (also known as the factory) are realized:

 PLAIN FACTORY METHOD: The creator is an object — not necessarily in a class hierarchy
— and the type of the product either is fixed or varies only with environmental settings

107

Factory and Disposal Methods - A Complementary and Symmetric Pair of Patterns

or the arguments to the factory method. A PLAIN FACTORY METHOD implementation is
normally just a case of providing an ordinary, possibly final or sealed, method that
creates instances of another class, with no specific intent to be inherited or overridden.

 CLASS FACTORY METHOD: The creator is a class rather than an object, and so the factory
method is static. The creator is often the same class as the product object type, which is
not normally defined in a class hierarchy. Direct creation of product objects is often
prevented by ensuring that instance constructors are non-public. CLASS FACTORY
METHOD pattern is also known as STATIC FACTORY METHOD [Bloch2001, Haase2002].

 POLYMORPHIC FACTORY METHOD: The possible types of the product object are defined in
a class hierarchy. Mirroring the hierarchy of what is created, an interface for creator
objects is provided, offering the factory method abstractly, and the responsibility for
creation is deferred to an implementing subclass. The knowledge of which type of
product is required is contracted out to the creator hierarchy, removing the need for a
closed and clumsy instanceof solution. This FACTORY METHOD variant is the classic
Gang of Four version.

 CLONING METHOD: The product class is the same as the creator class. However, unlike a
CLASS FACTORY METHOD the relationship is properly reflexive: the creator is an instance
of the class, rather than the class, so that its result is another object of its own type. To
be precise, the product is a proper copy of its creator. A CLONING METHOD is a specific
kind of POLYMORPHIC FACTORY METHOD.

A PLAIN FACTORY METHOD is fairly straightforward in its common form. The product is
normally concrete, and may have only non-public constructors:

public class ConcreteProduct
{
 ...
 private ConcreteProduct(...) ...
}

The creator is also normally concrete, and has sufficient access to the product type to create
instances:

public class ConcreteCreator
{
 public ConcreteProduct create()
 {
 return new ConcreteProduct(...);
 }
 ...
}

For the bank account example, a bank object would adopt the role of creator and an account
object would be a product. The bank would hide the details of creation and the account
class would prevent general creation by users. The design is encapsulated between the two
classes and need not involve any inheritance.

The form of a CLASS FACTORY METHOD is simple, with the class as creator and its instances
as product:

public class ConcreteProduct
{

108

Factory and Disposal Methods - A Complementary and Symmetric Pair of Patterns

 public static ConcreteProduct create()
 {
 return new ConcreteProduct(...);
 }
 ...
 private ConcreteProduct(...) ...
}

For example, as an example of symmetry, a Java class that supports a meaningful toString
override could consider providing a fromString or valueOf CLASS FACTORY METHOD in
preference to a public String constructor. Using a CLASS FACTORY METHOD names the
conversion concept explicitly. It sets string-based creation apart from other constructors to
emphasize the inverse relationship with the common toString method.

The general POLYMORPHIC FACTORY METHOD has the most intricate detail, spanning two
class hierarchies where the previous two variants typically address one or two classes on
their own. There is the product hierarchy:

public interface Product
{
 ...
}
...
public class ConcreteProduct implements Product
{
 ...
}

And there is the creator hierarchy:

public interface Creator
{
 Product create();
 ...
}
...
public class ConcreteCreator implements Creator
{
 public Product create()
 {
 return new ConcreteProduct(...);
 }
 ...
}

Where the caller and the used class hierarchy are one and the same, TEMPLATE METHOD
[Gamma+1995] is often used:

public abstract class ProductUser
{
 public void useNewProduct()
 {
 Product produce = create();
 ...
 }

109

Factory and Disposal Methods - A Complementary and Symmetric Pair of Patterns

 protected abstract Product create();
}
...
public class ConcreteProductUser implements ProductUser
{
 protected Product create()
 {
 return new ConcreteProduct(...);
 }
}

A degenerate arrangement of POLYMORPHIC FACTORY METHOD is CLONING METHOD (or
VIRTUAL COPY CONSTRUCTOR or SELF-FACTORY METHOD), which is normally used in its own
right to support polymorphic copying but can also be found in support of a PROTOTYPE
approach to object creation [Gamma+1995, Coplien1992], with which it is often confused.
In CLONING METHOD the types of the product and the creator are the same, and the creator
instance provides itself as the model from which a new instance is built:

public class Product implements Cloneable
{
 public Object clone()
 {
 ... // cloning carried out and resulting object returned
 }
 ...
}

The cloning is instigated directly by the object user:

...
public void takeSnapshot(Product other)
{
 snapshot = (Product) other.clone();
}
...

In PROTOTYPE an object is held by a factory to be used as the prototypical instance from
which new factory products are built. This may involve a CLONING METHOD:

public class ConcreteCreator implements Creator
{
 public Product create()
 {
 return (Product) prototype.clone();
 }
 ...
 private Product prototype;
}

Or not:

public class ConcreteCreator implements Creator
{

110

Factory and Disposal Methods - A Complementary and Symmetric Pair of Patterns

 public Product create()
 {
 return new Product(prototype.attributes());
 }
 ...
 private Product prototype;
}

In the second fragment the factory product is created using the attributes of the prototype
object and explicitly constructing the object. In both cases the prototype is used as the
instance on which factory products are based, but only in the first does the implementation
mechanism qualify as a FACTORY METHOD.

111

Factory and Disposal Methods - A Complementary and Symmetric Pair of Patterns

DISPOSAL METHOD

Encapsulate the concrete details of object disposal by providing an explicit method for clean up
instead of letting object users either abandon objects to the tender mercies of the garbage collector or
terminate them with extreme prejudice and delete.

Problem: How should objects with significant clean-up behavior be disposed of after use?
For garden-variety objects, the usual mechanism of the language for disposing of objects is
normally sufficient. However, for some kinds of objects, such as resources, this may not be
enough. Just as a FACTORY METHOD may hide details of an object's creation that cannot be
handled fully by a constructor, details of an object's destruction may go further than can be
adequately expressed by conventional finalization, whether a finalize method or
destructor.

A resource can be defined by its use and context rather than in terms of its abstraction. A
resource is any object that could easily become scarce in a system and whose scarcity
would cause problems. Therefore, a resource can be defined liberally as anything that
should be returned after acquiring and using it. For example, memory in C and C++ is a
resource, but in a well-endowed Java or C# program it is typically not. However, in a
smaller environment memory again becomes a resource. In the common application of a
FACTORY METHOD, instance creation is controlled but object disposal is not. Because
resource usage may need to be conserved and resources recycled, the user of a resource
should have a clear contract for how a resource's usage lifetime is bounded.

In C++ an explicit delete by a factory-product user is asymmetric with the hidden new in
the factory. A delete expression deterministically triggers the end of an object's life, which
may be a somewhat more severe disposal than is wanted: it is difficult to recycle an object
if it no longer exists. There is also no guarantee that an object was created using a plain new,
hence a delete may be precisely the wrong action even to end an object's life. Memory that
is acquired independently of construction would rely on a placement new expression for
construction and an explicit destructor call for destruction; there is no corresponding
delete expression.

Java and C# programmers can discard objects for later automatic collection by the garbage
collector. It is, however, naïve to assume that a GC system solves all memory and resource
management issues out of the box [Bloch2001]:

When you switch from a language with manual memory management, such as C or
C++, to a garbage-collected language, your job as a programmer is made much easier
by the fact that your objects are automatically reclaimed when you're through with
them. It seems almost like magic when you first experience it. It can easily lead to the
impression that you don't have to think about memory management, but this isn't quite
true.

It is possible to further dilute confidence in totally transparent GC: your objects may be
reclaimed automatically. There is little guarantee that they will be claimed in a timely
manner, or even at all — although such low (or non-existent) quality-of-service would find
favor with few developers. Frequent creation of fine-grained objects, such as iterators or
value objects, can potentially lead to inefficient use of resources or even resource
exhaustion.

With respect to resources, a specific and timely clean-up action may be required, but in the
absence of explicit control over the tail end of an object's life this cannot be made implicit
— and whatever the problem, Java's finalize is rarely the answer. GC addresses the issue
of object collection to make memory resourcing transparent, but this does not apply to
other resources.

112

Factory and Disposal Methods - A Complementary and Symmetric Pair of Patterns

Solution: Provide a method for explicit clean up and disposal of an object. Mirroring
FACTORY METHOD, DISPOSAL METHOD answers the question of who is responsible for the
clean up and disposal of an object by making the clean up an explicit operation for the
user. Just as the user requested an object for use, they must also mark the end of its use.

DISPOSAL METHOD may be expressed as one of two basic variants:

 FACTORY DISPOSAL METHOD: Provide a method on the factory that originally created
the object. The knowledge of an object's lifecycle is isolated in a single place, which
allows transparent instance control, such as an object pool that caches and recycles
objects.

 SELF-DISPOSAL METHOD: Provide a method on the object to be disposed of. This method
either performs the clean up itself or, if a factory was involved in the object's creation,
it returns of the object to its maker.

An obvious and negative consequence of this pattern is that the user must remember to
both make the call and make the call exception safe. This situation is tedious and error
prone, and can be ameliorated through additional encapsulation, such as a COMBINED
METHOD [Henney2000c], EXECUTE-AROUND METHOD [Henney2001a], or a COUNTING
HANDLE [Henney2001b]. Where instance control is neither about resource management nor
in the hands of an object user, no disposal is required, so DISPOSAL METHOD is not
necessarily appropriate.

FACTORY DISPOSAL METHOD is the natural complement of FACTORY METHOD, and its truest
reflection:

public interface Creator
{
 Product create();
 void dispose(Product toDisposeOf);
 ...
}

In the bank account example closing an account would be a good example of a FACTORY
DISPOSAL METHOD. The code that decides to dispose of a factory-created object must have
access to both the creator and the product. This not only means that the lifetime of the
product must be contained within that of its creator, but that the caller of the DISPOSAL
METHOD is expected to co-ordinate the disposal correctly, i.e. it should ensure that it
matches the right product with the right factory. This is often not a significant issue
because factories and products are normally well matched in terms of types and scope
usage. However, this slight increase in coupling can present a potential liability for some
programs.

SELF-DISPOSAL METHOD is sometimes known as an EXPLICIT TERMINATION METHOD
[Bloch2001]:

public interface Product
{
 void dispose();
 ...
}

Where a SELF-DISPOSAL METHOD is simply a forwarder to a FACTORY DISPOSAL METHOD, it
clearly has to retain some kind of reference to the factory of origin. In such a case it

113

Factory and Disposal Methods - A Complementary and Symmetric Pair of Patterns

successfully encapsulates the knowledge of its origin and therefore the correct co-
ordination of product to creator. The product user — or, to be precise, disposer — is freed
from maintaining and using this extra reference. Although this offers a better
encapsulation of the constraints governing the factory–product pairing, it can be seen as
slightly less cohesive because responsibility for disposal is represented in the product
interface, which would otherwise be focused purely on matters of product usage.

In C++ a DISPOSAL METHOD displaces the use of a public delete for the product type in
question. The lifetime of an object is no longer subject to the operators in the language but
to the higher-level interfaces and object lifecycle choices of a specific application. To ensure
no clash between the use of a DISPOSAL METHOD and the common use of a delete, the
destructor of the target object should not be public at the level of the interface. This
restriction prevents any attempt to mix the delete and DISPOSAL METHOD models at
compile time.

114

Factory and Disposal Methods - A Complementary and Symmetric Pair of Patterns

Acknowledgments

This paper is derived from a previous article [Henney2002].

I would like to thank Klaus Marquardt for his thorough and insightful shepherding of this
paper for VikingPLoP 2003, Mark Radford for his additional comments both before and
after the conference, and Neil Harrison for his comments following the conference. From
the workshop at the conference I would like to thank Jacob Borella, Franco Guidi-Polanco,
Alan O'Callaghan, and Titos Saridakis.

References

[Alexander2002] Christopher Alexander, The Nature of Order, Book 1: The Phenomenon of Life,
Center for Environmental Structure, 2002.

[Bloch2001] Joshua Bloch, Effective Java, Addison-Wesley, 2001.

[Coplien1992] James O Coplien, Advanced C++: Programming Styles and Idioms, Addison-
Wesley, 1992.

[Gamma+1995] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[Haase2002] Arno Haase, "Idiome in Java", JavaSPEKTRUM 36, February 2002.

[Henney2000a] Kevlin Henney, "Patterns of Value", Java Report 5(2), February 2000,
available from http://www.curbralan.com.

[Henney2000b] Kevlin Henney, "Value Added", Java Report 5(4), April 2000, available from
http://www.curbralan.com.

[Henney2000c] Kevlin Henney, "A Tale of Two Patterns", Java Report 5(12), December 2000,
available from http://www.curbralan.com.

[Henney2001a] Kevlin Henney, "Another Tale of Two Patterns", Java Report 6(3), March
2001, available from http://www.curbralan.com.

[Henney2001b] Kevlin Henney, "C++ Patterns: Reference Accounting", EuroPLoP 2001, July
2001, available from http://www.curbralan.com.

[Henney2002] Kevlin Henney, "Symmetrie in Java", JavaSPEKTRUM, July 2002, available in
English as "The Importance of Symmetry" from http://www.curbralan.com.

[Henney2003] Kevlin Henney, "Five Possible Things after Breakfast", The Road to Code blog
at Artima, 23rd June 2003, http://www.artima.com.

[Zhao+2003] Liping Zhao and James Coplien, "Understanding Symmetry in Object-
Oriented Languages", Journal of Object Technology 2(5), September–October 2003,
http://www.jot.fm/issues/issue_2003_09/article3.

115

115. The Good, the Bad, and the Koyaanisqatsi - Consideration of Some Patterns for

Value Objects

The Good, the Bad, and the Koyaanisqatsi
Consideration of Some Patterns for Value Objects

Kevlin Henney
kevlin@curbralan.com

kevlin@acm.org

May 2004

Abstract

koyaanisqatsi /ko.yaa.nis.katsi/ (from the Hopi language), noun:

1. crazy life.
2. life in turmoil.
3. life disintegrating.
4. life out of balance.
5. a state of life that calls for another way of living.

From the 1983 film of the same name, directed by Godfrey Reggio,
soundtrack composed by Philip Glass

This paper considers and combines some seemingly disparate ideas: symmetry within and
across class interfaces; the notion of ineffective but recurring design styles as patterns,
albeit dysfunctional ones; the role of balance within good patterns; value-based
programming idioms in Java. Inappropriate symmetry in a faulty but common interface
style is presented as a plausible pattern, which is then counterbalanced by a pair of
patterns that break and recast the symmetry at a different level, resolving the design
tension.

Pairing every get method with a set method offers an apparently simple and symmetric
design style, but it is one fraught with problems. In the context of value-based
programming in Java the balance may be better expressed across two classes: an
IMMUTABLE VALUE and a MUTABLE COMPANION. These complementary patterns represent
two sides of the same design coin, a symmetry and contrast at a different level to the per-
method pairing of get with set. In contexts other than value-based programming in Java
the design tension will be resolved in different ways. This is not to say that one should
never write get and set methods, just that to characterize the practice as the GETTERS AND
SETTERS pattern suggests that the use of get and set methods is a good solution to a specific
problem rather than a cumulative consequence of other design decisions. Reasoning more
carefully about GETTERS AND SETTERS as a pattern, with documented forces and
consequences, exposes its unbalanced nature and its weakness as a design guideline.

116

The Good, the Bad, and the Koyaanisqatsi - Consideration of Some Patterns for Value

Objects

Introduction

Symmetry is a notion grounded in our experience of the real world. We apply it, by metric
and by metaphor, to other domains, both physical and abstract. It can be considered both
formally and informally, with respect to a rigorously mathematical, mirror-perfect balance
or as a looser, more tacit equilibrium of opposites. Symmetry is a form of consistency that
is about balance and opposites.

Symmetry can be a useful, memorable, and harmonic local property in designs
[Alexander2002, Coplien+2001, Zhao+2003]. It requires less effort to explain and recall,
guiding expectation that when a particular feature is present, its logical counterpart will
also be there. That where there is the capability for output there is also the capability for
input. That where a resource can be acquired it can also be released. That where there is a
commit there is also a rollback.

It is tempting to extrapolate this series of balanced pairings to get and set methods, i.e.
where there is a get method there should also be a set method. However, this would be a
step too far and a temptation that should be resisted. Such a guideline is simplistic rather
than simple. It leads to code that is difficult to use correctly and, except in trivial cases,
difficult to implement correctly. In spite of this, some company coding guidelines mandate
a pairing of a set with every get, and even a get for every private field. Others have gone
even further by arranging for a get and a set to be generated automatically for every field.
A simple vowel shift might better describe such code: uncapsulated.

This style is sometimes favorably referred to as a pattern. Patterns can be considered either
"good" or "bad". When programmers normally talk about patterns there is an implicit
assumption that they are talking about patterns that improve the quality of their systems,
an implicit assumption that documented patterns are, almost by definition, of the "good"
variety, so that anything that is a "bad" pattern is not a pattern. From this perspective,
automatic pairing of set with get methods cannot be considered a pattern, only a
questionable and smelly [Fowler1999] coding guideline with a long footnote of problems.
Caveat setter.

Any pattern describes a dialog with a design situation. It explores the context of a design
problem, whether large scale or fine grained, enumerating the forces that drive and buffet
the design. A pattern moves on to describe a solution. But, importantly, a pattern does not
end there. The dialog continues by describing the consequences of applying the proposed
solution, detailing the resulting context. What forces were balanced? What was left
unresolved? What benefits have arisen? What liabilities have been incurred?

If "bad" patterns are also considered to be patterns — the case originally [Alexander1979]
— we can understand their dysfunctionality by trying to consider each as an unfulfilled
whole — a whole with holes. A "good" pattern is one whose forces are both genuine and
well matched by its consequences. A "bad" pattern, on the other hand, is one whose forces
are incomplete and whose consequences are out of balance.

Patterns, whether good or bad, have a recurring nature and recognisable form. By trying to
understand GETTERS AND SETTERS as some kind of pattern we can see it more easily in code;
we can better understand why it is not a good pattern; most importantly, we can see how
we might better address the design problem — preferably with a solution rather than
another problem. This is not to say that objects should never have paired get and set
methods — if there is any guideline here, it is probably that any set methods should be
accompanied by get methods, rather than the other way around [Henney2004] — just to
point out that when useful, such a pairing is a consequence of other design decisions and
less a decision in itself.

117

The Good, the Bad, and the Koyaanisqatsi - Consideration of Some Patterns for Value

Objects

This paper takes the implementation of VALUE OBJECT types in Java [Fowler2003,
Henney2000a, Henney2000b, Wiki] as its example for comparing "good" and "bad"
patterns. GETTERS AND SETTERS can in principle apply to any kind of object in any language
supporting objects, but the context of VALUE OBJECTs allows discussion of an alternative
approach to be specific and concrete — in this case, the IMMUTABLE VALUE and MUTABLE
COMPANION pairing. In another context, such as expressing the interface of an entity type
or refactoring procedural code into object-oriented code, GETTERS AND SETTERS would be
presented a little differently, taking into account differences in the context, forces, and
consequences while retaining the similar recurring intention and construction that makes it
some kind of pattern.

The complementary IMMUTABLE VALUE and MUTABLE COMPANION patterns are part of a
larger pattern language, but are presented in this paper connected only to VALUE OBJECT,
one another, and variants of FACTORY METHOD [Henney2003c]. GETTERS AND SETTERS is
persuasive but deceptive: it is based on a slightly false identification of forces and a
selective consideration of consequences. Closer inspection and reflection reveals that its
liabilities outweigh its benefits. Although the pattern has an air of plausibility in its
presentation, it is out of balance: any application of it can throw a design off centre. The
complementary pattern pairing considers more authentic design criteria with forces that
are relevant and an outcome that is more clearly balanced.

The following diagram shows the generative relationships (or lack of) between the patterns
under discussion, highlighting the patterns described in this paper:

It is sometimes said that no pattern is an island, but, as the diagram shows, this is not
always true. Although, in the documented form that follows, GETTERS AND SETTERS believes
that it has VALUE OBJECT as its context, the relationship, from VALUE OBJECT's perspective,
is an unconsummated one. A careful examination of GETTERS AND SETTERS' consequences
indicates that what at first appears to be a beneficial pattern, is little more than a chimera. It
has a false symmetry encouraged by assonance in its English form — a phony euphony. A
setter does not in truth have the opposite effect to a getter. It is perhaps more informative
and constructive to think in terms of putter or modifier and enquirer or query, evaluating the
need for these roles specifically for each design. Such design symmetry as exists is local but
not necessarily at the level of a single class interface: it can be found more convincingly
broken and recast across two class roles, IMMUTABLE VALUE and MUTABLE COMPANION.

 Value
Object

 Immutable
Value

 Mutable
Companion

 Class Factory
Method

 Combined
Method Plain Factory

Method

 Getters and
Setters

118

The Good, the Bad, and the Koyaanisqatsi - Consideration of Some Patterns for Value

Objects

 GETTERS AND SETTERS — A Dysfunctional Pattern

A VALUE OBJECT can be described in terms of one or more primitive values. A VALUE
OBJECT provides a higher level means of describing information in the system than
simply holding or passing around one or more primitive values. A VALUE OBJECT type
describes a concept more precisely, including encapsulated operations that refer to the
VALUE OBJECT as a whole. Each primitive value associated with a VALUE OBJECT is an
attribute that has a specific role. However, exposing such attributes as public data is
considered to be a poor practice.

Rather than communicate a concept, such as a date, in terms of primitive values, e.g. three
int arguments, a VALUE OBJECT expresses the concept as a single object. This packaging is
both easier to comprehend and simpler to manipulate. An object branded as a Date is
clearly more meaningful than an ad hoc grouping of three otherwise unconstrained
numbers.

However, if attributes, such as year, month, and day, are exposed as public fields, the
strength of encapsulation is weakened:

public class Date
{
 public int year, month, day;
 ...
}

Constraint enforcement is lost: there is no 29th February 2003 and there is never a 32nd
January. Public data advertises that the exposed fields have no relationships or rules
governing them that the class author wishes to enforce.

Public data also commits the class to a single representation. Although it conveniently
matches our intuition, representing a date as three integer values is not the most effective
or efficient representation for most programs [Henney2003b]. A scalar epoch-based date,
where the date is counted in days from a fixed date, is often simpler to work with and
more compact in representation, e.g. a single integer counting the days since 1st January
1900. The year, month, and day attributes are still conceptually valid, but they would have
to be calculated from the representation instead of actually being the representation. A
similar case can be made for the day of the week and the week in the year: conceptually
valid attributes that can be calculated, but not ones that should be stored and exposed
publicly as fields along with other attributes.

Therefore, for each primitive value that can be considered an attribute of a VALUE
OBJECT, provide a pair of methods that allow the attribute to be queried and set. An
attribute will often correspond to a private field, but this need not be the case: an
attribute may be a calculated value, derived from other fields.

The most common naming convention is to prefix the name of the conceptual attribute
with a get and a set for each pair of methods:

public class Date
{
 public Date(int year, int month, int dayInMonth) ...
 public int getYear() ...
 public void setYear(int newYear) ...
 public int getMonth() ...
 public void setMonth(int newMonth) ...
 public int getDayInMonth() ...

119

The Good, the Bad, and the Koyaanisqatsi - Consideration of Some Patterns for Value

Objects

 public void setDayInMonth(int newDayInMonth) ...
 ...
}

However, this is not necessarily the clearest or cleanest option. GETTERS AND SETTERS can be
implemented using slightly less pedestrian names, e.g. year instead of getYear.

Different implementations with different trade-offs can be expressed using a common
interface:

public class Date
{
 ...
 private int year, month, day;
}

Or:

public class Date
{
 ...
 private int daysSince1900;
}

A problem with the fine granularity of the operations is that of invalid, intermediate states.
Consider the following:

Date date = new Date(2003, 2, 28);
date.setDayInMonth(30);
date.setMonth(1);

The intent is that the object referred to by date is initialized to 28th February 2003 and then
modified to 30th January 2003. The problem is that the ordering of the operations shown
means that at one point the object would conceptually have to hold the date 30th February
2003, an invalid date. Either the operation must fail at this point or the validity
enforcement of the class must be disabled, weakening its encapsulation. For attributes that
are derived rather than stored directly, this can become even more of a challenge: 30th
February 2003 could be interpreted as 2nd March 2003, which would lead to the final date
being calculated as 2nd January 2003.

Another liability arises from sharing. A Date object that is shared by being passed as an
argument or returned as a method result can be modified by one party in ways unexpected
and unwanted by the other party. The only solution in this context is careful and defensive
copying of arguments and results, so that each party holds a unique instance.

120

The Good, the Bad, and the Koyaanisqatsi - Consideration of Some Patterns for Value

Objects

IMMUTABLE VALUE — A Better Pattern

VALUE OBJECTs are fine-grained, stateful objects used to express quantities and other
simple information in a system. Object identity is not significant for a value, but its
state is. VALUE OBJECTs form the principal currency of representation and
communication between many kinds of objects, such as entities and services. As such,
references to VALUE OBJECTs are commonly passed around and stored in fields.
However, state changes caused by one object to a value can have unexpected and
unwanted side effects for any other object sharing the same value instance.

How can you share VALUE OBJECTs and guarantee no side-effect problems? Defensive
copying is a convention for using a modifiable value object to minimize aliasing issues.
However, this practice is tedious and error prone, and may lead to excessive creation of
small objects, especially where values are frequently queried or passed around.

With multi-threading the troublesome consequences of aliasing are multiplied.
Synchronizing methods addresses the question of valid individual modifications, but does
nothing for the general problem of sharing. Synchronization also incurs a performance
cost.

Therefore, define a VALUE OBJECT type whose instances are immutable. The internal
state of a VALUE OBJECT is set at construction and no subsequent modifications are
allowed: only query methods and constructors are provided; no modifier methods are
defined. A change of value becomes a change of VALUE OBJECT referenced.

The absence of any possible state changes means that there is no reason to synchronize.
Not only does this make IMMUTABLE VALUEs implicitly thread safe, but the absence of
locking means that their use in threaded environments is also efficient. Sharing of
IMMUTABLE VALUEs is also safe and transparent in other circumstances, so there is no need
to copy an IMMUTABLE VALUE, and thus no need to support cloning or copy construction.

Declaring the fields final ensures that the no change promise is honoured. This guarantee
implies also that either the class itself must be final or its subclasses must also be
IMMUTABLE VALUEs:

public final class Date
{
 public Date(int year, int month, int dayInMonth) ...
 ... // other constructors
 public int year() ...
 public int month() ...
 public int dayInWeek() ...
 public int dayInMonth() ...
 public int dayInYear() ...
 ... // other query methods
 private final int daysSince1900;
}

References to — rather than the attributes of — an IMMUTABLE VALUE are changed to effect
value change. The reference may be to an existing object or a new one may need to be
created. There are complementary techniques for creating IMMUTABLE VALUEs: provide a
complete and intuitive set of constructors; provide a number of CLASS FACTORY METHODs
[Henney2003c] if some aspect of the creation needs to be controlled or named, e.g.
Date.today(); provide a MUTABLE COMPANION if values are used in complex expressions
that could generate many IMMUTABLE VALUE instances. Values are not resources, so their
FACTORY METHODs do not need to be mirrored by DISPOSAL METHODs [Henney2003c].

121

The Good, the Bad, and the Koyaanisqatsi - Consideration of Some Patterns for Value

Objects

MUTABLE COMPANION — A Complementary Pattern

IMMUTABLE VALUE objects provide a simple and safe means of expressing and sharing
values in a system. However, the construction of an IMMUTABLE VALUE is not always a
simple matter of using a new expression or calling a CLASS FACTORY METHOD. Some
values may be the outcome of complex or ongoing calculations.

Constructors for an IMMUTABLE VALUE type offer a way of creating instances from a fixed
set of arguments, but they cannot accumulate changes or handle complex expressions
without themselves becoming too complex or overly general. The need for frequent or
complex change typically leads to expressions that create many temporary objects.

For example, concatenating multiple strings, stripping unwanted characters and tokens out
of an input line before further processing, accumulating an invoice total from many items,
and generating a sequence of dates approximately two weeks apart but not falling on
public holidays or weekends are all tasks that would involve the creation — and rapid
neglect — of many IMMUTABLE VALUEs. What may, in isolation, be considered a relatively
minor space and time overhead can hit a program's performance and memory recycling
limits when frequent.

Therefore, provide a companion class for the IMMUTABLE VALUE type that supports
modifier methods. A MUTABLE COMPANION instance acts as a factory for IMMUTABLE
VALUE objects. For convenience this factory can stand not only as a separate class, but
can also take on some of the roles and capabilities of the IMMUTABLE VALUE.

The modifier methods allow for cumulative or complex state changes. They should be
synchronized COMBINED METHODs [Henney2000c] if shared use in a multi-threaded
environment is intended, but un-synchronized otherwise. A PLAIN FACTORY METHOD
[Henney2003c] allows users to get access to the resulting IMMUTABLE VALUE:

class DateManipulator
{
 ... // constructors, modifier, and other query methods
 public synchronized void set(int year, int month, int day) ...
 public synchronized Date toDate() ...
 ... // private representation
}

A MUTABLE COMPANION should not, however, have an inheritance relationship with its
corresponding IMMUTABLE VALUE. A mutable object is not truly substitutable for a type
whose usage contract is founded on its immutability. Such non-substitutable inheritance
would reintroduce the sharing problems eliminated by using an IMMUTABLE VALUE.
Because the role of a MUTABLE COMPANION is to create IMMUTABLE VALUEs, rather than to
be used as a value in its own right, neither cloning nor copy construction is a requirement.

The core Java String and StringBuffer classes are canonical examples of an IMMUTABLE
VALUE type with a MUTABLE COMPANION. With the exception of a transparent caching
optimization for its hash code, a String instance is immutable and freely shareable across
threads. A StringBuffer has a synchronized method interface with the standard object-as-
string query, toString, doubling as the PLAIN FACTORY METHOD. Both classes are final and
neither has any familial relationship with any class but Object.

A MUTABLE COMPANION is not always necessary, and should be provided only when the
cost or complexity of working with IMMUTABLE VALUEs alone becomes inappropriate.
Appropriateness is not so much subjective as relative: it depends on both the type that the
IMMUTABLE VALUE models and the specific application of that type.

122

The Good, the Bad, and the Koyaanisqatsi - Consideration of Some Patterns for Value

Objects

Acknowledgments

This paper is derived from a previous article [Henney2003a].

I would like to thank Joel Jones for his shepherding of this paper for VikingPLoP 2003 and
Neil Harrison for his comments following the conference. From the workshop at the
conference I would like to thank Jacob Borella, Franco Guidi-Polanco, Alan O'Callaghan,
and Titos Saridakis. For their later comments on the conference draft I would also like to
thank Phil Hibbs and Hubert Matthews.

References

[Alexander1979] Christopher Alexander, The Timeless Way of Building, Oxford, 1979.

[Alexander2002] Christopher Alexander, The Nature of Order, Book 1: The Phenomenon of Life,
Center for Environmental Structure, 2002.

[Coplien+2001] James Coplien and Liping Zhao, "Symmetry Breaking in Software
Patterns", Springer Lecture Notes in Computer Science, October 2001,
http://www.bell-labs.com/user/cope/Patterns/Symmetry/Springer/SpringerSymmetry.html.

[Fowler1999] Martin Fowler, Refactoring: Improving the Design of Existing Code, Addison-
Wesley, 1999.

[Fowler2003] Martin Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley,
2003.

[Henney2000a] Kevlin Henney, "Patterns of Value", Java Report 5(2), February 2000,
available from http://www.curbralan.com.

[Henney2000b] Kevlin Henney, "Value Added", Java Report 5(4), April 2000, available from
http://www.curbralan.com.

[Henney2000c] Kevlin Henney, "A Tale of Two Patterns", Java Report 5(12), December 2000,
available from http://www.curbralan.com.

[Henney2003a] Kevlin Henney, "Unvollendete Symmetrie in Java", JavaSPEKTRUM, May
2003, available in English as "Unfinished Symmetry" from http://www.curbralan.com.

[Henney2003b] Kevlin Henney, "The Taxation of Representation", The Road to Code blog at
Artima, 30th July 2003, http://www.artima.com.

[Henney2003c] Kevlin Henney, "Factory and Disposal Methods", VikingPLoP 2003.

[Henney2004] Kevlin Henney, "Opposites Attract", Application Development Advisor, to be
published.

[Wiki] http://c2.com/cgi/wiki?ValueObject.

[Zhao+2003] Liping Zhao and James Coplien, "Understanding Symmetry in Object-
Oriented Languages", Journal of Object Technology 2(5), September–October 2003,
http://www.jot.fm/issues/issue_2003_09/article3.

123

123. Factory and Disposal Methods - A Complementary and Symmetric Pair of

Patterns

Factory and Disposal Methods
A Complementary and Symmetric Pair of Patterns

Kevlin Henney
kevlin@curbralan.com

kevlin@acm.org

May 2004

Abstract

complementary (of two or more different things) combining in such a way as
to form a complete whole or to enhance or emphasize each other's qualities.

symmetry the quality of being made up of exactly similar parts facing each
other or around an axis.

 correct or pleasing proportion of the parts of a thing.
 similarity of exact correspondence between different things.

The New Oxford Dictionary of English

Manual object creation may be in conflict with information hiding or instance-controlling
requirements. The consequences of such separation and encapsulation can be addressed by
the FACTORY METHOD pattern. Further control, economy, and symmetry may be found in
the DISPOSAL METHOD pattern, in effect a mirror of FACTORY METHOD.

This paper revisits the classic FACTORY METHOD pattern, broadening the scope of this
general pattern in line with the common usage of its name. Four specific variants are
examined: PLAIN FACTORY METHOD, CLASS FACTORY METHOD, POLYMORPHIC FACTORY
METHOD, and CLONING METHOD. FACTORY METHOD is accompanied by DISPOSAL METHOD,
making the consideration of object lifecycle more clearly balanced. Two specific variants
are examined: FACTORY DISPOSAL METHOD and SELF-DISPOSAL METHOD.

FACTORY METHOD and DISPOSAL METHOD are, in essence, quite high level whereas each of
their variants is a more specific pattern. In the context of a specific pattern language or
sequence it often makes more sense to zoom in on the specific variants rather than refer
abstractly to the zoomed-out generalizations. This paper does not present a specific pattern
language or a complete pattern sequence, more of a generative phrase or expression that
can be incorporated and reified in a language or sequence.

124

Factory and Disposal Methods - A Complementary and Symmetric Pair of Patterns

Introduction

There is an inherent tension between data hiding and object creation. For example, if you
hide object use behind an interface, how do you know which concrete class to use for
creation? With any luck, if you are an experienced OO developer, you will now be sitting
back in your seat, confident in the knowledge of at least one good answer. There is a good
chance that this answer is FACTORY METHOD [Gamma+1995]:

Define an interface for creating an object, but let subclasses decide which class to
instantiate. FACTORY METHOD lets a class defer instantiation to subclasses.

Well, you can lean forward now: this pattern deserves a revisit and revision to free it from
a purely inheritance-centric view; it also warrants a counterpart to make it part of a greater
design whole.

Both before and since the Gang of Four published FACTORY METHOD, the term factory has
been used by programmers in a slightly broader sense, one not necessarily restricted to
class hierarchies. Programmers will happily name a non-polymorphic method a factory
method, so long as the obvious creational role indicated by a literal reading of the pattern
name is followed. A factory is therefore generally a defined location with responsibility for
encapsulating object creation.

There is also something missing from the common discussion of object creation through
factories: object disposal. Contemplating the sound of one hand clapping is a spiritual
question not always well suited to the classically utilitarian materialism of objects. The
absence of symmetry in the discussion of FACTORY METHOD suggests DISPOSAL METHOD.
This relationship is not so much a tiny pattern language or short pattern sequence as a
simple generative pattern phrase or subsequence, something that might be uttered in
conversation in a language or included in a longer, domain-specific sequence. The
symmetric pairing marries and mirrors FACTORY METHOD with DISPOSAL METHOD: one
seeks closure in the other. As with any real mirror or marriage, the reflection is not perfect:
in the detail of these patterns there is a great deal of independent variation that contrasts
with the sketch-level symmetry.

Symmetry is a fundamental consideration [Alexander2002, Henney2003, Zhao+2003] that
typically has the effect of simplifying a design, making it easier to comprehend and work
with, not to mention more elegant and more whole. The simplification comes from the
resulting regularity: something that is regular is easier to recall or second-guess than
something that is not. Symmetry encourages consistency, becoming its own design map.
This does not mean that designs should be globally and thoroughly symmetric but that,
where transparency is not possible, a design should be predominantly and locally
symmetric. A purely symmetric design is typically quite a dull one; a purely asymmetric
one is unmemorable for different reasons.

A common question confronting both pattern authors and readers is that of specificity.
Each occurrence of a pattern in a system is clearly highly specific, but at what level should
the pattern itself be described? How specific should the problem be? What differentiates a
variant of a pattern from the core pattern? Both the level and context of interest often
dictate whether a pattern should be expressed at the most general level, e.g. a FACTORY
METHOD is a method responsible for the creation of objects, or whether different flavors
should be singled out and named, e.g. a POLYMORPHIC FACTORY METHOD defers the
knowledge of exact creation type to be pushed down a class hierarchy. In the context of a
specific pattern language it tends to make sense to focus on specific variants because the
problems they address in the context of the language are similarly specific, e.g. while
FACTORY METHOD offers a general heading for describing an approach to creational

125

Factory and Disposal Methods - A Complementary and Symmetric Pair of Patterns

encapsulation, a PLAIN FACTORY METHOD does not solve quite the same problem as a CLASS
FACTORY METHOD, nor does it have quite the same consequences.

In this paper the focus is not a pattern language but on two patterns that, at a general level,
form part of a vocabulary for object lifecycle design. PLAIN FACTORY METHOD, CLASS
FACTORY METHOD, and POLYMORPHIC FACTORY METHOD are presented in the context of the
more general FACTORY METHOD, with CLONING METHOD as a further flavor of
POLYMORPHIC FACTORY METHOD. FACTORY DISPOSAL METHOD and SELF-DISPOSAL METHOD
are presented in the context of DISPOSAL METHOD. The following diagram illustrates the
relationships:

A low-ceremony pattern form is used. In general, the focus of the patterns is on the
statically typed OO model of Java, C++, and C#. Specifically, code fragments are in Java.

Disposal Method

Plain Factory
Method

Class Factory
Method

Factory Disposal
Method

Self-Disposal
Method

Cloning Factory
Method

Polymorphic
Factory Method

Factory Method

126

Factory and Disposal Methods - A Complementary and Symmetric Pair of Patterns

FACTORY METHOD

Encapsulate the concrete details of object creation by providing a method for object creation instead
of letting object users instantiate the concrete class themselves.

Problem: Code that depends on instances of a class or from a class hierarchy may need to
create the objects itself. This may not be as easy as simply using a new expression:

 What if the creational logic cannot be contained easily inside a constructor? What if
external validation is needed or object relationships must be established that might be
considered beyond the scope of the object's immediate responsibility? For example, the
constructor of a bank account object should not be responsible for allocating its account
number, running a credit check, or ensuring that the instance is persisted by its
associated bank.

 What if the class must be instance controlled, so that unconstrained use of new would
be inappropriate? For example, neither ENUMERATION VALUES [Henney2000a,
Henney2000b] nor SINGLETON objects [Gamma+1995] should be created manually or
directly by their users.

 What if the appropriate concrete class is unknown to the user because the user
manipulates an object only via a declared interface and not via its concrete class? For
example, an object whose actual type depends on the actual type of another object
should not cause the user to copy and paste repetitious type-dependent code.
Cascaded if else if statements that hardwire instanceof, dynamic_cast, or is runtime
type checks are a good way of obscuring a method's intent and reducing a class's
openness and extensibility.

 A more specific example of needing object creation in the presence of hierarchical
abstraction is the wish to take a proper copy of an object without knowing its concrete
type.

These different scenarios are unified under a common pair of opposing forces:

 Objects are most simply and intuitively created using a new expression, specifying a
concrete class and constructor arguments. This provides the user of a class with full
control over instantiation.

 Direct object creation may inadvertently obfuscate and reduce the independence of the
calling code if any of the necessary ingredients for correct object creation are not
readily available. The concrete class, the full set of constructor arguments or the
enforcement of other constraints may not be known at the point of call; to require them
would increase the complexity of the calling code.

Solution: Provide a method for fully and correctly creating the appropriate object instead
of relying on a new expression. The knowledge of creation is encapsulated within this
factory method. The ability to create instances directly is hidden from the caller either by
making constructors non-public or by pushing it down a class hierarchy.

However, unless created specifically for the purpose, including the role of creator in a
class's repertoire can sometimes be considered an addition that dilutes its cohesiveness.
The solution is certainly more encapsulated than the alternatives, but the cohesion can be
considered a little lower than in a design where such creation was never needed.

There are three basic and one extended variant of FACTORY METHOD that determine how
the different roles of product and creator (also known as the factory) are realized:

 PLAIN FACTORY METHOD: The creator is an object — not necessarily in a class hierarchy
— and the type of the product either is fixed or varies only with environmental settings

127

Factory and Disposal Methods - A Complementary and Symmetric Pair of Patterns

or the arguments to the factory method. A PLAIN FACTORY METHOD implementation is
normally just a case of providing an ordinary, possibly final or sealed, method that
creates instances of another class, with no specific intent to be inherited or overridden.

 CLASS FACTORY METHOD: The creator is a class rather than an object, and so the factory
method is static. The creator is often the same class as the product object type, which is
not normally defined in a class hierarchy. Direct creation of product objects is often
prevented by ensuring that instance constructors are non-public. CLASS FACTORY
METHOD pattern is also known as STATIC FACTORY METHOD [Bloch2001, Haase2002].

 POLYMORPHIC FACTORY METHOD: The possible types of the product object are defined in
a class hierarchy. Mirroring the hierarchy of what is created, an interface for creator
objects is provided, offering the factory method abstractly, and the responsibility for
creation is deferred to an implementing subclass. The knowledge of which type of
product is required is contracted out to the creator hierarchy, removing the need for a
closed and clumsy instanceof solution. This FACTORY METHOD variant is the classic
Gang of Four version.

 CLONING METHOD: The product class is the same as the creator class. However, unlike a
CLASS FACTORY METHOD the relationship is properly reflexive: the creator is an instance
of the class, rather than the class, so that its result is another object of its own type. To
be precise, the product is a proper copy of its creator. A CLONING METHOD is a specific
kind of POLYMORPHIC FACTORY METHOD.

A PLAIN FACTORY METHOD is fairly straightforward in its common form. The product is
normally concrete, and may have only non-public constructors:

public class ConcreteProduct
{
 ...
 private ConcreteProduct(...) ...
}

The creator is also normally concrete, and has sufficient access to the product type to create
instances:

public class ConcreteCreator
{
 public ConcreteProduct create()
 {
 return new ConcreteProduct(...);
 }
 ...
}

For the bank account example, a bank object would adopt the role of creator and an account
object would be a product. The bank would hide the details of creation and the account
class would prevent general creation by users. The design is encapsulated between the two
classes and need not involve any inheritance.

The form of a CLASS FACTORY METHOD is simple, with the class as creator and its instances
as product:

public class ConcreteProduct
{

128

Factory and Disposal Methods - A Complementary and Symmetric Pair of Patterns

 public static ConcreteProduct create()
 {
 return new ConcreteProduct(...);
 }
 ...
 private ConcreteProduct(...) ...
}

For example, as an example of symmetry, a Java class that supports a meaningful toString
override could consider providing a fromString or valueOf CLASS FACTORY METHOD in
preference to a public String constructor. Using a CLASS FACTORY METHOD names the
conversion concept explicitly. It sets string-based creation apart from other constructors to
emphasize the inverse relationship with the common toString method.

The general POLYMORPHIC FACTORY METHOD has the most intricate detail, spanning two
class hierarchies where the previous two variants typically address one or two classes on
their own. There is the product hierarchy:

public interface Product
{
 ...
}
...
public class ConcreteProduct implements Product
{
 ...
}

And there is the creator hierarchy:

public interface Creator
{
 Product create();
 ...
}
...
public class ConcreteCreator implements Creator
{
 public Product create()
 {
 return new ConcreteProduct(...);
 }
 ...
}

Where the caller and the used class hierarchy are one and the same, TEMPLATE METHOD
[Gamma+1995] is often used:

public abstract class ProductUser
{
 public void useNewProduct()
 {
 Product produce = create();
 ...
 }

129

Factory and Disposal Methods - A Complementary and Symmetric Pair of Patterns

 protected abstract Product create();
}
...
public class ConcreteProductUser implements ProductUser
{
 protected Product create()
 {
 return new ConcreteProduct(...);
 }
}

A degenerate arrangement of POLYMORPHIC FACTORY METHOD is CLONING METHOD (or
VIRTUAL COPY CONSTRUCTOR or SELF-FACTORY METHOD), which is normally used in its own
right to support polymorphic copying but can also be found in support of a PROTOTYPE
approach to object creation [Gamma+1995, Coplien1992], with which it is often confused.
In CLONING METHOD the types of the product and the creator are the same, and the creator
instance provides itself as the model from which a new instance is built:

public class Product implements Cloneable
{
 public Object clone()
 {
 ... // cloning carried out and resulting object returned
 }
 ...
}

The cloning is instigated directly by the object user:

...
public void takeSnapshot(Product other)
{
 snapshot = (Product) other.clone();
}
...

In PROTOTYPE an object is held by a factory to be used as the prototypical instance from
which new factory products are built. This may involve a CLONING METHOD:

public class ConcreteCreator implements Creator
{
 public Product create()
 {
 return (Product) prototype.clone();
 }
 ...
 private Product prototype;
}

Or not:

public class ConcreteCreator implements Creator
{

130

Factory and Disposal Methods - A Complementary and Symmetric Pair of Patterns

 public Product create()
 {
 return new Product(prototype.attributes());
 }
 ...
 private Product prototype;
}

In the second fragment the factory product is created using the attributes of the prototype
object and explicitly constructing the object. In both cases the prototype is used as the
instance on which factory products are based, but only in the first does the implementation
mechanism qualify as a FACTORY METHOD.

131

Factory and Disposal Methods - A Complementary and Symmetric Pair of Patterns

DISPOSAL METHOD

Encapsulate the concrete details of object disposal by providing an explicit method for clean up
instead of letting object users either abandon objects to the tender mercies of the garbage collector or
terminate them with extreme prejudice and delete.

Problem: How should objects with significant clean-up behavior be disposed of after use?
For garden-variety objects, the usual mechanism of the language for disposing of objects is
normally sufficient. However, for some kinds of objects, such as resources, this may not be
enough. Just as a FACTORY METHOD may hide details of an object's creation that cannot be
handled fully by a constructor, details of an object's destruction may go further than can be
adequately expressed by conventional finalization, whether a finalize method or
destructor.

A resource can be defined by its use and context rather than in terms of its abstraction. A
resource is any object that could easily become scarce in a system and whose scarcity
would cause problems. Therefore, a resource can be defined liberally as anything that
should be returned after acquiring and using it. For example, memory in C and C++ is a
resource, but in a well-endowed Java or C# program it is typically not. However, in a
smaller environment memory again becomes a resource. In the common application of a
FACTORY METHOD, instance creation is controlled but object disposal is not. Because
resource usage may need to be conserved and resources recycled, the user of a resource
should have a clear contract for how a resource's usage lifetime is bounded.

In C++ an explicit delete by a factory-product user is asymmetric with the hidden new in
the factory. A delete expression deterministically triggers the end of an object's life, which
may be a somewhat more severe disposal than is wanted: it is difficult to recycle an object
if it no longer exists. There is also no guarantee that an object was created using a plain new,
hence a delete may be precisely the wrong action even to end an object's life. Memory that
is acquired independently of construction would rely on a placement new expression for
construction and an explicit destructor call for destruction; there is no corresponding
delete expression.

Java and C# programmers can discard objects for later automatic collection by the garbage
collector. It is, however, naïve to assume that a GC system solves all memory and resource
management issues out of the box [Bloch2001]:

When you switch from a language with manual memory management, such as C or
C++, to a garbage-collected language, your job as a programmer is made much easier
by the fact that your objects are automatically reclaimed when you're through with
them. It seems almost like magic when you first experience it. It can easily lead to the
impression that you don't have to think about memory management, but this isn't quite
true.

It is possible to further dilute confidence in totally transparent GC: your objects may be
reclaimed automatically. There is little guarantee that they will be claimed in a timely
manner, or even at all — although such low (or non-existent) quality-of-service would find
favor with few developers. Frequent creation of fine-grained objects, such as iterators or
value objects, can potentially lead to inefficient use of resources or even resource
exhaustion.

With respect to resources, a specific and timely clean-up action may be required, but in the
absence of explicit control over the tail end of an object's life this cannot be made implicit
— and whatever the problem, Java's finalize is rarely the answer. GC addresses the issue
of object collection to make memory resourcing transparent, but this does not apply to
other resources.

132

Factory and Disposal Methods - A Complementary and Symmetric Pair of Patterns

Solution: Provide a method for explicit clean up and disposal of an object. Mirroring
FACTORY METHOD, DISPOSAL METHOD answers the question of who is responsible for the
clean up and disposal of an object by making the clean up an explicit operation for the
user. Just as the user requested an object for use, they must also mark the end of its use.

DISPOSAL METHOD may be expressed as one of two basic variants:

 FACTORY DISPOSAL METHOD: Provide a method on the factory that originally created
the object. The knowledge of an object's lifecycle is isolated in a single place, which
allows transparent instance control, such as an object pool that caches and recycles
objects.

 SELF-DISPOSAL METHOD: Provide a method on the object to be disposed of. This method
either performs the clean up itself or, if a factory was involved in the object's creation,
it returns of the object to its maker.

An obvious and negative consequence of this pattern is that the user must remember to
both make the call and make the call exception safe. This situation is tedious and error
prone, and can be ameliorated through additional encapsulation, such as a COMBINED
METHOD [Henney2000c], EXECUTE-AROUND METHOD [Henney2001a], or a COUNTING
HANDLE [Henney2001b]. Where instance control is neither about resource management nor
in the hands of an object user, no disposal is required, so DISPOSAL METHOD is not
necessarily appropriate.

FACTORY DISPOSAL METHOD is the natural complement of FACTORY METHOD, and its truest
reflection:

public interface Creator
{
 Product create();
 void dispose(Product toDisposeOf);
 ...
}

In the bank account example closing an account would be a good example of a FACTORY
DISPOSAL METHOD. The code that decides to dispose of a factory-created object must have
access to both the creator and the product. This not only means that the lifetime of the
product must be contained within that of its creator, but that the caller of the DISPOSAL
METHOD is expected to co-ordinate the disposal correctly, i.e. it should ensure that it
matches the right product with the right factory. This is often not a significant issue
because factories and products are normally well matched in terms of types and scope
usage. However, this slight increase in coupling can present a potential liability for some
programs.

SELF-DISPOSAL METHOD is sometimes known as an EXPLICIT TERMINATION METHOD
[Bloch2001]:

public interface Product
{
 void dispose();
 ...
}

Where a SELF-DISPOSAL METHOD is simply a forwarder to a FACTORY DISPOSAL METHOD, it
clearly has to retain some kind of reference to the factory of origin. In such a case it

133

Factory and Disposal Methods - A Complementary and Symmetric Pair of Patterns

successfully encapsulates the knowledge of its origin and therefore the correct co-
ordination of product to creator. The product user — or, to be precise, disposer — is freed
from maintaining and using this extra reference. Although this offers a better
encapsulation of the constraints governing the factory–product pairing, it can be seen as
slightly less cohesive because responsibility for disposal is represented in the product
interface, which would otherwise be focused purely on matters of product usage.

In C++ a DISPOSAL METHOD displaces the use of a public delete for the product type in
question. The lifetime of an object is no longer subject to the operators in the language but
to the higher-level interfaces and object lifecycle choices of a specific application. To ensure
no clash between the use of a DISPOSAL METHOD and the common use of a delete, the
destructor of the target object should not be public at the level of the interface. This
restriction prevents any attempt to mix the delete and DISPOSAL METHOD models at
compile time.

134

Factory and Disposal Methods - A Complementary and Symmetric Pair of Patterns

Acknowledgments

This paper is derived from a previous article [Henney2002].

I would like to thank Klaus Marquardt for his thorough and insightful shepherding of this
paper for VikingPLoP 2003, Mark Radford for his additional comments both before and
after the conference, and Neil Harrison for his comments following the conference. From
the workshop at the conference I would like to thank Jacob Borella, Franco Guidi-Polanco,
Alan O'Callaghan, and Titos Saridakis.

References

[Alexander2002] Christopher Alexander, The Nature of Order, Book 1: The Phenomenon of Life,
Center for Environmental Structure, 2002.

[Bloch2001] Joshua Bloch, Effective Java, Addison-Wesley, 2001.

[Coplien1992] James O Coplien, Advanced C++: Programming Styles and Idioms, Addison-
Wesley, 1992.

[Gamma+1995] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[Haase2002] Arno Haase, "Idiome in Java", JavaSPEKTRUM 36, February 2002.

[Henney2000a] Kevlin Henney, "Patterns of Value", Java Report 5(2), February 2000,
available from http://www.curbralan.com.

[Henney2000b] Kevlin Henney, "Value Added", Java Report 5(4), April 2000, available from
http://www.curbralan.com.

[Henney2000c] Kevlin Henney, "A Tale of Two Patterns", Java Report 5(12), December 2000,
available from http://www.curbralan.com.

[Henney2001a] Kevlin Henney, "Another Tale of Two Patterns", Java Report 6(3), March
2001, available from http://www.curbralan.com.

[Henney2001b] Kevlin Henney, "C++ Patterns: Reference Accounting", EuroPLoP 2001, July
2001, available from http://www.curbralan.com.

[Henney2002] Kevlin Henney, "Symmetrie in Java", JavaSPEKTRUM, July 2002, available in
English as "The Importance of Symmetry" from http://www.curbralan.com.

[Henney2003] Kevlin Henney, "Five Possible Things after Breakfast", The Road to Code blog
at Artima, 23rd June 2003, http://www.artima.com.

[Zhao+2003] Liping Zhao and James Coplien, "Understanding Symmetry in Object-
Oriented Languages", Journal of Object Technology 2(5), September–October 2003,
http://www.jot.fm/issues/issue_2003_09/article3.

135

135. Transformational Patterns for the Improvement of Safety Properties in

architectural Specifications

Transformational Patterns for the Improvement of Safety

Properties in Architectural Specification

Lars Grunske
Department of Software Engineering and Quality Management

Hasso-Plattner-Institute for Software Systems Engineering, University of Potsdam
Prof.-Dr.-Helmert-Straße 2-3,D-14482 Potsdam (Germany)

+49(0)3315509152
lars.grunske@hpi.uni-potsdam.de

Abstract

Over the past years, the functionality of technical systems been increasingly implemented in software
components. These software components have to fulfill requirements regarding non-functional properties
(NFPs), such as safety, availability, reliability and temporal correctness. Along with the rising need for
increased functionality, this led to an increased complexity of these systems. As a result, the architectural
specification and its quality have become important for the success of the development process. For the
non-functional requirements, the quality of the architecture can be determined by an architecture
evaluation. If the system does not fulfill these requirements, the architecture must be modified to improve
the non-functional properties. To support this process we present a set of transformational patterns, that
help to restructure architectures to especially improve the safety properties of the systems under
development.

1. INTRODUCTION
Embedded systems in the automotive, avionic, medicine or railway sectors have to fulfill requirements regarding non-
functional properties, such as safety, security, availability, reliability, and performance. To prove that the system meets its
non-functional requirements, analytic quality assurance techniques (i. e. fault tree analysis-FTA, failure mode and effect
analysis-FMEA or performance analysis) are used. Due to economic reasons, this analysis should take place as early as pos-
sible in the development process of the system. This is obviously immediately after the construction of the software/hardware
architecture because at this point we are able to assess non-functional system properties for the first time.
If such an assessment indicates that a system does not fulfill the non-functional requirements, the system architecture has to
be changed to improve the corresponding non-functional properties. For this, the utilization of transformational patterns,
which are similar to code level refactorings as proposed by [Folwer 99], is helpful. A transformational pattern is a refactoring
at an architectural level [Grunske 2003], which only changes parts of the architectural model without the alteration of the
provided external behavior of the system. Thus, transformational patterns can be considered recipes for improving the quality
of the software architecture. This paper presents a set of transformational patterns, which especially address the improvement
of safety aspects.
Before we come to the presentation of these patterns, we first introduce the underlying safety concepts to clarify the terms
used in the patterns. Then, we introduce a notation for the description of transformational patterns.

1.1 The safety concept
The term safety can be defined for a system as freedom from unacceptable risks [EN 50126]. The term risk is defined as
likelihood and severity of an accident (damage of life, property or environment) [Leveson 95]. The acceptance of risk
depends on the society, the customer, and the laws as well on the likelihood and severity of the resulting accident. As an
example, an accident in a nuclear power plant can cost the lives of many people. Therefore, the risk of an accident even with
a very low likelihood is often not accepted.
To reduce the probability of an accident the preconditions under the control of the system designer must be known. These
controllable preconditions are called hazards, which are states or conditions of a system that, together with theuncontrollable
conditions in the environment, lead to an accident [Leveson 95]. An example of a hazard is a car with a defective air-bag

136

Transformational Patterns for the Improvement of Safety Properties in architectural

Specifications

system. It depends on the environment, whether this hazard leads to an accident. If the driver does not crash the car, the
defective air-bag system cannot lead to bodily injury of the driver.
A safety requirement is a formal description of a hazard combined with the tolerable probability of this hazard. The tolerable
hazard probability must be determined in the risk analysis, in such a way that for all hazards of the system the combined risk
is acceptable.
The hazard description can be classified with the following three categories [Levenson 95] [Avizienis et al. 01] and
[Laprie 92]:

1. The system is not available
2. The system generates an incorrect output
3. The system misses a hard deadline

In the first category, the system can causes an accident, if the system fails to react to an event. Such a system, can be for
example, a system without a safe state (airplane) or a medical system (cardiac pacemaker or artificial breathing system). In
the second category, hazards are grouped where a system causes an accident, because it behaves incorrectly. An example is a
hazard is a railway or traffic signal that signals green when it should signal red. The third category describes hazards caused
by timing failures. In this category, systems reacting too early (cardiac pacemaker) or too late (air bag system) serve as
examples.

1.2 Transformational pattern
A transformational pattern describes in an abstract way the structural changes of software architectures. These changes can
be:
- the removal or the addition of architectural elements
- the redirection of a connection between the architectural elements
For the representation of a transformational pattern a graphical notation is used. This notation is denoted as T-notation, due
to the fact it groups the architectural elements of a pattern into three parts, shaping a T. The semantic of this notation implies
that all elements or connections on the bottom-left-side of the T must be removed from the architecture. All elements or
connections on the bottom-right-side of the T must be added to the architecture. The elements above the T remain unaffected
and serve as gluing points between the rest of the architecture and the new added elements. That is the reason why they are
redundantly contained on the upper left and the upper right side.
An example for a transformational pattern in the T-notation is given in Figure 1-1. This abstract pattern describes that the
components of the type A and B, the two ports with the type A and the connection between them must be removed. The ports
(type A, B and C) above the T are remained unaffected and the component with the type C must be added to the software
architecture. The application of this pattern is presented in Figure 1-2 for a concrete architecture.

:port C :port B:port A

:port A

:component A :component B :component Cbefore after

:port C :port A :port B

Figure 1-1 Example of a transformational pattern in the T-notation

after

:component C

:component A

:port C

:port A

:component D
:port A:port C

:port B

:port A

:port C

:port B

:port A

:component A

:component B

:port A :port A

before

:component A

:port C

:port A

:component D
:port A

Figure 1-2 Example of the application of a transformational pattern

137

Transformational Patterns for the Improvement of Safety Properties in architectural

Specifications

2. THE PATTERN LANGUAGE
2.1 Scope
The scope of this pattern language is to give a general overview of the concepts we utilize to increase the safety properties at
the architectural level. Therefore, this pattern language contains a set of transformational patterns, which reduces the
probability of a hazard. Together with the structure of the pattern language, this will guide software architects to improve the
safety properties of architectures with safety critical focus.
Because of their usage in the architectural design phase, these patterns are very high level and present the basic concepts.
Thus, they only serve as a guideline for the restructuring of the architecture. For detailed information about the
implementation, we present several links for further reading, because this is not the aim of this pattern language. Further for
some case studies and examples where the presented patterns are applied, we suggest [Douglass 02], [Huang, Kintala 93],
[Pont 01] and [Leveson 95]

2.2 A Road Map
The patterns of this language are grouped into three different pattern types. These pattern types and the associated patterns
are depicted in the following table.

Pattern Type Pattern

Run-Time Fault Prevention

Protected Single Channel (2.3)
Recovery Block (2.4)
Multi Cannel Redundancy with Voting (2.5)
Two Channel Redundancy (2.6)

Design-Time Fault Prevention Process Fusion (2.7)
Hardware Platform Substitution (2.8)
Hardware Platform Reassignment (2.9)

Errors and failures detection Actuation-Monitor (2.10),
Integrity Check (2.11)
Watchdog (2.12)

Failure mitigation Restart System
Inform Operation Personal
Goto Safe State

The main patterns of this language are of the pattern type run-time fault prevention and design-time fault prevention. These
patterns are used to restructure the architectural to improve the safety properties. Therefore, they present different solutions
to reduce the probability of a safety critical hazard. Thus, the problem section is unique for all of these patterns.
The patterns of the type error and failure detection and failure mitigation are sub patterns. They build refinements of a pattern
of the type architectural restructuring. All patterns and their relation are further illustrated in Figure 2-1.
For the selection of a suitable pattern and the application of a pattern, the following information, which can be determined by
an architecture evaluation as presented in [Birolini 99],[Papadopoulos et al. 01],[Liggesmeyer 00],[McDermid, Pumfrey 95],
[Fenelon et al. 94], is primarily necessary:

1. Which architectural elements cause a hazard with a higher probability than the tolerable hazard probability?
2. Which failure of a certain architectural element leads to a certain hazard?

Answers to the first question are necessary to find an occurrence in the architecture, where a pattern can be applied. This
occurrence serves as a precondition for a pattern application. To choose an appropriate pattern furthermore answers to the
second question are needed. For this the failures of an architectural element are further classified. This classification is
similar to the failure classification at the system level:

1. An architectural element is not available
2. An architectural element generates an incorrect output
3. An architectural element misses a hard deadline

Based on this classification for each failure type a set of possible patterns is presented in the pattern language. Thereby, this
failure types guide the software architect to select a suitable pattern. In addition to that, the development budget and the

138

Transformational Patterns for the Improvement of Safety Properties in architectural

Specifications

technical feasibility serve as guidelines for pattern selection. The underlying economic and technical rationales are part of
each pattern description.

Restart
System

Inform Operating
Personal

Protected-Single-
Channel

Two-Channel-
Redundancy

Multi-Channel-Redun-
dancy with Voting

Actuation
MonitorWatchdog Integrity

Check

Failure/Error Detection Failure Mitigation

Goto
Safe-state

Recovery Block

<<uses>> <<uses>>

Legend:
A hazard occur, due to:
1. An architectural element is not available
2. An architectural element generates an incorrect output
3. An architectural element misses a hard deadline

Pattern application is suitable for this failure type

Pattern application is not suitable for this failure type

Run Time Fault Prevention

...

Hardware Platform
Substitution

Hardware Platform
Reassignment Process Fusion

Design Time Fault Prevention 1 2 3

Figure 2-1 Pattern Language Structure
The selection of a suitable failure mitigation pattern also depends on the application area. As an example for the failure
mitigation, a railway control system can achieve a safe state by stopping all trains. It is clear that this strategy would not
work for a flying airplane, because it does not have a directly reachable safe state. Therefore, this pattern application is not
appropriate in avionics. This observation leads to the conclusion that patterns for the failure mitigation type need to be
extended with respect to the failure mitigation patterns for each relevant application field. This would enable the pattern
language to be applicable to all types of embedded systems. This remains for future work.

2.3 Protected Single Channel
Aliases
Single Channel Protected Design [Douglass 02]
Problem
How can the probability of hazards be reduced that are caused by an erroneous behavior of a software component in the
deployed system?
Context
This pattern can be applied if the erroneous behavior (failure) that causes the problematic hazard is precisely identified and
is in one of the following types:
- An architectural element is not available.
- An architectural element generates an incorrect output.
- An architectural element misses a hard deadline.
Furthermore, this failure must be detectable at the runtime of the system and mitigation strategies can be applied which
reduce the probability of the failure propagation, reduce the severity of the losses, or eliminate the failure.

139

Transformational Patterns for the Improvement of Safety Properties in architectural

Specifications

Forces
- Software components have become so complex that we cannot assume them to be error free.
- In safety critical applications, each failure of the software can lead to a harmful accident.
- If a failure can be detected, it can be handled.
Solution
To increase the safety properties the architecture is extended by a failure/error detection component. This component detects
failures or errors that lead to a safety critical behavior. If this component detects the specific error or failure, a message is
sent to the mitigation component that removes the error or mitigates the failure. The following architecture diagram
illustrates the structure before and after the application:

:component:component

...
pn:port

:failure/error
 detection

:mitigation

...

...

pn:port

...

before after...

:spoofing port

:test port

This diagram shows that the failure/error detection component can access all relevant outputs of the observed component via
the spoofing ports. Based on these ports the component detects the failures. The test ports of the failure/error detection
component detect errors in the component which can cause a safety critical failure. There is a connection between the
failure/error detection and the mitigation component to inform the mitigation component in case of an error or failure. If the
mitigation component handles all identified safety critical failures, the probability of the hazard is reduced.
Rationales

- Economic rationales
o No further hardware is needed.
o With the failure/error detection and the mitigation component further software components or strategies

must be developed.
- Technical rationales

o Only single point failures are detected.
o The failures must be understood and identified.

Resulting Context
The application of this pattern results in two other problems: how to detect concrete failures or/and errors and how to
mitigate them. These problems must be solved to implement the failure/error detection and the mitigation component. For
this the Actuation-Monitor (2.10), the Integrity Check (2.11) and the Watchdog (2.12) patterns are possible refinements for
the failure/error detection component. For the mitigation, the mitigation patterns Restart System, Inform Operation Personnel
and Goto Safe State are appropriate.
Related Patterns
Recovery Block (2.4), Multi-Cannel-Redundancy with Voting (2.5) and Two-Channel-Redundancy (2.6)

2.4 Recovery Block
Aliases

140

Transformational Patterns for the Improvement of Safety Properties in architectural

Specifications

Recovery Conversation, Roll Forward [Saridakis 02]
Problem
How can the probability of hazards be reduced that are caused by a systematic failure of software components in the
deployed system, if the function of these components is critical for safety?
Context
It is possible to apply this pattern if the erroneous behavior (failure) that causes the problematic hazard is precisely identified
and can be detected at runtime. A systematic error made in the development of a software component must be the reason for
the failure.
Forces

- For software components in a life critical system the availability and correctness of these components is
fundamental for safety.

- Further, if a component is identified as faulty, it cannot be trusted anymore.
Solution
As a solution to this problem the recovery block concept was introduced by [Randel 75] and the further development is
presented in [Randell, Xu 95]. The basic idea of this pattern is to use multiple heterogeneous developed components
operating in parallel on a single hardware platform. All components are getting all information from the environment, but
one of them is the primary component and the others are backup components. The primary components perform the desired
operations that are checked by an acceptance test component. This acceptance test component can check the primary
component itself to detect errors. If it detects an error or a failure, the primary component becomes one of the backup
components and the next component in the pool of backup components becomes the primary component.
To get protection from failures caused by systematic errors the heterogeneous components must fail independently. For this,
these components should be heterogeneous [Avizienis 85]. In order to realize this different teams have to be responsible for
their implementation. The reduction of a systematic error is achieved by the diverse implementation of the software
components [Mitra et al. 99]. However, [Knight, Leveson 86] point out that a diverse implementation does not detect all
systematic errors. Different development-teams made similar faults and therefore the different versions do not fail
independently.

cv:component

:acceptance test:component

...

pn:port

c2:component

...

before after

cn:component

...

pn:port

pn:port

:intergrity
 test

Rationales

- Economic rationales
o No necessity for additional hardware.
o Additional and diverse implementations of the software-components are needed.

- Technical rationales
o Different development teams must implement diverse components that fail independently.
o The correctness of the acceptance test component is essential for the safety properties after the application

of this pattern.

Resulting Context

141

Transformational Patterns for the Improvement of Safety Properties in architectural

Specifications

The application of this pattern leads to the problem which strategy should be applied to detect failures and errors in the
acceptance test component. To solve this problem the Actuation Monitor (2.10), Integrity Check (2.11) and Watchdog (2.12)
patterns are possible refinements.
Related Patterns
Protected-Single-Channel (2.3), Two-Channel-Redundancy (2.6), Multi-Cannel-Redundancy with Voting (2.5)

2.5 Multi-Channel-Redundancy with Voting
Aliases
Homogeneous redundancy, Heterogeneous Redundancy and Triple Modular Redundancy [Douglass 02], Fail-Stop Processor
[Saridakis 02]
Problem
How can the probability of hazards be reduced that are caused by random or wear-out failures of the hardware platform on
which a safety critical component is executed?
Context
The pattern application is possible, if non-known failures of software components can lead to the problematic hazard. These
failures can be of one of the following types:
- An architectural element is not available.
- An architectural element generates an incorrect output.
The causes of these failures of the software component are random or wear-out failures of the hardware platform on which
the component is processed.
Forces
- Random or wear-out failures of the hardware platform can influence all software components that are executed on this

hardware platform.
- Some safety critical systems cannot shut down, because they have high availability requirements or they do not have a

safe state.
- Due to these high availability requirements the hardware platforms must be maintained at the runtime of the system.
Solution
The component that causes the safety critical behavior is substituted by multiple components on different hardware platforms
and a comparator component (m-out-of-v voter) that gets the inputs from the environment and generates multiple messages
for the components. Based on these messages the components compute the results and send them back to the comparator
component, that chooses the message to be sent to the environment by a majority voting. For the realization of this pattern,
often 3 components and a 2-out-of-3 voting are used [Douglass 02].

v:m-out-of-v
 voter

:component

...

pn:port

c2:component

...

before after

...

c1:component

...

...

cv:component

...

pn:port

v=2n-1

...

pn:port

The pattern application improves the reliability of the system, if the comparators hardware platform and the communication
channel are more reliable than the components hardware platforms.
Extension

142

Transformational Patterns for the Improvement of Safety Properties in architectural

Specifications

This pattern can provide protection against systematic failures. Therefore, the redundant components must be heterogeneous
implemented by different development teams. Note, that a diverse development does not provide fail independent
components as stated in [Knight, Leveson 86].
Rationales

- Economic rationales
o Additional hardware is needed
o If the pattern is applied to protect the system against systematic errors in the development process

additional and diverse software-components are needed
Resulting Context
If the comparator component detects a failure, a mitigation strategy can be implemented furthermore. For this a failure
mitigation pattern Restart System, Inform Operation Personal and Goto Safe State can be used.
Related Patterns
Protected-Single-Channel (2.3), Two-Channel-Redundancy (2.6), Recovery Block (2.4)

2.6 Two-Channel-Redundancy
Aliases
Switch to back up
Problem
How can the probability of hazards be reduced that are caused by random or wear-out failures of the hardware platform, on
which a safety critical component is executed?
Context
Similar to the pattern Protected-Single-Channel (2.3), the application of this pattern is possible, if it is possible to precisely
identify the erroneous behavior (failure) that causes the problematic hazard. The failure must be detectable at runtime and
may be one of the following: First, a random or wear-out error of the hardware platform may be the reason for it. Second, a
systematic error made in the development of a software component is the cause of the failure.
Forces
The forces are identical to the pattern Multi-Cannel-Redundancy with Voting (2.5). However, the difference is:
- The utilization of multiple hardware platforms as they are used in the pattern Multi-Cannel-Redundancy with Voting

(2.5) can often not be applied due to high cost
- Further the utilization of multiple hardware platforms is not possible, due to space or weight limitations
Solution
Use two components operating in parallel on different hardware platforms. Both components are getting all information from
the environment, one active and one passive. The active component checks its operation with a channel validation
component. The results of this validation are sent to the channel validation of the passive channel via the connection between
the switch to back up ports. If a failure occurs, an error is detected, or the active channel omits to send the results, the passive
channel becomes active. In this case, the former active channel must be informed. To check the correct operation of one
channel the utilization of several strategies is possible. These are similar to the failure/error detection mechanisms used in the
Protected-Single-Channel (2.3) pattern. Thus, it is possible to substitute the channel validation with a failure detection
pattern, which realizes a switch to back up strategy, if a failure is detected.

143

Transformational Patterns for the Improvement of Safety Properties in architectural

Specifications

cv1:channel
 validation

:component

...
pn:port

cv2:channel
 validation

c2:component

...

...

pn:port

...

before after...

...

...

:switch to
 backup

c1:component

...

...

pn:port

:intergrity
 test:intergrity

 test

By the application of this pattern, one component c1 or c2 is still available in case of random or wear-out failures of the
hardware platform of the other component.
Extension
This pattern can also be used to provide protection against systematic failures. Therefore, the redundant components must be
heterogeneous implemented by different development teams. Note, that a diverse development does not provide fail
independent components as stated in [Knight, Leveson 86].
Rationales

- Economic rationales
o Additional hardware is needed.
o For a protection against systematic errors: an additional diverse implementation of the software-

component.
- Technical rationales

o Necessity for communication mechanisms between the two channels.
Resulting Context
The application of this pattern leads to the demand for a failure or error detection strategy. It is necessary to address this
problem in order to implement or refine the failure/error detection component. Therefore, the Actuation Monitor (2.10),
Integrity Check (2.11) and Watchdog (2.12) pattern can be put into practice.
After the application of this pattern, it is clear that the active channel becomes passive and the passive channel becomes
active in case of a critical error (switch to backup). However, in this case another failure mitigation strategy can be applied.
Related Patterns
Protected-Single-Channel (2.3), Recovery Block (2.4), Multi-Cannel-Redundancy with Voting (2.5)

2.7 Process Fusion
Problem and Context
In architectures with a large number of active software components (tasks or processes), which are processed and scheduled
on a single hardware platform, the time to switch between these processes (redirect the program counter, safe and restore the
registers, swap the cache pages) is high. This can have a negative effect on the temporal correctness. Therefore, the pattern
application is possible, in case a safety critical situation occurs, if:

- An architectural element misses a hard deadline
Solution
To reduce the number of small active processes, combine two processes to one new process, which acts as the two processes
did before. This will lead to a scheduling, where task switching does not occur as often as before. As an effect, the resulting
components will have a better chance to meet their deadlines.

144

Transformational Patterns for the Improvement of Safety Properties in architectural

Specifications

x1:component x2:component x:componentbefore after

...

...

pn:port

...

... ...
pn:port

...

Rationales

- Technical and economic rationales
o Reducing the coupling between the processes and increase the cohesion of the processes this will influence

the development and maintainability effort
o Reduce the encapsulation, because one component has now access to the data of the other component
o The scheduling plan and the priorities of the components must be redesigned

2.8 Hardware Platform Substitution
Problem
How can the probability of a hazard be reduced that is caused by an improper hardware platform?
Context
The architecture misses its safety requirement due to a set of software components executed on a hardware platform with a
low quality. This low quality may result in reliability and/or in performance problems. In case of reliability problems, the
system can cause a hazard due to the following reasons:
- A software component is not available
- A software component generates an incorrect output
In case of performance problems, the system can cause a hazard because:
- A software component misses a hard deadline
Forces
- The reliability and availability of the hardware platform influences the reliability and availability of software

components, which are executed on this hardware platform
- The performance of the hardware platform influences the performance of software components, which are executed on

this hardware platform
Solution
Integrate a newer and better hardware platform in the architecture. All software components that are processed on the old
hardware platform are now processed on this new hardware platform. This implies that if the new hardware platform have
better reliability properties, the probability of the safety critical failures due to unavailability and incorrectness are reduced.
In case of a higher execution speed of the new hardware platform, the components of the resulting software architecture will
have a better chance to meet their hard deadlines.

:hardware-platform1

:processing node

x1:component xn:component

before after

...

...
pn:port

...

:processing node

:processing node?

:hardware-platform2

x1:component xn:component...

...
pn:port

...

:processing node

:processing node?

:processing node

Rationales

145

Transformational Patterns for the Improvement of Safety Properties in architectural

Specifications

- Economic rationales
o A hardware platform with a better quality may be more expensive

- Technical rationales
o Existing software components which are developed for the old hardware platform are incompatible to the

new one
o For simple and common hardware platforms, often safety cases with proved information about failure rates

exist. These safety cases must be generated for newer hardware platforms.
Related Patterns
Hardware Platform Reassignment (2.9)

2.9 Hardware Platform Reassignment
Problem
How to reduce the probability of a hazard that is caused by a component that is executed on an improper hardware platform
Context
The erroneous behavior depends on the processing of a software element on a specific hardware platform. This can be in one
case, if the same hardware platform processes too many processes and it becomes impossible that this platform schedules a
software element with respect to its deadline. Thus it can be possible that:
- A software component misses a hard deadline
In the other case the processing of a software element on a specific hardware platform can lead to a common cause failure
[Mauri 00] [Pumfrey 99], which increases the probability of a hazard. Such common cause failures can simply be a failure of
the processing unit or the power supplies of the hardware platform. In this case, the consequences may be:
- A software component is not available
- A software component generates an incorrect output
Note that the problem is not due to the quality of the hardware platform as stated in the Hardware Platform Substitution (2.8)
pattern.
Solution
The software element can be assigned to another hardware platform, where the software element can be scheduled without
any problem or the probability of common cause failures are reduced.

hp1:hardware
-platform

x1:component

before
after

...
pn:port

:processing
 node

:processing
 node

hp2:hardware
-platform

:processing
 node

hp1:hardware
-platform

x1:component

...
pn:port

:processing
 node

:processing
 node

hp2:hardware
-platform

:processing
 node

Rationales

- Technical rationales
o The software component and the new hardware must be compatible
o The communication overhead must be considered between the reassigned software component and

software components on the former hardware platform
o The influence of common cause failures will be changed

Related Patterns
Hardware Platform Substitution (2.8)

146

Transformational Patterns for the Improvement of Safety Properties in architectural

Specifications

2.10 Actuation Monitor
Aliases
Monitor-Actuator [Douglass 99]
Problem
Find an appropriate mechanism to detect failures or errors that can lead to known hazards.
Context
This pattern is applicable to refine the failure/error detection component of the Protected-Single-Channel (2.3), the Two-
Channel-Redundancy (2.6) or the Recovery Block (2.4) pattern to detect a critical incorrect behavior. Therefore, the
identification of the set of all critical incorrect outputs should have taken place during the hazard analysis.
Forces

- The set of relevant hazards is often known for a specific application domain.
- Further, before the system development risk and hazard analysis are accomplished that identified the remaining

hazards.
Solution
This pattern introduces an actuation monitor component that identifies failures of the component (actuator) allowing for the
utilization of an appropriate fault-handling mechanism in the mitigation component. For this reason, the actuation monitor
component receives a copy of all messages sent by the actuator and proves them for conformance to the safety requirement.
For this the actuation monitor component needs information about the current state of the environment. Thus, the actuation
monitor pattern introduces a set of redundant sensors denoted as monitor sensors.
Due to their nature, safety requirements are often specified with formal methods like temporal logic formulas. This allows for
the automatic generation of the actuation monitor component from this safety specification. For further implementation
specific details of the Actuation Monitor we point to [Douglass 99,02] and [Lala, Harper 94].

before after

:component

:failure/error
 detection

:mitigation

:test

...

...

:component

:actuation
 monitor

:mitigation

...
...

pn:port pn:port

:monitor sensor:monitor sensor:monitor sensor

Rationales

- Economic rationales:
o With the actuation monitor an additional component must be developed
o With the monitor sensor an additional hardware is needed

Example
A level crossing can cause a hazard, if a train is in the area of the level crossing and the gates are open. To detect this hazard
with the actuation monitor pattern two sensors are needed: one to detect that the train is in the critical section of the level
crossing and one to get the current state of the gates. If the signals of these sensors point out that the system is in a hazard
state, the mitigation component should stop the train.
Related Patterns
Watchdog (2.12), Integrity Check (2.11)

2.11 Integrity Check
Aliases
Data Integrity Test, Code Integrity Test, Built in Test, Information redundancy
Problem

147

Transformational Patterns for the Improvement of Safety Properties in architectural

Specifications

How can be failure or error identified that are caused by an alteration of the software component.
Context
It is possible to implement this pattern as a refinement to the failure/error detection component of the Protected-Single-
Channel (2.3), the Two-Channel-Redundancy (2.6) or the Recovery Block (2.4) pattern, to detect a critical incorrect
behavior, because:

- An architectural element generates an incorrect output
In this case the unauthorized alteration of the architectural element after the deployment of the system is the reason. As an
example, the external influences like electromagnetic impulses or fields that can negate a bit in the memory of the code or
date the segment of a component.
Force

- Software components in many areas of safety critical systems must be permanently available over large time period.
Thus, the probability that the component might be altered is very high and it is necessary to detect this failures.

- An alteration of a safety critical software component can lead to an incorrect behavior of the software component
that can lead to a hazard of the system.

Solution
Refine the general failure/error detection component of the Protected-Single-Channel (2.3), the Two-Channel-Redundancy
(2.6) or the Recovery Block (2.4) pattern witha component called integrity test that checks the integrity of the safety sensitive
component. Add redundant information to the data and code to determine, if something or someone has injected errors. In the
implementation, to distinguish between the code and data segment, because the code segment is static and the data segment is
changing by an operation of the component. Thus, it is possible to extend the code segment with static redundant
information, like proof bits (CRC, checksums or parity). Based on these static bits a detection of an alteration of the code
segment of the software component is possible. The integrity check of the data segment is more difficult. Therefore generally
two methods exist. The first method is heavyweight and requires from each operation that changes the data segment to
change the additional redundant bits. The second method is lightweight and utilizes range checks of the used data and no
redundant bits. If an alteration of the code and/or data segment is detected than the mitigation component can use a restart
strategy, if the error is not persistent.
For further readings about integrity tests, CRC, checksums [Stone et al 98] is appropriate.

before after

:component

:failure/error
 detection

:mitigation

:test

...

...

:component

:integrity test

:mitigation

:test
pn:port

Rationales

- Technical rationales:
o The memory usage of the component increases due to redundant information that must be saved
o The performance of the components is influenced negatively due to the overhead to store and to check the

additional redundant information
Related Patterns
Actuation-Monitor (2.10), Watchdog (2.12)

2.12 Watchdog
Aliases

148

Transformational Patterns for the Improvement of Safety Properties in architectural

Specifications

Watchdog Timer [Mahmood, McCluskey 88], Watchdog Processor, Heartbeat, I am Alive [Saridakis 02], Are You Alive
[Saridakis 02]
Problem
Find an appropriate failure or error detection mechanism that identifies timing problems of a software component.
Context
This pattern may serve as a refinement to the failure/error detection component of Protected-Single-Channel (2.3), the Two-
Channel-Redundancy (2.6) or the Recovery Block (2.4) pattern to detect a critical incorrect behavior because:
- An architectural element misses a hard deadline
- An architectural element is not available
The first failure type can be denoted as the architectural element reacting too late and the second failure type can be denoted
as the architectural element reacting infinitely too late.
Forces
- The identification of a timing failure is problematic
- An unavailability of a software component is a timing failure. It means the software component reacts infinite to late
- Furthermore an unavailable component cannot tell that they is unavailable (A dead man cannot tell you that he is dead)
Solution
For the realization of this pattern with the watchdog and the heartbeat, two alternative versions exist. We describe these
versions in one pattern because they share too many aspects and implementation details.

Watchdog version:
In the watchdog version substitute the failure/error detection component with a watchdog component. This component
implements an independent timer. This timer is preset with an initial value, which is often the deadline of the monitored
component. After the start of the timer the component being watched must reset it before it expires; otherwise, the watched
component is assumed to have missed a deadline. For the realization of the watchdog timers it is either possible to use
hardware or software. For further readings, we recommend [Mahmood, McCluskey 88], [Saridakis 02] and [Pont, Ong 02].

Heartbeat version:
The heartbeat version substitutes the failure/error detection component with a heartbeat monitor component. This
component sends periodically a message (a heartbeat) to a monitored components and waits for a reply. If the monitored
component does not respond within a predefined timeout interval with an acknowledgment message, it is declared as not
available.

before after

:component

:failure/error
 detection

:mitigation

:test

...

...

:component

:watchdog or
:heartbeat monitor

:mitigation

:testpn:port

Rationales

- Technical and economic rationales:
o An additional hardware is required to realize an independent timer.
o The deadline of the component must be known.

149

Transformational Patterns for the Improvement of Safety Properties in architectural

Specifications

o The availability of the process communication between the test ports influences the result of the
failure/error detection.

Example
As an example for the application of the watchdog pattern, we chose an airbag control system. The corresponding controller
must be available, if a car crash occurs. To ensure that this is the case, it is necessary to reset a watch component after every
polling of the crash sensors. If the controller misses to reset the watchdog, the system should inform the car driver for
example with an alarm lamp, or, in a rigorous version, reduce the speed of the car.
Related Patterns
Actuation-Monitor (2.10), Integrity Check (2.11)

3. CONCLUSION AND FUTURE WORK
In this paper, we addressed the increasing demand for the rigorous fulfillment of non-functional requirements at the
architectural level by introducing a pattern language to especially improve the safety properties. This language serves as a
guide for software architects to choose a suitable safety pattern with respect to the problem and the economic and technical
context.
Besides, this work is not complete. For future work, we will present a set of failure mitigation patterns for each relevant
application field.

REFERENCES

[Avizienis 85]

Avizienis A., The N-Version Approach to Fault-
Tolerant Software, IEEE Transactions on Software
Engineering, vol. SE-11, no. 12, Dec. 1985, pp.1491-
1501.

[Avizienis et al. 01]
Avizienis, J.-C. Laprie, Randell B., Fundamental
Concepts of Dependability, Research Report N01145,
LAAS-CNRS, April 2001

[Birolini 99]
Birolini A., Reliability engineering: theory and
practice (third ed.), New York: Springer 1999

[Buschmann et al. 96]
Buschmann F., Meunier R, Rohnert H., Sommerlad P.,
and Stal M., Pattern-Oriented Software Architecture -
A System of Patterns, John Wiley & Sons 1996

[Douglass 99]
Douglas B. P., Doing Hard Time, Addison Wesley,
Reading, Massachusetts,1999

[Douglass 02]
Douglas B. P., Real Time Design Patterns, Addison
Wesley Reading, Massachusetts, 2002

[EN 50126]
CENELEC, Railway applications The specification
and demonstration of dependability, reliability,
availability, maintainability and safety (RAMS),
European Committee for Electrotechnical
Standardisation, Brussels, Standard EN 50126-29,
November 1995

[Fenelon et al. 94]
Fenelon P., McDermid J.A., Nicholson M., and
Pumfrey D. J., Towards Integrated Safety Analysis
and Design, in: ACM Applied Computing Review,
August 1994

[Fowler 99]
Fowler M., Refactoring: Improving the Design of
Existing Code. Addison-Wesley 1999

[Gamma et al. 95]
Gamma E., Helm R., Johnson R., Vlissides J.Design
Patterns, Elements of Reusable Object-oriented
Software, Addison-Wesley 1995

[Grunske 2003]
Grunske L., Automated Software Architecture
Evolution with Hypergraph Transformation, in

150

Transformational Patterns for the Improvement of Safety Properties in architectural

Specifications

Proceedings of the 7th International IASTED on
Conference Software Engineering and Application
(SEA 03), Marina del Ray, Nov. 3-5, 2003 to appear

[Hofmeister et al. 99]
Hofmeister C., Nord R. and Soni D., Applied
Software Architecture, Reading, MA: Addison
Wesley Longman 1999

[Huang, Kintala 93]
Huang, Y. Kintala, C. Software Implemented Fault
Tolerance: Technologies and Experience. Proceedings
of the 23rd Fault-Tolerant Computing Symposium, pp.
2-9. June 1993.

[Knight, Leveson 86]
Knight, J. C. and Leveson, N. G., An Experimental
Evaluation of the Assumption of Independence in
Multiversion Programming, IEEE Transactions on
Software Engineering, Volume 12, Number 1, January
1986, pp. 96--109.

[Lala, Harper 94]
Lala J. H. and Harper R. E., Architectural Principles
for Safety-Critical Real-Time Applications, Proc. of
the IEEE, vol. 82, no. 1, Jan. 1994, pp. 25-40

[Laprie 92]
Laprie, J.C. (ed.), Dependability: Basic Concepts and
Associated Terminology. Vol. 5, Dependable
Computing and Fault-Tolerant Systems Series,
Vienna: Springer 1992

[Leveson 95]
Leveson N. G., Safeware: System Safety and
Computers. Addison-Wesley, 1995.

[Liggesmeyer 00]
Liggesmeyer P., Qualitätssicherung softwareintensiver
technischer Systeme, Heidelberg: Spektrum-
Akademischer-Verlag 2000

[Mauri 01]
Mauri G., Integrating Safety Analysis Techniques,
Supporting Identification of Common Cause Failures,
Dissertation, University of York, YCST-2001-02,
York 2001

[Mahmood, McCluskey 88]
Mahmood A., McCluskey E. J., Concurrent error
detection using watchdog processors a survey, IEEE
Transactions on Computers, vol. 37, February 1988,
pp. 160-- 174

[McDermid, Pumfrey 95]
McDermid J.A., Pumfrey D.J., A Development of
Hazard Analysis to aid Software Design in
Proceedings of the Ninth Annual Conference on

Computer Assurance COMPASS '94, Gaithersburg,
pp. 17-25, IEEE 1995

[Mitra et al. 99]
Mitra, S., Saxena N.R., and McCluskey E. J., Design
Diversity for Redundant Systems, 29th International
Symposium on Fault-Tolerant Computing (FTCS-29)
Fast Abstracts, pp. 33-34, Madison, WI, June 15-18,
1999

[Papadopoulos et al. 01]
Papadopoulos Y., McDermid J. A., Sasse R., Heiner
G., Analysis and Synthesis of the Behaviour of
Complex Programmable Electronic Systems in
Conditions of Failure, Reliability Engineering and
System Safety, 71(3):229-247, Elsevier Science 2001

[Pont 01]
Pont M.J., Patterns for time-triggered embedded
systems: Building reliable applications with the 8051
family of microcontrollers, ACM Press / Addison-
Wesley. 2001

[Pont, Ong 02]
Pont, M.J. and Ong, H.L.R., Using watchdog timers to
improve the reliability of TTCS embedded systems, in
Hruby, P. and Soressen, K. E. Proceedings of the First
Nordic Conference on Pattern Languages of
Programs, September, 2002, pp.159-200

[Pumfrey 99]
Pumfrey, D.J., The Principled Design of Computer
System Safety Analyses, Dissertation, University of
York 1999

[Randell, Xu 95]
Randell B. and Xu J., The Evolution of the Recovery
Block Concept, in Software Fault Tolerance, Michael
R. Lyu, editor, Wiley, 1995, pp. 1 – 21.

[Randell 75]
Randell B., System structure for software fault
tolerance, IEEE Transactions on Software
Engineering, No. 2, 1975, pp. 220-232.

[Saridakis 02]
Saridakis T., A System of Patterns for Fault
Tolerance, in Proceedings of the EuroPlop 2002.

[Saridakis 03]
Saridakis T., Design Patterns for Fault Containment,
Proceedings of the EuroPlop 2003.

[Stone et al 98]
Stone J., M. Greenwald M., C. Partridge C., and
Hughes J., Performance of Checksums and CRCs over
Real Data, pp. 529-543, IEEE/ACM Trans. on
Networking, Vol. 6, No. 5, October 1998.

.

151

Transformational Patterns for the Improvement of Safety Properties in architectural

Specifications

153

153. Two sets of Patterns about Group Communication and Dynamics

Two sets of Patterns about Group Communication and Dynamics
Ofra Homsky
Tel-Aviv, Israel

 tngt@netvision.net.il

Introduction

This paper contains two sets of patterns, each comprised of three patterns. Each set refers
to a different aspect in working with groups of people.

One set of patterns relates the angle of an outsider to the group, someone who is about to
face a group of people for the first time, with a specific agenda: passing on information.

The other set of patterns relates the inside angle of a group. Someone familiar with the
personalities comprising the group, the group practices and preferences, who finds it can
be hard to act within the group either because of personal traits or because of the group
norms.

Thanks

I want to express warm appreciation to my shepherd, Peter Sommerlad, for a wonderful
shepherding experience. His insights, his questions, his patience and sense of humor were
great aids in the process of cultivating these patterns of mine.

A big Thank-You to the Organizing Committee of the VikingPLoP. Without their
support, patience and encouragement I would not be able to present these patterns.

And to my long time friend, Shlomit Baruchi, a group-leader and tour-guide.

Copyrights by Ofra Homsky, Israel © 2003
Permission is granted to copy for VikingPLoP2003 Proceedings

-These pages are part of a work in progress-
- 1 -

154

Two sets of Patterns about Group Communication and Dynamics

The first set of patterns relates to a problem many speakers encounter when they
prepare a lesson, a lecture or any other type of a presentation: ‘will the target audience
learn what I want to teach by the end of my presentation’.

These patterns are intended for new teachers, students, new guides, and other people who
are relatively inexperienced in giving lectures or presenting information of any type for a
lecture, a course (long or short), a demonstration, or an industrial presentation.
They may benefit also people with some experience who wish to improve their
preparation techniques.

The first pattern, Does Mom Understand, proposes a way to evaluate how successfully
we have modulated our presentation for a layman to understand.

The second pattern, Modular Presentation, refers to the times we are asked to prepare a
presentation but we cannot or do not have enough time to find information about the
audience’s level of knowledge.

The third pattern, Aim Your Presentation, suggests a way to tailor the presentation to
the needs of the intended audience.

These last two patterns combine: One is up-front static modular preparation; the other is
the dynamic adjustment to the situation at hand.

Copyrights by Ofra Homsky, Israel © 2003
Permission is granted to copy for VikingPLoP2003 Proceedings

-These pages are part of a work in progress-
- 2 -

155

Two sets of Patterns about Group Communication and Dynamics

Does Mom Understand?

Context
You are preparing a presentation to an audience unfamiliar with a subject matter of your
expertise. The presentation can be verbal (a lecture), in writing (a paper), assisted by
posters to illustrate your topic or by computer.

Problem
You are well familiar with your subject matter, and so are your colleagues. You worry
that your explanations may contain or be based on prior knowledge or assumptions that
are obvious to you but not to someone new to the subject. These may fail the
understanding or learning of the new subject.

Forces
� Knowledge pertaining to material you work with becomes a part of your thinking and

vocabulary.
� Lacking basic information to understand a new presentation can frustrate and hinder

understanding in your audience.
� Going over too many basic topics takes up time and tries the audience’s patience.

Solution
Show your work to a layman, someone who is not familiar with the subject matter.
Check what they understood, and whether that is what you wanted them to understand.
Check what did they not understand and you may need to add. Verify that you didn’t
simplify your explanations too much.
Make corrections to your presentation so you don’t need to explain anything beyond
the material you present. Include a picture that clarifies a point, omit jargon if it’s not
necessary, or add an explanation for a jargon word if you are going to use it.
Iterate this process: after you made changes, show your work to a new layman. You
may want to repeat this process with a few people (provided you have enough time, and
enough good friends) until you are satisfied with your presentation.
It may be useful to try to match the layman with your target audience if possible, to get a
close representation of results.

Precautions
Layman is a relative term – obviously there does have to be some common ground. For
example if the topic is ‘Concepts in Ancient Mandarin’, it would be too frustrating for the
layman not to have basic knowledge in Mandarin.

Copyrights by Ofra Homsky, Israel © 2003
Permission is granted to copy for VikingPLoP2003 Proceedings

-These pages are part of a work in progress-
- 3 -

156

Two sets of Patterns about Group Communication and Dynamics

Known Uses
* In the pattern community the writing process is aimed at and measured by what is
understood from a written pattern. A writers-workshop gives the author a view of what
people understood of the pattern, and if this understanding is not what was meant, the
author has a chance to make changes to the pattern.

* From High School through University, I would ask my mother to read or listen to
papers I was preparing. As our fields of interest are very different, she would invariably
protest that she doesn’t know the first thing about these subjects, and I always said that
was the best test for me: if she got my message, then so too will my audience. If there
were issues of prior knowledge, we would put them aside for a while, and still try to see
if the message comes through (something like “if I knew what this term means, then I
would have no problem understanding this whole part”)

* In my work place there’s a custom that close colleagues often ask each other to read an
email message they composed, to make sure what they want to say is also what can be
understood from the reading. We have two methods of doing this: either he first tells me
what it is that he wants to explain, and then I read and see if the message matches the
purpose, or he asks me to read and then asks what was my understanding of what he is
trying to say.

* In Fagan Inspection the role of the ‘Reader’ is to present the reviewers with his/her
understanding of the code or document under review.

Resulting context
If what a layman learns from your presentation is not what you meant they learn, or
maybe it is over simplified, you can go and change your material so it is better
understood.
Checking your work with a layman, learning what they understood and what was not
clear helped you correct and change your presentation.

You may want to create a Modular Presentation, so you can be prepared in case your
audience knows more then you expected (in which case you’ll be able to skip ahead) or
have extra information ready in case your audience proves to know less then you
anticipated. You may want to better Aim Your Presentation, to avoid or at least reduce
the need for these measures.

Copyrights by Ofra Homsky, Israel © 2003
Permission is granted to copy for VikingPLoP2003 Proceedings

-These pages are part of a work in progress-
- 4 -

157

Two sets of Patterns about Group Communication and Dynamics

Modular Presentation

Context
You are preparing a presentation to an audience unfamiliar with the subject matter, but
you are not sure of the actual learning needs of your audience.

Problem
You didn’t have time or opportunity to Aim Your Presentation, which can be anything -
a lecture, a lesson or any kind of industrial presentation.
Or, you may want to present this topic to multiple audiences that may vary in their level
of knowledge and understanding of this field.
You don’t want to present too few explanations, because this may encumber
understanding or learning of the new subject. On the other hand you don’t want to bore
your audience with too much information they are already familiar with.

Forces
� Too much or too little basic information to understand a new presentation can

frustrate or hinder understanding in your audience.
� There is limitation on time or resources when presenting the new idea.
� Going over basics takes up time.
� While teaching basic terms or information may be imperative to understanding of

your presentation, getting into too much detail can make it boring.

Solution
Prepare a modular presentation: Include more material then you plan to actually
present. Prepare your presentation so you could either skip ahead without losing
the context or expand where the audience requires. Prepare skip-able posters (or
slides) so if you see your audience is familiar with an issue you can skip them without
leaving pertinent information out. Prepare a reserve of intro slides on the more important
subject, so if you notice your audience needs expansion on some issue you can turn to
them and add to your presentation. Prepare a picture or a table to clarify an important
subject should it turn out hard to understand during your lecture. Bring examples form
different domains to help you audience to better relate and understand your point.

Drawbacks
This modus operandi creates extra work in preparation, and may not fit a presenter with a
tight timetable.

Copyrights by Ofra Homsky, Israel © 2003
Permission is granted to copy for VikingPLoP2003 Proceedings

-These pages are part of a work in progress-
- 5 -

158

Two sets of Patterns about Group Communication and Dynamics

Known Uses
* Seasoned presenters prepare their material in modules in advance. This way they can
change the schedule for the following days if they learn that their audience is either too
unskilled or too advanced for their original plan on day one, or advance their lecture if
they find upon beginning that their audience is well versed in the topic.

* Skippable Sections pattern [1] is an example of writing with the purpose of allowing
readers to skip parts without losing pertinent information.

* When guiding a tour, the more experienced tour-guides carry with them drawings and
maps of places the group may pass on the way even if they don’t plan a stop there. They
do this so they will be prepared for two scenarios: either questions from more curious
group members wishing to learn more, or for cases of unexpected changes in the plan and
a need to visit a replacement site.

Resulting context
Having prepared for different optional scenarios of your presentation, you have had to
work longer in preparations, but you gained maneuverability: during your presentation
you can expand more if your audience requires, or you can skip ahead if you see your
audience is getting impatient.
You also gain the ability to present your material to different audiences or to re-use some
of your modules for different presentations.
Modular presentation can allow the author/presenter to establish a common baseline of
knowledge with the audience and to avoid too elevated parts without crushing the whole
presentation.

You may want to check Does Mom Understand your presentation if cut or extended,
and correct accordingly.
You may also wish to reduce the unknown factor, or if you don’t have enough time to
prepare extra material, you may want to Aim Your Presentation to your audience needs,
as shown in the following pattern.

Copyrights by Ofra Homsky, Israel © 2003
Permission is granted to copy for VikingPLoP2003 Proceedings

-These pages are part of a work in progress-
- 6 -

159

Two sets of Patterns about Group Communication and Dynamics

Aim Your Presentation

Context
You are preparing a presentation to an audience unfamiliar with the subject matter of
your expertise, and you are not sure of the actual learning needs of your audience.

Problem
You don’t want to present too few explanations, because this may hinder the
understanding or learning of the new subject. You also don’t want to bore your audience
with too much information they are already familiar with.

Forces
� Not having basic information to understand a new presentation can frustrate and

hinder understanding in your audience.
� There is limitation on time or resources when presenting the new idea.
� Going over basics takes up time.
� While building basic terms or information may be imperative to understanding of

your presentation, getting into too much detail can make it boring.

Solution
Ask for information about your target audience before you start planning your
presentation. Ask the agency that invited you to talk, or someone who worked with this
audience in the past or in the present. Maybe even get in touch with a representative of
the audience whom you can ask your questions (even be your layman as shown in the
pattern Does Mom Understand?)
Spend some time learning about the group of people you are about to meet, and pay
attention. Make sure you understand the import of the information you get. Not all the
information can be gleaned by direct questions, some anecdotes sometimes convey
significant insight or provide ideas you may wish to incorporate into your lecture.
If you didn’t have time to do this in advance, you can also ask your audience at the
beginning of your presentation. This is a less favorable solution, as it leaves you with
very little time for adjustments.

Copyrights by Ofra Homsky, Israel © 2003
Permission is granted to copy for VikingPLoP2003 Proceedings

-These pages are part of a work in progress-
- 7 -

160

Two sets of Patterns about Group Communication and Dynamics

Known Uses
* Applicant forms to courses include questions about prior learning, knowledge and
experience, for the very reason of adjusting the course to the level of the candidates.
As the material for a course is prepared in advance, it is possible to change it according to
information gained from the application forms.

* Peter Sommerlad, when introducing OO in the past in a short talk, often did a short
survey about the roles of the people in the audience (developer, manager, other), the
knowledge of programming languages (Cobol, C, FORTRAN, Basic, Pascal, etc.) and
adjusted his on-the-fly examples.

* I once took a group of Australian tourists to a visit in an Alpaka ranch in Israel. The
place had its home guide, and just before she started talking to the group, she asked for
information about the group. Unfortunately, it seems she missed one vital piece of
information, and though we hoped to learn about the South-American animals, she
extended the lecture to some other interesting species the ranch held, focusing essentially
on the few Wallabies in their care.

Resulting context
Having spent time learning the background, needs, abilities and expectations of your
presentation audience, you can prepare your presentation accordingly. It can build on
information already known to the audience, expand on topics less familiar to them, you
may even incorporate jokes that relate to their world or use examples from your
audience’s melee.

You may want to check Does Mom Understand your presentation, and, if you have
time, you can consider creating a Modular Presentation so you can adjust or
compensate for cases you have misjudged your audience.

Copyrights by Ofra Homsky, Israel © 2003
Permission is granted to copy for VikingPLoP2003 Proceedings

-These pages are part of a work in progress-
- 8 -

161

Two sets of Patterns about Group Communication and Dynamics

The second set of patterns refers to some group dynamics, trying to capture good
practices for overcoming obstacles in intra-group communication, either bringing input
from less prominent group members or enabling group discussion where it may be a little
difficult to create.

Inequality exists in every society. Even in the most egalitarian groups some members
gain more prominence then others. [2] And every cohesive group defines its norms and
practices, underlining the social interaction and conduct in the group.

These patterns try to give people who work with a group or in a group, such as team
leaders, members of groups, managers, moderators, guides, ideas about resolving
situations where they may find it hard to introduce new ideas into the group.

The first pattern, Safe Discussion, looks at group culture and tries to capture a way for
group members to discuss a problem or an issue in dispute in the group.
The next two patterns connect two sides of the same issue: a way for capturing ideas from
less prominent group members.

The second pattern, Spokesperson, Presents the first half of a concept. It presents
reasons or conditions in which it may be useful for one group member will volunteer to
speak up for the more timid group member.

The third pattern, Be Thy Mouth, presents the other side of this concept. It presents
reasons or circumstances in which it may be helpful for a more timid group member to
seek out the help of another, more extrovert, or more comfortably situated group member,
to bring up an idea before the group.

Spokesperson and Be Thy Mouth are complementary patterns that occur together. They
are two sides of the same coin, it just depends on who is the active part.

Copyrights by Ofra Homsky, Israel © 2003
Permission is granted to copy for VikingPLoP2003 Proceedings

-These pages are part of a work in progress-
- 9 -

162

Two sets of Patterns about Group Communication and Dynamics

 Safe Discussion

Context
In every group some members become more predominant, gain the respect of group
members through hard work or special contribution they put into the success of the
group, or even because of their personality. There are of course less prominent group
members.[2] Every group large or small, every society, defines its boundaries: what is an
acceptable behavior, what are acceptable topics, what are the acceptable routs of public
discussion.
The social structure, social connections between group members, the social interaction
within a group may sometimes hinder members from bringing up problems, suggestions
or complaints, either because they feel inadequate or the issue may be associated with
prominent members of the group.

Problem
You become aware of a delicate issue to discuss within your group. The topic or the fact
of presenting it may not align with the group established practices and norms, but you
feel this needs to be addressed as soon as possible, as this is an important issue or an
important suggestion that may impact the group. However, bringing it directly to formal
discussion may be too loaded. It may step on toes or intrude on “internal politics” and
sensitivities.

Forces
� People who never knew of the subject may not care to discuss it at all or have no

information to allow them to create an opinion, leaving out valuable contribution.
� The longer an issue is familiar the more comfortable people become talking about it.
� Issues not discussed by the whole group miss out involving the whole group in their

consequences.
� Some people may find it difficult to address their criticism, objections, or arguments

directly to other people.
� There are issues and problems that if not discussed on time, may aggravate over time.

Solution
Introduce the issue within different settings using a non-formal discussion arena, in
a non-threatening, public way:
 - Call in an outside moderator to lead the discussion.
 - Use recognized unofficial channels of communication (internal newsletter).
 - Locate the discussion in a neutral location with informal settings.
This way you bring the issue into awareness, challenging but not directly confronting
neither members nor norms of the group. You aim to create unofficial talks, let people
know of the issue, discuss it, create an opinion about it.
Eventually you can bring the issue up in a formal discussion. For example call a
meeting, put a proposal of legislation, and say ‘We have an issue to discuss’.
The primary goal is getting the issue to public discussion, which was your original intent.

Copyrights by Ofra Homsky, Israel © 2003
Permission is granted to copy for VikingPLoP2003 Proceedings

-These pages are part of a work in progress-
- 10 -

163

Two sets of Patterns about Group Communication and Dynamics

Precautions
This pattern may be cultural dependent, as it requires a measure of agreement on free
discussion. Not all groups or organizations are built this way. [3]

Known Uses
* Commercial Advertisement that may not be fit for a wide campaign, such as on TV,
may still be released through web commercial or on Email that gets sent and re-sent by
individuals. Thus it may become a center of discussion in the community even if it
doesn’t completely adhere to social conventions.

* Keeping with the tradition of PloP conferences, EuroPLoP supports an open, egalitarian
atmosphere. Still, since it is a community, and involves many people, sometimes from
different cultures, participants may be reluctant about raising an issue for discussion. This
may be either because they feel new to the community, or not as experienced as some of
the other participants etc. At EuroPLoP an issue can first be raised through the internal
newsletter (Kloster Hearsay), where the settings are less formal and sometimes
humorous. If more participants are interested the issue it can then be followed by a ‘Birds
of a Feather’ (BoF) meeting, or be raised as an issue in the community at large such as
mailing lists, EuropHillside meeting.

* An advise given by many institutions teaching management skills, is to listen to
discussions going on in the coffee corner of the office. This informal meeting place
allows for free conversation, revealing people’s true views on issues. [4]

Resulting context
When bringing an issue to a non-direct discussion, it may still cause some discomfort,
either to the group or to individuals within the group, but it will not be directed at known
individual(s).
This way gives all group members time to get familiar with the topic, and develop
opinions they can bring up when a direct, formal discussion is finally open.
This may also help in preventing a problem from aggravating, or enhance your overall
group’s success if you managed to air an internal issue that everyone were reluctant to
open for fear of ‘stirring up the muddy water’.

Copyrights by Ofra Homsky, Israel © 2003
Permission is granted to copy for VikingPLoP2003 Proceedings

-These pages are part of a work in progress-
- 11 -

164

Two sets of Patterns about Group Communication and Dynamics

Spokesperson
“And he shall be thy spokesman unto the people; and it shall come to pass,
 that he shall be to thee a mouth, and thou shalt be to him in God's stead.”
Exodus 4:16

Context
Even cohesive groups are comprised of people with different personalities and
tendencies. Though familiarity tends to improve and facilitate the work and the social
relations in a unified group, not everyone in a group feels comfortable facing the entire
group.

Problem
Through friendship, or by chance, you hear a more timid member of the group expressing
a concern, an idea, an objection or an opinion you think has value to the group.
You feel this can be an important contribution to the group and you don’t want this
insight to be lost.
However it may happen that this person is unable to speak up for whatever personal
reason, or it may be important not to identify the initiator of a discussion issue.

Forces
� Not everyone in a group feels able to talk up, either because of personality trait or

because of cultural norms.
� Social standings in a group may influence an individual’s decision about expressing

themselves, addressing the group.
� Sometimes the opinion developed during discussion is influenced by the source or the

way that the issue is brought up.
� Stepping in to represent someone else’s ideas may be interpreted as patronizing.
� In every group there are people who feel comfortable speaking and expressing ideas,

even if they encounter disagreement.

Solution
Be the one to introduce the idea or to voice the opinion, instead of the more timid
person. Since you feel more confident speaking to the group (maybe because you have
more experience, or you feel secure in your social standings in the group, or you are more
of an extrovert then the person who has an issue to broach).
Discuss the reason they avoid speaking, then suggest, privately and respectfully, to
that person to speak for him/her, bring their objection before the group.
You can suggest that when you’ll address the group you will say you are talking on
behalf of someone, or if the issue is too delicate, or that person is too shy, you can decide
together to let things stand, just lending your sponsorship, voicing the opinion or idea.

Copyrights by Ofra Homsky, Israel © 2003
Permission is granted to copy for VikingPLoP2003 Proceedings

-These pages are part of a work in progress-
- 12 -

165

Two sets of Patterns about Group Communication and Dynamics

Precautions
This needs to be conducted with care.
This intervention can be interpreted as patronizing if not handled with empathy, good
faith, respect, compassion and discretion. It cannot be done without permission of the
owner of the idea.
Also, being the one speaking up, you may be considered the owner of the idea, and if
there are bad feelings related you might get the backlash as they might be directed at the
spokesperson.
You should also get well familiarized with the topic and nuances of the opinion you will
be representing, so you can discuss it well when you bring it up.

Known Uses
* Peter Sommerlad, a member of the pattern community, has seen pairs of people work
great, with one extrovert and a more introvert person, which clearly performed very well
together, because the environment accepted the different roles taken.

* Shlomit Baruchi, a group-leader and tour-guide, often looks out for someone in the
group saying something quietly or expressing an idea only in a side discussion. If she
finds this may be a valuable contribution to the group, she will talk to this person
privately, trying to encourage them to speak up. And if they are too timid, she suggests to
them to be the one to voice their opinion or idea.

Resulting context
Having more experience, or better social standings in the group, you get less scared when
introducing an idea or suggestion, even when it creates opposition.
By giving voice to an idea or an opinion of a more timid group member, you get your
group to consider it more objectively or more willingly then if a less prominent member
brought it up.
This way the group may gain from an input that might have been lost to it.
You may also help the more timid person to gain confidence, as they see their idea gets
merit, being discussed within the group. Even if the suggestion is rejected at the end of
the discussion, they can see nothing bad has happened.

Copyrights by Ofra Homsky, Israel © 2003
Permission is granted to copy for VikingPLoP2003 Proceedings

-These pages are part of a work in progress-
- 13 -

166

Two sets of Patterns about Group Communication and Dynamics

Be Thy Mouth
“And he shall be thy spokesman unto the people; and it shall come to pass,
 that he shall be to thee a mouth, and thou shalt be to him in God's stead.”
Exodus 4:16

Context
In a group there are always people who feel more comfortable facing the entire group,
presenting ideas, suggestions or objections in discussions. Either because of a personality
trait or because they are new to the group, some people feel less able to speak out.
On another venue, group dynamics tend to create roles, which certain group members fill,
(such as the initiator, the critic, the mediator). Over time, group member may tend to find
it hard to go out of their role, even if they have some contribution to make.

Problem
You have an idea that you think can contribute to your group. Or, you want to express an
opinion in a debate going on in the group. But either because you are shy, or new to the
group, or knowing your group practices, you think if the idea came from you it will not
get proper attention or would not be considered, you feel inadequate to speak up.
You feel very strongly that your input can have an impact on the group, but you feel
unable to speak up.

Forces
� Group members may tend to judge the merit of opinions or suggestions according to

the person bringing them up.
� Some people are naturally shy, or being new to a group may be reluctant to speak up,

or because of character trait or position feel less able to speak up.
� Group members may feel ‘stuck’ in a role, being unable to suggest something new

because “it’s somebody else’s role to bring up ideas for the group”.
� In every group there are people who feel comfortable speaking and expressing ideas,

even if they encounter disagreement.

Solution
Find a member of the group whom you trust and feel comfortable with, and that you
think will receive better attention from group members. Tell that person about your
idea and ask her/him to speak for you – to be the one to present the idea or opinion to
the group in your stead.
Explain your reason for asking: if it is because of a personal difficulty or because of other
consideration. The reason may influence your chosen spokesperson’s decision. Be
prepared for a refusal, listen to the opinion and consider whether you can speak out
yourself, or you may want to try to find another spokesperson.

Copyrights by Ofra Homsky, Israel © 2003
Permission is granted to copy for VikingPLoP2003 Proceedings

-These pages are part of a work in progress-
- 14 -

167

Two sets of Patterns about Group Communication and Dynamics

Copyrights by Ofra Homsky, Israel © 2003
Permission is granted to copy for VikingPLoP2003 Proceedings

-These pages are part of a work in progress-
- 15 -

Precautions
You need to be careful not to over-use the good will of your ‘sponsor’.
Also, don’t become Sirano de Berzherak - even if you find it too hard to speak in front of
the group, make sure you do get the credit for your ideas.
Make sure to go over the topic with the spokesperson until s/he is fully versed in the
information and in the nuances of your opinion on the issue or your idea. S/he needs to be
able to represent you well when s/he brings it up for discussion.

Known Uses
* Lobbying: a group trying to oppose legislation or invoke it tries to find a known figure
that will support and represent it’s cause. They will try to choose a person that has
authority, good reputation and ability to represent their idea to the best effect. The group
will approach this person, explain their idea and ask that person to speak for them.

* As an introvert who learned to extrovert, in the past, I used this method in groups I was
member of, and felt too shy to speak out. I would ask for the sponsorship of another
group member, have them introduce my idea to the group. (This indeed played part in my
learning to be more extroverted, as I saw my ideas and suggestions being carried out).

Resulting context
Having recruited a ‘sponsor’ to voice your idea for you, you may see an idea of yours that
may have been ignored, given better consideration by the group.
This may even help the more introverted people develop confidence as they see their idea
given merit by the group members, if only to discuss it, even if they don’t accept it. Thus
maybe the next time they will be less shy about speaking out their suggestions. (More
ideas for moving from being an introvert person to becoming a more extroverted person
you can see in Joe Bergin’s pattern: Introvert-Extrovert, [5]).

1 A Pattern Language for Pattern Writing, Swati Gupta, 3rd April 2003
http://www.cs.pitt.edu/~chang/231/8pattern/LANGUAGE/
2 Cultures and Organizations, Software of the mind. Geert Hofsted, McGraw-Hill Companies, 1991, p23
3 Meetings from a social psychological view: disturbance recovery, Harko Verhagen, the FEEL project,
Royal Institute of Technology, Stockholm, Sweden. http://www.dsv.su.se/feel/DSV/feeldeliverable1.pdf
4 An example for such advice can be found at http://www.gotobiz.co.uk/progress/reports.htm
5 Extrovert-Introvert, Josef Bergin, Proceedings of EuroPLoP 2002, p 323

169

169. Analysis Patterns Specifications: Filling the Gaps

Analysis Patterns Specifications: Filling the Gaps

Marta Pantoquilho1, Ricardo Raminhos2, João Araujo3

Departamento de Informática
Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa
Quinta da Torre, 2829-516 Caparica

Portugal
E-mail: 1 mbp@netvisao.pt, 2 rfr@netvisao.pt, 3 ja@di.fct.unl.pt

Abstract. Patterns present solutions for recurrent problems in software engineering. They are applicable at
different stages of the software development process. This paper focuses on patterns at requirements and
analysis level. Although the term “requirements patterns” has appeared in the requirements engineering
community, the name “analysis patterns” is more established in the patterns community. Here we briefly
discuss the existing approaches and identify their limitations. The primary goal of this paper is to propose a
new template to fill some gaps concerning the specification of analysis patterns.

1 Introduction

The traditional software development lifecycle includes the following phases: requirements elicitation,
analysis, design, implementation and test. Each phase creates a more detailed image of the system than the
previous one. Nevertheless, to be effective, software development must consider reuse from early stages.
Patterns are considered a successful technique to help reusing previous specifications and solutions.

Software patterns are classified depending on various factors including their application in the software
development phases (see Figure 1). The most common patterns are analysis and design patterns. Anti-patterns
are a kind of pattern that embraces all the development phases (including the test phase), as well as the project
management area.

Figure 1 - Project lifeline with the corresponding patterns in each phase.

The term requirements patterns appeared in the requirements engineering community [Robertson, 1996]
[Konrad and Cheng, 2002], but it is not widely used. Requirements patterns document user needs and specify
generic system behaviour at a high level of abstraction. Requirements patterns also describe generic actions that
developers can take to improve non-functional requirements, such as performance, security, reliability,
maintainability, and accuracy. These actions are related to client-system interaction or operator-system relations.

The purpose of analysis patterns is to build an analysis model, which will focus on business processes instead
of software implementation. The main concerns of these patterns are the conceptual models and the flexibility
and reuse of the resulting systems. The conceptual models are represented by a static structure, entity relations
(e.g. objects or functions), and data transformations.

The primary goal of this paper is to propose a new template to specify analysis patterns. We also discuss and
compare some of the existing approaches and clarify the difference between analysis and requirements patterns.

170

Analysis Patterns Specifications: Filling the Gaps

This paper is organised as follows. Section 2 describes and compares some previous work on requirements
and analysis patterns, and identifies their problems. Section 3 proposes a template to describe analysis patterns.
Section 4 illustrates the template with an example. Finally, Section 5 draws some conclusions and discusses
some future work.

2 Problems with requirements and analysis patterns approaches

In this section we describe the state-of-the-art of requirements and analysis patterns approaches. Afterwards,
we establish a comparison between these approaches and conclude with the identification of the most significant
problems that arise from the application of those approaches to pattern specification.

2.1 Requirements patterns

In [Whitenack, 1994], a pattern language is described for requirements elicitation. The elicitation process is
performed using twenty “easy patterns” that should be applied sequentially (e.g. Customer Expectations,
Problem Domain Analysis, Prototypes, Requirements Validation). Through this pattern language the author
expects “to guide analysts and product developers to most appropriately apply a set of techniques and methods
so as to produce a more thorough analysis and understanding of the problem area” and also “to provide a
framework upon which to define and capture requirements”. The 20-pattern appliance is not mandatory, and the
user is responsible for choosing the pattern combination that suits him better. Associated to each pattern a set of
“Direct Deliverables” is also suggested, providing structure to the modelled information at all stages.

S. Robertson [Robertson, 1996] uses an event/use case approach and employs a very simple template for
pattern description with only 4 fields: name, context, solution, and related patterns. Robertson suggests that
events and use cases should be used to divide the system into small chunks. These chunks can then be structured
into a pattern. Patterns are, therefore, catalogued, based on the name of the use case to which they refer. In her
paper, Robertson shows how a particular problem can be abstracted at different levels in order to become a
pattern used in different problems.

S. Konrad and B. Cheng [Konrad and Cheng, 2002] focused on requirements patterns for embedded systems.
They use a UML approach (class, use case and sequence diagrams) for the pattern definition. Also, they explain
the pattern context using problem frames [Jackson, 2000]. A very extensive and detailed template is used to
describe patterns (13 fields), based upon that suggested for design patterns [Gamma et al, 1995].

We notice that the term requirements patterns does not differentiate from analysis patterns described as
follows.

2.2 Analysis Patterns

M. Fowler [Fowler, 1997], initially proposed the concept of analysis patterns for the representation of
conceptual models for commercial processes (accountability, commercial trades and organizational relations).
Refinement patterns (design, architectural, etc) are never suggested, and the solution is mostly conceptual. The
author presents each pattern through an informal / technical discussion without any kind of structured template.

E. B. Fernandez and X. Yuan present the Semantic Analysis Pattern (SAP) approach [Fernandez and Yuan,
2000]. SAP is “a pattern that describes a small set of coherent use cases that together describe a basic generic
application”. The selection of use cases is realised carefully to maximise reusability.

The work by A. Geyer-Schulz and M. Hahsler [Geyer-Schulz and Hahsler, 2001] introduces some structure to
analysis patterns. They focus on the cooperative work domain and collaboration between applications.

Analysis patterns proposals include patterns for oil refineries [Zhen and Shao, 2002], the order and shipment
of a product [Fernandez et al., 2000], the repair of an entity [Fernandez and Yuan, 2001], negotiation [Hamza
and Fayad, 2003] and course management [Yuan and Fernandez, 2003]. Also, in [Hamza and Fayad, 2002] a
pattern language is proposed to achieve stability while specifying analysis patterns.

2.3 Comparison between Requirements and Analysis patterns

Here we present a short comparison between requirements and analysis patterns, depicted in table 1. In this
comparison, we point out the main characteristics of the approaches of both kinds of patterns and also what we
consider to be their limitations.

171

Analysis Patterns Specifications: Filling the Gaps

Table 1 - Comparison between Requirements and Analysis patterns.

 Characteristics Limitations

Requirements
Patterns

• They capture in detail functional and non-
functional requirements.

• They can be extended by design or architectural
patterns.

• They allow a smooth transition to the
implementation phase, due to the pattern
detailed description.

• They are a more directed form to the
programmer understanding.

• Little research in this field.

• High commitment to the solution
domain, due to decisions
expressed in the pattern.

• The existence of a variety of
templates for the different
approaches.

• The existing approaches do not
seem to justify the term
requirements patterns as they use
similar principles as analysis
patterns.

Analysis
Patterns

• They are suitable for the description of
conceptual problems.

• They present low commitment to the solution
domain allowing a high level of freedom for
implementation due to their sparse
specification details.

• Due to the high abstraction level, there is a huge
gap between the patterns specification and
implementation.

• They provide a more directed form to the
architect understanding.

• In order to migrate to the implementation level,
an extra iteration is needed. This extra step
could be the transformation of an analysis
pattern into a requirement pattern. We would
be passing from a low level to a high-level
implementation detail.

• Lots of work in this field.

• The presentation form (degenerate
template) used by M. Fowler
[Fowler, 1997], is low in
specification detail and
information about the pattern
description.

• The existence of a variety of
templates for the different
approaches.

This comparison is important to highlight the fact that what defines requirements patterns is not

significantly different from analysis patterns, from the approaches studied. This is a result of their proximity, i.e.,
they are closely related and share a similar level of abstraction. To avoid confusion with these terms, we suggest
that patterns at this level of abstraction be called only analysis patterns, by the requirements engineering and
patterns community.

2.4 Requirements and Analysis Patterns: Identifying the Problems

In general we believe that the current approaches to specify requirements and analysis patterns are not
sufficient to be used by requirements engineers, especially when they start using patterns, because they lack
detailed information. Including more details in the descriptions of patterns would facilitate the requirements
engineer’s work, as this would help them to take the right decisions to use the patterns, efficiently and
successfully. This information should include, for example, functional and non-functional requirements, some
possible static and dynamic models, and even related anti-patterns.

Additionally, from table 1, we realise that not having a consensus on how these patterns should be specified
prevents them from being accepted widely. Hence, standardization helps the use of patterns in the requirements
engineering community.

172

Analysis Patterns Specifications: Filling the Gaps

As a solution to these problems, we propose a template with elements that are common to these approaches
and new elements to fill some gaps that we consider are missing. In the next section we will present such
template. Note that this template is only for analysis patterns, since it still is not clear what requirements really
are as their objectives. However, the template also comprises requirements patterns’ aspects.

3 A Template for Analysis Patterns

In this section we present a template to specify analysis patterns. Table 2 shows the attributes of the
template and their respective descriptions. The attributes which were not a part of any previous template are
ticked in the final column. The proposed template is based upon the one described in the POSA approach
[Buschmann et al., 96] [Schmidt et al., 2000].

Table 2 - Template for analysis patterns.

Attributes Short Description New
Name* Pattern identifier.

Also Known as Additional names that can also identify
this pattern.

Evolution*

Chronological register of all previous
versions of this pattern. The following
notation should be used: {Date, Author,
Reason, Changes}. To be used by
developers who have already used the
pattern to check its changes.

�

Structural Adjustments* Presentation of field extensions and
omissions to the pattern template. �

Problem* A short description of the problem that
this pattern solves.

Motivation*
Description of a problematic situation
intended to motivate the use of the
pattern.

Context*
Precise description of the environment in
which the problem and solution recur and
for which the solution is desirable.

Applicability* Description of the conditions wherein the
pattern can be applied.

Functional* List of all functional requirements
organised through use cases. �

Non-Functional* List of all non-functional requirements. �

Dependencies*
Identification of dependencies for
requirements. This could be represented
through a graph.

�

Priorities*
Definition of priorities among the
requirements. This could be represented
by a hierarchical structure.

�

Conflict Resolution* Explanation for requirements interaction
and conflict resolution. �

Requirements*

Participants* Identification and description of the
actors that interact with the system. �

Class
Diagram*

Structure of the elements of the pattern. � Modelling*

Structure*
Object

description*
Objects description and their
responsibilities. �

173

Analysis Patterns Specifications: Filling the Gaps

Collaboration
or Sequence
Diagrams

Suitable for scenarios description. �

Activity
Diagrams

Suitable for scenarios and overall
description. � Behaviour*

State
Diagrams

Suitable for scenarios and overall
description. �

Variants Description of alternative solutions.

Resulting Context* System configuration after the pattern
application.

Consequences* Advantages and disadvantages of the
pattern application

Anti-Patterns Traps Most common pitfalls that can occur from
the pattern application �

Examples*

One or more application examples that
illustrate: initial context, how the pattern
was applied and all transformations
necessary to the initial context so that it
could be applied

Related Patterns List of associated patterns (describing
connected problems and solutions)

Refinement Patterns Design or architectural patterns that can
be used for further refinement �

Implementation
Advice on how the solution should be
implemented (without specific details e.g.
code)

Known Uses*

Describes known pattern occurrences and
applications in existing systems. This
should include at least three different
systems

* - Required field

Below we discuss the newly introduced attributes.

• Evolution: This explains all the transformations the pattern suffered. With the addition of the evolution field
we can track the pattern’s progress: from current state to the original version. This helps developers that have
already used the pattern identifying what changes have taken place. This makes it easier for the developers to
adapt to the new version of the pattern. Additionaly, if they want to propose modifications to the pattern, they
should know what has been done before. This can help validate the new modifications. In the construction of
the original pattern this field should only contain information about the Date and Author. In Figure 2 we
illustrate the chronological evolution for an abstract pattern.

Figure 2 - Evolution tracking system.

Author: Original Author
Date: Creation date

Author: First change author

Date: First change date

Reason: The pattern was not
applicable to the new domain

Changes: Addition of classes to the
class diagram.

174

Analysis Patterns Specifications: Filling the Gaps

• Structural Adjustments: This field explains the structure adopted to describe the pattern. It should include
all additional extensions, all omitted fields, and the reasons for those decisions. With this information the
reader can easily understand the used structure. We suggest the use of a layout similar to the one presented in
Table 3.

Table 3: Suggested structural adjustments layout.

Attribute Extension Omission Reason

Implementation � Reason for the omission

New attribute � Reason for the extension

• Requirements: This field (divided into six sub-fields) contains a description of all requirements that must be

addressed to solve the problem (how they interact and are balanced). A highly detailed problem specification
is gained trough the addition of this attribute. With the proposed division, it becomes simpler to understand
of the requirements involved, their type (functional, non functional), their dependencies and priorities and
how they are solved. We can also extract a use case diagram from the requirements, which shows the services
used by the actors (participants).
Considering non-functional requirements early in the analysis stage has a significant impact in problem
understanding and its modelling. Naturally, this is also valid when describing analysis patterns. Non-
functional requirements provide a more complete description for the analysis pattern and also influence its
structure and behaviour. Choosing one model instead of another can have, as a decision factor, the fulfilment
of one or more non-functional requirements. Moreover, the prioritization and establishment of dependencies
among functional and non-functional requirements will allow grasping the meaning of the problem with more
detail and accuracy. Therefore, the inclusion of non-functional requirements in an analysis pattern will help
the pattern user to identify and evaluate the applicability of the pattern to his/her specific problem. Some
approaches can be used if a higher detail on non-functional requirements relations is required or when
complementing our approach. One such example is the approach discussed by Araujo and Weiss [Araujo
and Weiss, 2002]. They use the NFR framework [Chung et al, 2000] for describing a design context and also
a set of related patterns. The outcome is that several design issues related to system architecture may be
addressed by the integration of various patterns. Taking all this into consideration, it is our understanding that
the presence of non-functional requirements in the pattern specification can benefit the problem resolution,
and consequently the pattern applicability.

For the Priorities field in the template we suggest the use of a hierarchical structure as depicted in Figure 3.

Figure 3: Suggested hierarchical diagram.

For the Dependencies field we suggest the use of a dependencies graph. One example is presented in Figure
4, where it is stated that Requirement 1 depends on Requirement 2 and Requirement 3, and so on.

175

Analysis Patterns Specifications: Filling the Gaps

Figure 4: Suggested dependency graph.

In prior template versions, the requirements were addressed in the field forces. This was an unstructured

field that contained a mixture of functional and non-functional requirements. With our approach, we add
structure to the requirements identification and documentation. We also add information about their
relationship - dependencies and priorities. To ease the pattern understanding we propose the use of
illustrative diagrams: a hierarchical diagram for the requirements priorities specification and a dependency
graph for the dependencies establishment. With the inclusion of the participants attribute, we can describe the
actors that will manipulate the system. These actors are the ones that will interact with the use cases identified
in the Functional field.

• Modelling: In this section are presented several models that illustrate the solution. This solution is divided
in two main groups: behaviour and structure.

• Structure: This group represents the solution’s static structural aspects using a UML class diagram.

More detailed specification can be obtained in the attribute Object Description. This field describes
all objects that are present in the class diagram. Note that the class diagram can be represented in
different levels of abstraction.

• Behaviour: Offers an illustrative set of scenarios, and also describes the overall pattern behaviour.

The pattern should contain at least one scenario example, in an abstract level, and one overall
description. Two distinct levels are focused: scenarios examples that show only part of the system,
and the overall system behaviour, which illustrates the system‘s functioning as a whole. There is a
great freedom on the diagrams choice that illustrates this field. At least an activity diagram showing
the overall system behaviour should be included. In other templates this section only contained
examples of part of the system behaviour. Although important, this is not sufficient, because the user
does not have a global vision of the system functionality.

The modelling description is presented in previous pattern templates under the name Solution. Although some
fields are commonly used in both Modelling and Solution, the modelling approach offers a more detailed,
structured and visual (with the addition of several diagrams) understanding.

• Anti-patterns traps: With this field we try to avoid common errors in this pattern application by presenting
the most common negative results. This field should contain a list of anti-patterns names and a short
description of each. To recover from a negative solution the user, using the anti-pattern name as lookup key,
should refer to William Brown in [Brown, 1998].

• Refinement patterns: This attribute is used to suggest or identify suitable patterns (e.g. design or

architectural) that can be applied to the implementation of this pattern.

4 Example

To illustrate the concepts decribed in the previous section, we present an example that uses the template to
specify the analysis pattern Party from [Fowler, 1997] (see Table 4).

Requirement 1 Requirement 2

Requirement 3

Requirement 4

Requirement 5

176

Analysis Patterns Specifications: Filling the Gaps

Table 4: Applying the approach to Party.

Attributes Short Description
Name Party

Evolution

{ date: 1997,
 author: Martin Fowler }

{date: 2003,
authors: M. Pantoquilho, R. Raminhos and J. Araújo,
reasons: to add more information
Changes: Adaptation of the degenerative form to a

structured template.}
Structural Adjustments None.

Problem To model an address book that contains information about
people and companies.

Motivation

“Take a look through your address book, and what do you
see? You will see a lot of addresses, telephone numbers, the
odd email address … all linked to something. Often that
something is a person, however the odd company shows
up.” [Fowler, 1997]

Context

Persons and organizations are present in almost every
system that deals with people. The address book is just an
example. Persons and Organizations share a common
behaviour: they access a common set of objects (telephone
numbers, email addresses …) and operations over them.

Applicability When you have people and organizations in your model
and you see common behaviour.

Requirements Functional

R1: Each Person or Organization has none or more
telephone numbers.
R2: Each Person or Organization has none or more
addresses.
R3: Each Person or Organization has none or more e-mail
addresses.
R4: Person and Organization share some descriptive data.
R5: Each Person or Organization may obtain, add or
modify information about other persons or
organizations.

Use case model:

177

Analysis Patterns Specifications: Filling the Gaps

Non-Functional

R6: Person / Organization must be authorized
(security).
R7: Information must be obtained in a short period of
time (performance).
R8: Information must be correct (accuracy).

Dependencies

Priorities

Conflict Resolution
The non functional requirements of performance (R7) and
security (R6) may conflict. However this conflict is solved
by the assignment of priorities to the different requirements.

Participants Person and Organization

Class Diagram

Modelling

Structure

Object
Description

Person: Defines a person.
Organization: Defines an organization.
Party: Super type defining a Person or Organization.
Contains all functionalities common to both of them.
Telephone Number: Describes a telephone number.
Address: Defines an address.
E-mail Address: Defines an e-mail address.

The Person and Organization classes contain the specific
data to each entity that they describe. The common
attributes are held at the Party class.

The Party is defined through the relations with the classes
Telephone number, Address, and E-mail Address.

178

Analysis Patterns Specifications: Filling the Gaps

Collaboration or
Sequence
Diagrams

Sequence diagram for the use case Query Address

Behaviour

Activity
Diagrams

Variants

Another possible solution is presented in [Fowler, 1997]
(below). Although this variant also solves the problem, it
does so by adding a lot of redundancy (inheritance is
eliminated and associations are doubled). Therefore, the
solution presented in "Class Diagram" is a better one, for
the reasons described in the "Consequences”
field.

Resultant Context

“Party is defined as the super type of person and
organization. This allows me to have addresses and phone
numbers for departments within companies, or even
informal teams.” [Fowler, 1997].

Consequences
Advantages:

1. Elimination of data and code duplication.

179

Analysis Patterns Specifications: Filling the Gaps

Anti-Patterns Traps

Golden Hammer – Persons and Organizations can be
modelled with other patterns than Party. Refer to Related
Patterns, for other pattern information.
The Blob - Party must only contain the common attributes
to Person and Organization. You should resist the
temptation to incorporate all data and operations in Party.

Examples

“In the UK National Health Service, the following would be
parties: Dr. Tom Cairns, the renal unit at St. Mary’s
Hospital, St. Mary’s Hospital, Parkside District Health
Authority, and the Royal College of Physicians.” [Fowler,
1997].

Related Patterns Role Object
Refinement Patterns Unknown.

Implementation

Use an object-oriented language to the implement this
pattern.
Although this is a very simple system, you should resist the
temptation to implement it in a single class. (avoid the Blob
anti-pattern)

Known Uses Not specified.

To illustrate the behaviour specification of this pattern, we show sequence and activity diagrams. The

sequence diagram for QueryAddress is described in an abstract form, without including interface and control
objects, as these are normally added in the design stage. The activity diagram is used here to specify the global
pattern behaviour.

The original Party template uses the “Degenerative Form”, which is a very unstructured template form. Other
templates for requirements and analysis patterns have a better structure and a high level of detail. In [Fernandez et
al., 2000] and [Fernandez and Yuan, 2000] patterns are presented in a systematic way, through context, problem,
forces, solution, consequences, known uses and related patterns. The solution part is described by class, state
transition, sequence and activity diagrams. Patterns described in [Hamza and Fayad, 2002] adopt a similar strategy.

Our approach also uses those diagrams, but organised in a different way. Moreover, we include, more
explicitly, some aspects that we found important, e.g., evolution, dependency, priorities and conflict resolution of
requirements, and anti-patterns.

To demonstrate the template utility and adequacy we filled the gaps in the original Party pattern description
(but note that we did not include all the sequence diagrams, for space reasons). The additional information makes
the pattern more complete and easier to understand.

We believe that this template will contribute to provide more useful and organised descriptions of analysis
patterns.

5 Conclusions

This paper discussed and compared the main characteristics and limitations of some approaches for
requirements and analysis patterns, and the appropriateness of the term “requirements patterns”. Moreover, we
outlined the main problems concerning the specification and adoption of requirements analysis patterns by the
requirements engineering community. Afterwards, we presented a solution to these problems by defining a
template that gathered elements from existing approaches and incorporated new ones that we considered that
were missing. The approach was illustrated by applying it to the Party pattern described in [Fowler, 1997]. We
believe that the approach presented here will improve the specification of analysis patterns with more detailed
information.

For future work we intend to apply the template to different patterns as a rigorous way of validation, and
define a process model for requirements that incorporates the approach described here.

Acknowledgements

We want to thank our shepherd, Eduardo Fernandez, for his priceless support and all the colleagues of our
group discussion at the workshop for their helpful suggestions.

180

Analysis Patterns Specifications: Filling the Gaps

References

[Araujo and Weiss, 2002] I. Araujo and M. Weiss (2002). “Linking Patterns and Non-Functional Requirements", PLoP 2002,
Allerton Park, Monticello, Illinois, USA.

[Buschmann et al., 1996] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal (1996). Pattern-Oriented

Software Architecture: A System of Patterns, John Wiley & Sons.

[Brown et al, 1998] W. Brown, R. Malveau, H. McCormick, T. Mowbray (1998). Anti-Patterns: Refactoring Software,
Architectures and Projects in Crisis, John Wiley & Sons.

[Chung et al., 2000] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos (2000), Non-Functional Requirements in Software

Engineering, Kluwer.

[Fernandez and Yuan, 2000] E.B. Fernandez, X. Yuan (2000), "Semantic Analysis Patterns", 19th International Conference

on Conceptual Modeling, ER2000, Salt Lake City, UT, USA, pp. 183-195.

[Fernandez et al., 2000] E. B. Fernandez, X. Yuan, S. Brey (2000). "Analysis Patterns for the Order and Shipment of a

Product", PLoP 2000, Allerton Park, Monticello, Illinois, USA.

[Fernandez and Yuan, 2001] E. B. Fernandez, X. Yuan, “An Analysis Pattern for the Repair of an Entity”, PLoP 2001,

Allerton Park, Monticello, Illinois, USA.

[Fowler, 1997] M. Fowler (1997). Analysis Patterns - Reusable Object Models, Addison Wesley.

[Gamma et al., 1995] E. Gamma, R. Helm, R. Johnson, J. Vlissides (1995). Design Patterns: Elements of Reusable Object-

Oriented Software, New York, Addison-Wesley.

[Geyer-Schulz and Hahsler, 2001] A. Geyer-Schulz, M. Hahsler (2001). "Software Engineering with Analysis Patterns",

Technical Report 01/2001, Institut für Informationsverarbeitung und -wirtschaft, Wien, Austria.

[Hamza and Fayad, 2002] H. Hamza, M. Fayad (2002). "A Pattern Language for Building Stable Analysis Patterns", PLoP

2002, Allerton Park, Monticello, Illinois, USA.

[Hamza and Fayad, 2003] H. Hamza, M. Fayad (2003). "The Negotiation Analysis Pattern", EuroPLoP 2003, Irsee,

Germany.

[Jackson, 2000] M. Jackson, Problem Frames: Analyzing and Structuring Software Development Problems, Addison Wesley,

2000.

[Konrad and Cheng, 2002] S. Konrad, B. Cheng (2002). Requirements Patterns for Embebed Systems. IEEE Joint

International Conference on Requirements Engineering, Essen, Germany, 2002.

[Robertson, 1996] S. Robertson (1996). "Requirements Patterns Via Events / Use Cases", The Atlantic Systems Guild.

http://www.systemsguild.com/GuildSite/SQR/Requirements_Patterns.html

[Schmidt et al., 2000] D. Schmidt, M. Stal, H. Rohnert, F. Buschmann (2000). Pattern-Oriented Software Architecture.

Volume 2: Patterns for concurrent and network objects, John Wiley & Sons.

[Whitenack, 1994] B. G. Whitenack, Jr. (1994). "RAPPeL: A Requirements Analysis Pattern Language for Object Oriented

Development", Knowledge Systems Corp,
http://www1.bell-labs.com/user/cope/Patterns/Process/RAPPeL/rapel.html

[Yuan and Fernandez, 2003] X.Yuan, E.B.Fernandez (2003). "An Analysis Pattern for Course Management", EuroPLoP

2003, Irsee, Germany.

[Zhen and Shao, 2002] L. Zhen, G. Shao (2002). "Analysis patterns for oil refineries", PLoP 2002, Allerton Park, Monticello,

Illinois, USA.

 2004 VikingPLoP

183

183. A Pattern Language for Participants of Standardization Work

A Pattern Language for Participants of
Standardization Work

Juha Pärssinen
juha.parssinen@vtt.fi

Abstract
This paper presents a pattern language for people who are going to participate in stan-
dardization work. In this paper, the technical details of communication protocols or oth-
er standardization artifacts are not the primary focus. Working on standardization means
working in a heterogeneous group, and decisions that are made need to balance conflict-
ing forces. The resulting solutions tend to be compromises from proposals made by one
or more participants of the standardization effort. This pattern language gives advice to
readers to reach the best possible compromise.

Introduction
This paper presents a pattern language for people who are participating in
standardization work. It gives advice to readers who are not professional consensus
makers (or politicians), but technical experts who participate in standardization work,
and are the main responsible persons of their company.

There are four typical cases why an individual want to participate in standardization: to
learn a standard as early as possible; to investigate what others have invented; to protect
own work to avoid major changes (to protect investments in their own implementation);
to delay or even stop the standardization work. This language doesn't consider the last
case, which can be seen as a non-generative activity. Readers are advised to read
Machiavelli [2] and Adams [5] if they want to master also those aspects of politics.
However, in this paper some advice are given to defend against power politics.

Patterns in this language are presented in the sequence they are usually applied.
Compromises Anyway is a starting-point for this language. It sets the context for all
patterns. Other patterns are in two groups: patterns used before standardization meetings
and patterns used during standardization meetings.

Compromises Anyway: Accept the fact that you (and hopefully other participants too)
have to be ready to make compromises.

Before standardization meeting

Do Your Homework: Prepare well before meetings. Different phases of preparation are
divided to three patterns: Know Things, Know People and Know Yourself.

Know Things: Start from pure technical values, and leave the rest for a moment. Study
in advance all relevant technical aspects of standardization.

Know People: Study carefully the people who participate in standardization work in
advance. In this pattern, people or participants can be considered as individuals and as
the whole company.

184

A Pattern Language for Participants of Standardization Work

Know Yourself: Know yourself well before you need to make any decisions. In this
pattern “knowing yourself” means knowing not only you, but also the company or the
organization you are working for.

Back-up Team Ready: You need to organize in advance a back-up team, which you are
able to alert during the meetings.

During standardization meeting

Decisions will stay. Typically everything decided is difficult to change afterwards.

Documents define the Truth. Everything written down can and will be used afterwards.

Concepts over Names: If needed, ease your demands a little: keep the concept as it is,
but accept a new name for it.

Use an Example: Examples make things easier to understand.

Use Straw Poll: Straw poll can be used during meetings to see how things are going,
and to avoid formal voting.

Be Cool as a Cucumber. You can participate in negotiations more efficient, if your
feelings are not running high.

Create a Network. Individuals have typically less knowledge and power than groups.

Pattern language

Compromises Anyway

The goal of standardization work is a standard that can be accepted by participants of a
working group and at least majority of the voters of the concerned standardization body.
If a standardization project is working in an area that is very far away from commercial
products, or the area is so new that none has done anything, this is the rare case when
the work can be based purely on solving emerging technical questions.

However, in the real world typically at least some of the participants have something
important for them to push and/or protect during standardization work. They have
already implemented first prototypes, and they want the standard to reflect what they
have implemented to protect their investment and also benefit to be first in the market.
This typically means that at least some participants have conflicting proposals and
goals.

Therefore:

The only way to participate in standardization work and get it done is to accept the fact
that you (and hopefully other participants too) have to be ready to make compromises.
You should not think like: ”If I have to make compromise I will lose”. If you will
eventually have a standard that is available early enough and it contains a feasible set of
compromises to participants, it is a win-win situation for everyone participanting. If the
whole work fails totally, it is a lose-lose situation to everyone who need to have a
standard in concern.

There are typically two ways to make a compromise: give-and-take and take-all. Of
course, in real life standards, there can be sections that use give-and-take and sections
that use take-all.

185

A Pattern Language for Participants of Standardization Work

In a give-and-take compromise every participant needs to make trade-offs, they work
together towards a single standard, starting possibly from several conflicting initial
proposals. Standards made using this approach are typically smaller, easier to
understand, and more consistent than those made using take-all approach. The author
strongly recommends give-and-take compromise for standardization work.

Unfortunately, it is not always possible to make trade-offs, and for this reason a take-all
compromise is used. In a take-all compromise several conflicting initial proposals are
put together, but they are not harmonized as in a give-and-take compromise. Conflicting
parts can be hidden as alternative sections or as optional sections of the standard. This
will usually lead to an ambiguous standard, which also breaks the well-known KISS
principle: Keep It Simple Stupid! A take-all compromise should be used only if the
other choice is a long (possibly infinite) delay of the standard.

There can be another kind of problem if standardization is started from scratch: the
standard might propose impossible things. For this reason in some standardization
organizations work is based only on working implementations.

In this pattern language some advice is given to the reader for reaching the best give-
and-take compromise possible. However, these patterns are useful if the take-all
approach is taken. Patterns appear in two groups; those used before the meeting and
those used during the meeting.

Before the Meeting

Do Your Homework

In standardization work, as in any other creative activity, people are in the middle of a
swift information flow. They need to calculate the net effect of many conflicting forces
of all technical aspects of concern. For most of the people it is not possible to evaluate
these things instantly. Typically time and advice are needed from other experts to find a
relevant solution.

Therefore:

Do your homework. Homework in this particular case is a plan or a procedure
explaining what you want to achieve and avoid during standardization work. It contains
information about particular points which are negotiable and which are not. To do your
homework, collect information about all relevant things in advance, and spend time to
analyze them with your colleagues. This includes also debriefing of the previous
meetings.

You cannot know exactly in advance how much effort and time you need to spend for
your homework to be efficient in the meeting, but in the end, you have to do your
homework. This fact was written down also by Sun Tzu, a general from ancient China.
In this text the words enemy, yourself, heaven, and earth are underlined, when they
refer to concepts introduced in quotations of this paper. These concepts should not be
taken literally, e.g. enemy in this paper is your opposing side, not your hereditary
enemy.

“If you know the enemy and know yourself, you need not fear the result of a hundred
battles. If you know yourself but not the enemy, for every victory gained you will also
suffer a defeat. If you know neither the enemy nor yourself, you will succumb in ev-
ery battle.”
 Sun Tzu

186

A Pattern Language for Participants of Standardization Work

You should spend time to make your plan, one made during the flight to the meeting
place is usually made too late. You need time to read reference material and to talk with
people in your home organization. You also need time to make things clear for yourself.

“My intelligence does not stop at my skin.”

Howard Gardner

Integral parts of the intelligence of an individual are also his or her tools, i.e. Papers,
books, and computer with documents and databases, and his or her network of
colleagues [3].

People who don't do their homework (properly) very often follow strategy: “If I don't
say anything, I will appear as if I understand everything”. However, this is only a short
term ”weasel” solution (see [5] for more complete definition of weasels and their
behaviour in workplaces). Sooner or later there will be time to decide and then you
won't have anything you can use to proceed wisely. Other people can guide and
potentially mislead you if they want. If you like the concept of an anti-pattern, this
could be one.

There are several aspects which you should sort out before participating in the meeting,
these are considered one by one in the next patterns. These aspect are divided into three
patterns following one of Sun Tzu's most quoted sentences:

“Hence the saying: If you know the enemy and know yourself, your victory will
not stand in doubt; if you know heaven and know earth, you may make your victo-
ry complete.”

Sun Tzu

In the previous quotation, the enemy can be understood as the other participants or
people, yourself can be understood as (obviously) yourself, heaven (explained as a
climate in [1]) can be understood as a techno-political situation including emotions and
feelings, and earth can be understood as a technology, i.e. hard facts, in standardization
area. Heaven (techno-politics) and earth (technology itself) together define domain for
standardization.

In the following three patterns these four aspects are explained in the standardization
context. Know Things pattern contains earth, Know People pattern contains enemy, and
Know Yourself pattern contains yourself. These patterns will help you to do your
homework. Heaven is divided between Know People and Knowing Yourself.

Know Things

It does not matter whether a standardization project is starting from a white sheet or
there is a lot of existing prework, in any case you need to understand (and possibly
solve) emerging technical questions during standardization work.

As explained in the Do Your Homework pattern, standardization domain contains two
parts: heaven and earth. You see this clearly when you are evaluating any technical
issue. There are always two sides to take into consideration: “engineering” values
(earth) e.g. feasibility and performance , and “techno-political” values (heaven) e.g. who
owns patents and who has invented technology. If you try to understand and evaluate
both sides at once it can be overwhelming.

187

A Pattern Language for Participants of Standardization Work

Therefore:

Start to analyse pure technical facts, and leave politics and potential emotions for a
moment. It is much easier to judge the hard facts first, and later enchance your
judgement by politics and potential emotions. This enhancement will be done in
patterns Know People and Know Yourself.

Study all relevant technical aspects of standardization in advance. You don't have to be
an expert in everything, but you should know enough to understand the documents and
to be able to participate in discussions. However, at the same time when you are
studying technical information, collect also information related to politics and emotions,
including the following: who has invented things, who owns possibly patents, and
which companies use those. That information is used in the next patterns, Know People
and Know Yourself.

A good example of this pattern is 3rd generation mobile phone standardization. There
are two technologies strive to better utilize the radio spectrum by allowing multiple
mobile phone users to share the same physical channel: TDMA (Time Division
Multiple Access) and CDMA (Code Division Multiple Access). They have several
fundamental technical differences which are completely out of the scope of this paper
(see [6] if you want more information), but also one (among others) interesting techno-
political difference: one single company owns majority of CDMA patents. If you follow
this pattern, you study TDMA and CDMA from engineering viewpoint. And make a
note for yourself about interesting patent issue.

Know People

During your studies of technical aspects in Know Things pattern, you have also
collected related non-technical information. In this pattern, people or participants can be
considered as an individual or as the whole company.

In a standardization body there are typically several participants from different interest
groups which usually have conflicting goals. To do you homework properly, it is
important to know other participant's goals as early as possible:

“By discovering the enemy's dispositions and remaining invisible ourselves, we
can keep our forces concentrated, while the enemy's must be divided.”

Sun Tzu

You can estimate that the result of work will be a compromise made by people, but you
want to push it as much as possible your preferred direction and avoid other ones.

Therefore:

Study carefully the people who participate in standardization work. You should know
participants' work history, e.g. what kind of education they have, what publications they
have written, and have they participated in this kind of work before. Usually people are
kind enough to tell all this in their WWW home page. If you have time, skim through
their publications. It is also important to know what kind of character the person is. The
only reliable way to find out this is to get to know them, other people's opinions are not
so trustworthy. All this information of participants is also usefull to you when you are
building your network, see Create a Network pattern.

If the inventors of technical aspects in concern participate in work, they typically defend
their work rigorously. People tend to think that what they have done is like their child,
and nobody else than themselves are allowed to change it or really understand it. You

188

A Pattern Language for Participants of Standardization Work

should also know who are the real leaders of the work to know to whom you should talk
to make any kind of progress. Remember, that position of people in the organization
and their role as leaders are not always comparable [3].

Study also the participating companies, e.g. which are their core technology areas and
which are their business segments. For example a manufacturer typically has a
completely different kind of interests than a service provider. You can expect
companies to try to lead the work in the direction which is most important to them.

If we continue our TDMA vs. CDMA example from the previous pattern, now it is time
for you to analyze the effects of patents and other non-engineering values of each
technology. In the previous pattern you make a note that one single company owns
majority of CDMA patents. For this reason it can be expected that this company wants
CDMA technology to be used in forthcoming standard.

It is also important to know why people (or companies) participate in this particular
project. There are four typical cases: they want to learn standard as early as possible;
they want to investigate what others have invented; they want to protect their own work
to avoid major changes (to protect their investments to implementation); they want to
delay or even stop the standardization work because they have their own reasons not to
have standard in this area. The first two groups, i.e. learners and investigators, are
usually mostly harmless, but the other two will eventually cause troubles. It is important
to know are people either trying to protect their own work or trying to stop the project.
If they want to protect their work, they are usually willing to make technical
compromises. But if they just want to stop work, there are nothing to negotiate. In that
case there are only political ways to solve the situation.

Know Yourself

During your studies of technical aspects in Know Things pattern, you have collected not
only hard technical facts, but also some amount of related non-technical information. In
this pattern “knowing yourself” means knowing not only you, but also the company or
the organization you are working for.

When you are preparing yourself for the meeting you are not only studying technical
issues, you are also learning the strategy of your company. Information about technical
issues is useless if you don't know motive for decisions and value of artifacts behind
them.

Therefore:

Read technical documents made in your own company and interview people who wrote
them. Interview also people who are (or will be) implementors of prototypes, or enduser
products. They typically have a lot of opinions, and quite often they are not documented
anywhere, i.e. they have tacit knowledge [4].

Read also strategy documents and interview people who have written them. Strategy
documents usually explain long-term goals of a company, but do not explain why these
are chosen [4].

An example of a typical case is that your company has a prototype ready, and as much
as possible should be re-used in a final product. In this case you need to know enough
details about it to understand what kind of changes in the standard will render your
prototype useless, and what kind of changes are only cosmetic. However, sometimes it
is just better to throw the prototypes away. Unfortunately you are not typically the
person to make that decision.

189

A Pattern Language for Participants of Standardization Work

You should also carefully study the motives of your company to participate in
standardization effort. Four typical cases are mentioned at the end of Know People pat-
tern.

During this process of reading documents and interviewing your company's people you
should also build your network of colleagues (see Create a Network pattern), and find
candidates for your back-up team (see Back-up Team Ready pattern).

When you know yourself it is obviously easier to set goals, and give to each of them
preferences. However, you should not reveal any information about your list of
preference before you really have to. Otherwise you will lose important currency you
can use in bargains, as written by Sun Tzu:

“By discovering the enemy's dispositions and remaining invisible ourselves, we
can keep our forces concentrated, while the enemy's must be divided.”

Sun Tzu

Real life examples of this can be found from [5]:

“... you should never do: tell a repairman how much you think something will cost
before you get the estimate.”

Scott Adams

A typical way to make a budget in companies is to ask for more than you actually need
to have eventually enough funding. Or as can be found from [5]:

”Toss in lots of ridiculous clauses so you have plenty to negotiate away later”

Scott Adams

Obviously this doesn't work if your opponent knows your goal and preferences in detail.

Now it is time to continue the TDMA vs. CDMA example. You have studied in the
previous pattern both of these technologies, and you have studied in this pattern the
strategy of your company and how these patents will affect to your company, e.g. what
kind of business relations you have to the patent owner. Now it is time to choose your
side based on this information.

Back-up Team Ready

In previous patterns you have done your homework, i.e. studied the technology (Know
Things), other participants and their organization (Know People), and also yourself
(Know Yourself). However, no matter how well you prepare, there could always be a
case for which you haven't prepared. Everything can change during standardization
project, i.e. new participant can join to technical group or new relevant technology can
emerge.

Therefore:

You should have a possibility to alert your back-up team during the meetings (at least
virtually) anytime. Organize a team, which is available all the time during meeting days.
You might have found good candidates for your team when you previously use Know
Yourself pattern. Your network of colleagues (see Create a Network pattern) could also
be useful.

190

A Pattern Language for Participants of Standardization Work

If it is possible, take your team with you to meeting. If this is not possible e.g. for
financial reasons, make sure you have possibility for a quick teleconference whenever
you need (remember time-zones). Remember that if you have a big group of people
with you, it is more difficult to say: “I have to negotiate with my colleagues at
office”and buy time in this way. However, a big group have also some advantages, e.g
from [5] can be found discussion about ”meeting weight” of each participant.

You should also have a small team located to your office which is ready to find and to
send to you those parts of reference material you have forgotten to take with you.

During Meeting

Decisions will stay

Several fields of the modern technology have one common force: backward
compatibility. Sometimes there are technical reasons for that, sometimes reasons are
more political. In standardization work people tend to play an important role related to
this force. Any kind of significant change is not possible in subsequent versions of
standard because people who did the original work will not be pleased and will be
strongly against any changes.

Therefore:

Work hard to get every decision as close as possible to the right one for you. Later on it
is difficult to make any significant change to it because it will have to be “backward
compatible”.This means that you should Do Your Homework properly and when an
issue is taken into discussion you should have your opinion ready. If you have accepted
something, it will be very difficult to remove it later.

You should understand that anything added to standard will not just go away. The size
of the standard always increases, never decreases. The only possibility to decrease the
size of a standard is when people who put things in (inventors) eventually go away.

Documents define the Truth

You and the whole standardization group have worked hard, and reached eventually
some kind of consensus. When time goes by, decisions made during meetings will not
be so easy to remember, and people often tend to remember same things differently.

Therefore:

Make sure that every decision, even the smallest ones, are written down and
documented in meeting minutes and/or draft documents. Make sure that the whole
document history is recorded, and documents are distributed and kept so that no-one can
change them afterwards unnoticeably. As time goes by, the only things which matter
will be written documents.

“The strongest memory is no match to the palest ink.”

Chinese Proverb

When work will be continued in future, be also sure that documents which are used as a
base of work are the same as they were after previous meeting. Some examples of this
misuse of this pattern can be found from [5], like ”Insane Forgetting” on pp. 148.

191

A Pattern Language for Participants of Standardization Work

Concepts over Names

You are working in the group whose aim is to create a standard. During the process new
concepts are found and possibly added. However, participants of the work group are
from different kind of interest groups and some of them have already those new things
included to their goals, some may try to avoid having them included. Typically this will
wind up in a long and sometimes tense discussion.

In the ideal situation new concepts added to standard are named as you like. However,
you might end up in the situation that something you like to be added to standard is at
stake.

Therefore:

If there is strong resistance against something you want to be added to the standard, you
can try to ease your demands a little: keep the concept as it is, but accept a new name
for it. In some cases people are not against the thing itself, they are against how it is
named in proposal. If the name of concept in concern is changed they could accept it
without thinking twice. The reason behind this phenomena is that for many people
names are most important things, and the first name given during standardization is the
most important one. They potentially guide thoughts to particular direction or area, and
some of them they want to avoid. For this reason they cannot even accept any names
from that area.

Of course this pattern doesn't work if you are the one who want a particular name to be
in the standard. However, especially in this case you should also investigate if this is
tried to be used against you. It is possible that someone is tryig to introduce names
which they know you are not willing to accept, and in this way the whole work is tried
to delay or even ruin completely.

One remaining issue is that you should recognize if two participants are proposing same
underlying concepts, but are using different name for it. In some case it might take long
time before they understand this situation. In this case you should investigate if they
really want that name. If not, the case can be closed quickly.

Use an Example

You are working in the group whose aim is to create a standard. There are things
included in the standard that are complicated to understand if there is only a formal or
semiformal description of it. If things are not understood, participants will have
difficulties to decide if they are for or against them.

Therefore:

Use informal examples to make things easier to understand. In standards examples are
usually considered as informal, i.e. they do not define a standard. Do not forget that
carefully selected examples guide people understanding, and usually people stick to
their first impression. Remember that this works also for yourself when you are reading
documents.

192

A Pattern Language for Participants of Standardization Work

Use Straw Poll

Participants of the work group are from different interest groups which usually have
conflicting goals. Often discussion about different issues will be long and sometimes
tense. If people have taken a strong opinion they have difficulties to change it afterward.
Especially an individual vote (even your own) is very difficult to change afterward.

Therefore:

During meetings use straw poll to see how things are going – try to reach “strong
consensus” and test the water from time to time. People have easier to change their
opinion if they can do it without loosing their face. For this reason do not put anything
to the formal vote if not absolutely necessary. People will not easily vote differently in
the future, even if they have changed their mind.

Be Cool as a Cucumber

Often in a standardization group there are conflicting views, and sometimes long and
possibly tense discussions cannot be avoided. One weakness of a group of talented
people is that they spent too much time in competitive debate, and the debating becomes
an unending session of academic showmanship [3].

Emotions also spread easily, which used to be an alarm signal of danger, e.g.
approaching predator, in prehistory of man. Nowadays emotions can spread quickly in a
working group whose participants are tired, and people can start to provoke to each
other.

Therefore:

Be cool as a cucumber. When feelings run high, it is almost impossible to think and to
behave rationally. People, who can take things calmly, can be the most efficient in the
negotiations. [3]

You can try the following when feelings are starting to run high: calm down, listen your
own feelings, and recognize them. Show to other participants that you want to discuss
and solve problems – not fight. Tell your opinion calmly, and try to find a reasonable
compromise [3]. It is also possible to have short break, and give time for people to cool
down. Unformal discussion during break can also sometimes solve problems.

Remember, that you can understand your opponent, and be in a spirit of compromise,
but you don't have to be of the same mind and be ready to accept everything [3].

Create a Network

Single participants of a standardization group typically don't have much influence
during meetings, usually the principle ”one man, one vote” is used. If you are trying to
propose a new thing, it is interesting to have an estimation how many will probably vote
for it and how many will probably vote against it. You like also to gather support for
your proposal before a meeting. Often many things are actually decided long before
they are brought to official meetings. How can you increase your influence and reduce
your uncertain factors?

193

A Pattern Language for Participants of Standardization Work

Therefore:

Create a network of colleagues. Part of the expertise of a successful standardization
participant is the ability to create alliances and collect necessary information between
official work meetings. You should also use the opportunity to build your network when
you use Know People and Know Yourself patterns.

Creating a network is a continuous activity. You should be able to participate lunches,
breaks, and evening activities together with other participants. Most of the alliances are
collected at “off-duty”. You should also be able to discuss other subjects than ongoing
work, people and also yourself need breaks during long meetings. It obviously is also
easier to make compromises with people you know than completely strangers.
However, quite often people spend all time outside meetings (and sometimes even
during meetings) to do their other duties.

If you are in charge of hosting a standardization event you can also plan extra time for
networking activites, i.e. social events, including restaurants, excursions, or sport
acticities. For example in ETSI they have organized once a week an unofficial beach
volley ball playing session for visiting experts.

Acknowledgments
I wish to thank my shepherd, Peter Sommerlad, for his valueable comments during
shepherding for VikingPLoP2004, and also for the idea to add weasels [5] to this paper.

The previous version of this pattern language has been workshopped at
VikingPLoP2003 in Bergen, Norway. I would like to thank especially Richard Gabriel
for his excellent work as a moderator, Linda Rising for her numerous comments on my
pattern language and Neil Harrison's guidance as a shepherd of this paper for
VikingPLoP2003.

I also would like to thank all VikingPLoP2003 and VikingPLoP2004 workshop
participants about their comments and encouragement.

For this pattern language I have interviewed experts who have experience from different
standardization organizations: Morgan Björkander, Antti Huima, and Steve Randall.
Without them I would not have been able to write this pattern language.

References
[1] Sun Tzu, The Art of War, Project Gutenberg Etext #132, 1994.

[2] Niccolo Machiavelli, The Prince, Project Gutenberg Etext #1232, 1998.

[3] Daniel Goleman, Working with Emotional Intelligence, Bloomsbury, 1998.

[4] Edgar H. Scein, The Corporate Culture Survival Guide, Josset-Bass, 1999.

[5] Scott Adams, Dilbert and the Way of the Weasel, Boxtree, 2002.

[6] CDMA vs. TDMA, http://www.arcx.com/sites/CDMAvsTDMA.htm, 2004.

 2005VikingPLoP

197

197. Patterns for Documenting Frameworks - Part 1

Patterns for Documenting Frameworks – Part I

Ademar Aguiar, Gabriel David
FEUP & INESC Porto, Universidade do Porto
E-mail: ademar.aguiar@fe.up.pt, gtd@fe.up.pt

Good design and implementation are necessary but not sufficient pre-requisites for the
successful reuse of object-oriented frameworks. Although not always recognized, good
documentation is crucial for effective framework reuse, and comes with many issues.
Defining and writing good quality documentation for a framework is often hard, costly,
and tiresome, especially when not aware of its key problems and good solutions for them.
This document contributes two patterns to the work in progress of writing a pattern
language that describe proven solutions to recurrent problems of documenting object-
oriented frameworks. The patterns aim at helping non-experts on cost-effectively
documenting object-oriented frameworks. The two initial patterns here presented address
the problems of guiding the readers on the documentation and introducing the framework, respectively
the patterns “DOCUMENTATION ROADMAP” and “FRAMEWORK OVERVIEW”.

Object-oriented frameworks are a powerful technique for large-scale reuse capable
of delivering high levels of design and code reuse. As software systems evolve in
complexity, object-oriented frameworks are increasingly becoming more important
in many kinds of applications, new domains, and different contexts: industry,
academia, and single organizations.

Although frameworks promise higher development productivity, shorter time-to-
market, and higher quality, these benefits are only gained over time and require
up-front investments. Before being able to use a framework successfully, users
usually need to spend a lot of effort on understanding its underlying architecture
and design principles, and on learning how to customize it. This usually requires a
steep learning curve that can be significantly reduced with good documentation
and training material.

This paper contributes with two patterns to the work in progress of writing a
pattern language addressing problems of documenting frameworks, some of the
several technical, organizational, and managerial issues that must be well managed
in order to employ frameworks effectively.

The pattern language comprises a set of interdependent patterns that aim at helping
developers on becoming aware of the typical problems they will face when
documenting object-oriented frameworks. The patterns were mined from existing
literature, lessons learned, and expertise on documenting frameworks, based on a
previous compilation about framework documentation [1].

The pattern language describes a path commonly followed when documenting a
framework, a path not necessarily required to follow strictly from start to end to

Authors

Introduction

Pattern language

198

Patterns for Documenting Frameworks - Part 1

Patterns for Documenting Frameworks – Part I 2

Copyright © 2005 Ademar Aguiar, Gabriel David. All rights reserved. Permission granted to copy for all purposes of VikingPLoP’2005

achieve effective results. In fact, many frameworks are not documented as
extensively as suggested by the patterns, due to different kinds of usage (white-box
or black-box) and different balancing of tradeoffs between cost, quality, detail, and
complexity. One of the goals of these patterns is precisely to expose such tradeoffs
in each pattern, and to provide practical guidelines on how to balance them to find
the best combination of documents to the specific context at hands.

According to the nature of the problems addressed, the patterns are organized in
process patterns related with the process of cost-effectively documenting frameworks
(how to do it? which activities, roles and tools are needed?) and artefact patterns (which kinds of
documents to produce? what should they include? how to relate them?), to which belong the
patterns here documented.

Artefact patterns address problems related with the documentation itself, here seen
as an autonomous and tangible product independent of the process used to create
it. They provide guidance on choosing the kinds of documents to produce, how to
relate them, and what to include.

Similarly to other technical documentation, the overall quality of framework
documentation is complex to determine and assess, and this is perhaps the first
issue. Documentation must have quality: it must be easy to find, easy to
understand, and easy to use [2]. Task-orientation, organization, accuracy, and visual
effectiveness are among all documentation quality attributes, the most difficult
ones to achieve on framework documentation [1].

From the reader’s point of view, the most important issues are on providing
accurate task-oriented information, well-organized, understandable, and easy to
retrieve with search and query facilities. From the writer’s point of view, the key
issues are on selecting the contents to include, on choosing the best representation
for the contents, and on organizing the contents adequately, so that the
documentation results of good quality, easy to produce and maintain.

Figure 1 Documentation artefact patterns and their relationships.

Artefact patterns

Framework
Overview

Cookbook
& Recipes

Customizable
Points

Design
Internals

Error Recovery
Guide

Graded
Examples

Documentation
Roadmap

Traversable
Code

Reference
Guide

is-related-to
patterns
is-related-to
patterns
is-related-tois-related-to
patternspatterns

where to start?

first recipe

how-to’s

errors

uses

illustrate

how it works?

code

index

199

Patterns for Documenting Frameworks - Part 1

Patterns for Documenting Frameworks – Part I 3

Copyright © 2005 Ademar Aguiar, Gabriel David. All rights reserved. Permission granted to copy for all purposes of VikingPLoP’2005

To describe the patterns, we have adopted the Christopher Alexander's pattern
form: Name-Context-Problem-Solution-Example [3]. Before going to the detail of each
pattern, we will overview the pattern language with a brief summary of each
pattern’s intent. For contextual purposes, all the artefact patterns are overviewed
below and depicted in Figure 1 highlighting the two patterns described in this
paper.

Documentation Roadmap helps on deciding what to include in the documentation
overview to provide readers of different audiences with useful and effective hints
on what to read to acquire the knowledge they are looking for.

Framework Overview suggests providing introductory information, in the form of an
overview that briefly describes the domain, the scope of the framework, and the
flexibility offered, i.e. contextual information about the framework, the first kind of
information that a framework (re)user looks for.

Cookbook & Recipes explains how to provide readers with information that explain
how-to-use the framework to solve specific problems of application development,
and how to combine this prescriptive information with small amounts of
descriptive information to help users on understanding what they are doing.

Graded Examples describes how to provide and organize example applications
constructed with the framework and how to cross-reference them with the other
kinds of artefacts (cookbooks, patterns, and source code).

Customizable Points describes how to provide readers with task-oriented information
with more precision and more design detail than cookbooks and recipes, so that
readers can quickly identify the customizable points of the framework (hot-spots)
and to understand how they are supported (hooks).

Design Internals explains how to provide detailed information about what can be
adapted and how the adaptation is supported, by referring the patterns that are
used in its implementation and where they are instantiated.

Reference Guide suggests what to include as reference information and how to
structure the documentation to make it the most complete and detailed as possible
to assist advanced users when looking for descriptive information about the
artefacts and constructs of the framework.

Traversable Code provides hints on how to organize and present source code, both of
the examples and the framework itself, when desired, to make it easy to browse
and navigate from and to other software artefacts included in the overall
documentation, namely models and documents.

Error Recovery Guide explains how to help users on understanding and solving the
errors they encountered when using the framework.

Patterns overview

200

Patterns for Documenting Frameworks - Part 1

Patterns for Documenting Frameworks – Part I 4

Copyright © 2005 Ademar Aguiar, Gabriel David. All rights reserved. Permission granted to copy for all purposes of VikingPLoP’2005

Pattern Documentation Roadmap

To completely satisfy all audiences and requirements, the documentation of a
framework typically includes a lot of information, organized in different types of
documents (framework overviews, examples of applications, cookbooks and
recipes, design patterns, and reference manuals), that provides multiple views
(static, dynamic, external, internal) at different levels of abstraction (architecture,
design, implementation).

The complex web of documents and contents provided with a framework must be
organized and presented in a simple manner to the different audiences, so that the
readers don’t become overwhelmed or lost when using the documentation. In
other words, the overall documentation must be easy to use by all kinds of readers,
so that each individual reader can quickly acquire the strict degree of understanding
she needs to accomplish her particular engineering task (reuse, maintenance or
evolution).

How to help readers on quickly finding in the overall documentation their way to the information
they need?

Different audiences. Readers of different audiences have different needs and interests
that must be addressed by the documentation.

Different kinds of reuse. A framework can be reused in different ways, each requiring
different levels of knowledge about the structure and behaviour of the framework,
and therefore pose different demands on the documentation.

Easy-to-use. Despite its inherent potential complexity, the documentation must result
easy-to-use.

Start by providing a roadmap for the overall documentation, one that reveals its
organization, how the pieces of information fit together, and that elucidates readers
of different audiences about the main entry points and the paths in the
documentation that may drive them quickly to the information they are looking
for, especially at their first contact.

The roadmap would help both when navigating top-down, from a main entry point
of the documentation to concrete topics and subtopics, and when navigating
bottom-up from a small piece of information to a bigger one to try to identify it as
part of a whole, still unknown in a first contact.

To be effective, a documentation roadmap for a framework should be written in a
task-oriented manner and to include the following aids:

• topics organized by audience, kind of task, and order of use, to help
readers of different audiences quickly retrieval of the information they
need to accomplish the tasks they have in mind;

Problem

Forces

Solution

201

Patterns for Documenting Frameworks - Part 1

Patterns for Documenting Frameworks – Part I 5

Copyright © 2005 Ademar Aguiar, Gabriel David. All rights reserved. Permission granted to copy for all purposes of VikingPLoP’2005

• emphasis of the main entry points and subordination of the secondary
ones, to improve visual effectiveness;

• overview of topics conveying how subtopics are related, to support non-
linear readings;

• transitions and links to topics, and from them to the roadmap again, to
improve the overall navigability around the roadmap.

Although all the above mentioned aids are important to include, in fact, the
optimal level of importance assigned to each one depends on several factors: the
framework being documented, which audiences are you willing to address in the
overall documentation, which kinds of reuse to support explicitly in the
documentation, and which tasks to emphasize and subordinate.

Independently of how these factors are balanced, the roadmap should be easy to
use, easy to understand, well-organized, and visually effective, a set of quality
characteristics that suggest not to include everything in the roadmap, but only the
entry points and topics more relevant for the most important tasks of the target
audiences.

JUnit. The JUnit framework [4] provides a very simple documentation roadmap,
where the audiences, kinds of reuse and tasks are implicitly mentioned in the
names of the entry points in the documentation and their respective descriptions
(Figure 2).

Figure 2 Example of a very simple documentation roadmap delivered with JUnit.

The audiences addressed can be implicitly identified as the following:

• first-time users, which will probably be attracted by the “JUnit Cookbook”
entry;

• selectors and common users, by the “Test Infected - Programmers Love
Writing Tests” entry;

• and framework developers, by the “JUnit - A cooks tour” entry.

Examples

202

Patterns for Documenting Frameworks - Part 1

Patterns for Documenting Frameworks – Part I 6

Copyright © 2005 Ademar Aguiar, Gabriel David. All rights reserved. Permission granted to copy for all purposes of VikingPLoP’2005

The kinds of reuse that are clearly expressed in this roadmap are:

• instantiating, by the “JUnit Cookbook” entry;

• selecting and instantiating, by the “Test Infected - Programmers Love Writing
Tests” entry;

• and mining, by the “JUnit - A cooks tour” entry.

Finally, the tasks mentioned are simply how to implement tests.

This roadmap reflects the simplicity of the JUnit’s framework itself, the intent of
the writers on making the documentation simple and short, by documenting the
main usage task of JUnit: to write tests.

Swing. The Sun’s JFC/Swing framework [5] is a popular example of a large
framework for which exists a lot of documentation.

In part due to its large dimension and vast diversity of possible tasks when reusing
Swing, be it black-box or white-box reuse, the roadmap is split along several
documents, according to the kind of audience and reuse tasks.

Figure 3 Example of the complex documentation roadmap for JFC/Swing framework.

203

Patterns for Documenting Frameworks - Part 1

Patterns for Documenting Frameworks – Part I 7

Copyright © 2005 Ademar Aguiar, Gabriel David. All rights reserved. Permission granted to copy for all purposes of VikingPLoP’2005

Figure 3 presents “The Swing Connection - Index by Content”, which is the
document of Swing that mostly resembles a framework documentation roadmap.

.NET. The Microsoft’s .NET framework is another popular example of a very large
framework for which also exists a lot of documentation.

For this framework there exists a documentation roadmap that clearly addresses
different audiences and different kinds of reuse, from where the reader is driven to
other documents more specific to the kind of reuse selected with more detailed
about the tasks possible with the framework.

Figure 4 presents the “Getting Started” document, which is intended to first-time
(re)users, a secondary document accessible from the right-hand side menu that
contains the main entry points to the documentation, organized by kind of
audience.

Figure 4 Example of the documentation roadmap for the .NET framework.

204

Patterns for Documenting Frameworks - Part 1

Patterns for Documenting Frameworks – Part I 8

Copyright © 2005 Ademar Aguiar, Gabriel David. All rights reserved. Permission granted to copy for all purposes of VikingPLoP’2005

Pattern Framework Overview

To be effective, the documentation of a framework must include information that
explains the purpose of the framework, how to use it, and how it is designed and
implemented [4][6].

In addition to different purposes, the documentation of a framework must also
meet the needs of different categories of software engineers involved in
framework-based application development, playing different roles (framework
selectors, application developers, framework developers, framework maintainers,
and developers of other frameworks [7]), having varying levels of experience, and
therefore requiring different kinds of information.

How to help readers on getting a quick, but precise, first impression of a new framework?

Different audiences. In a first contact, the most important kinds of readers to consider
are framework selectors, someone who is responsible for deciding which
frameworks to use in a project, and new framework users, developers without
previous knowledge or experience with the framework [1]. The first kind of
information that a new framework user looks for is contextual information.
Framework selectors will look for a short description of the framework's purpose,
the domain covered, and an explanation of its most important features, ideally
illustrated with examples.

Completeness. The readers appreciate complete information, i.e. that all of the
required information is available. Completeness implies that all of the relevant
information is covered in enough detail, but only the necessary, and that all the
promised information is included. But completeness depends on the reader’s point
of view, and therefore requires knowing the audience and the tasks the
documentation should support [2].

Easy-to-understand. Information that is clear, concrete, and written using an
appropriate style is usually easy to understand the first time. Clarity (especially
conciseness) often conflicts with completeness (especially relevance and too much
information), requiring a good knowledge about what readers need to know and
when they need to know it [2]. Concrete examples help readers on understanding
what they are learning because they map abstract concepts to concrete things,
which readers can see or manipulate.

Provide an introductory document, in the form of a framework overview, that
describes the domain covered by the framework in a clear way, i.e. the application
domain and the range of solutions for which the framework was designed and is
applicable.

In addition, a framework overview usually defines the common vocabulary of the
problem domain of the framework. It clearly delineates what is covered by the
framework and what is not, as well as, what is fixed and what is flexible in the
framework.

Problem

Forces

Solution

205

Patterns for Documenting Frameworks - Part 1

Patterns for Documenting Frameworks – Part I 9

Copyright © 2005 Ademar Aguiar, Gabriel David. All rights reserved. Permission granted to copy for all purposes of VikingPLoP’2005

An effective way of communicating this information consists on presenting the
basic vocabulary of the problem domain illustrated with a rich set of concrete
application examples.

This information is of great value for potential users specially during the selection
phase because it helps them to evaluate the appropriateness of the framework for
the application at hands, and thus fundaments the selection, or rejection.

In a framework overview, it is common practice to refer or review examples, from
simple to complex ones (pattern “GRADED EXAMPLES”), and to refer or include
an overview of all the documentation (pattern ”DOCUMENTATION ROADMAP”). A
framework overview is often the first recipe in a cookbook (pattern ”COOKBOOK
& RECIPES”).

JUnit. The framework overview that accompanies JUnit is represented in Figure 5. It
was extracted from the document “Frequently Asked Questions (FAQ)” [8],
which, from all the documents delivered with the JUnit’s framework, is the one
that most clearly presents the information typical of a framework overview, despite
its placement in a FAQ not being evident in a first contact with the documentation.

Although not being a good exemplar of a framework overview, it contains its most
basic ingredients (the domain covered, the features, and an overview of the
documentation), and thus it reasonably fulfils the requirements of a framework
overview.

The biggest problem with the JUnit’s framework overview is that it is not easy to
find in a first look at the documentation and is not complete. It is however, easy to
understand, what is also very important.

Figure 5 Example of the framework overview delivered with JUnit.

Examples

206

Patterns for Documenting Frameworks - Part 1

Patterns for Documenting Frameworks – Part I 10

Copyright © 2005 Ademar Aguiar, Gabriel David. All rights reserved. Permission granted to copy for all purposes of VikingPLoP’2005

Swing. The framework overview of JFC/Swing is provided in the Sun’s tutorial
“Creating a GUI with JFC/Swing”, lesson “Getting Started with Swing“, topic
“About the JFC and Swing” (Figure 6).

This framework overview clearly describes the domain covered by the JFC/Swing
and its main features. Although, the customizations possible with the framework
are described textually in the overview, they are not linked to the concrete
examples of applications included in the documentation in other lessons of the
tutorial, both visual and source code examples.

Being the JFC/Swing framework so well-known, this placement of the overview so
deep in the documentation hierarchy, instead at the top, to be easy to find in a first
contact with the documentation, is acceptable and possibly even more convenient,
considering that only a small minority of readers are expected to need to learn what
JFC/Swing is about. What most readers would need to learn is what and how they
can customize in JFC/Swing to create the GUI they have in mind.

The contents and organization of this framework overview reflects the importance
of knowing well the audience and the tasks more likely to need support from the
documentation.

Figure 6 Example of the framework overview provided for JFC/Swing.

207

Patterns for Documenting Frameworks - Part 1

Patterns for Documenting Frameworks – Part I 11

Copyright © 2005 Ademar Aguiar, Gabriel David. All rights reserved. Permission granted to copy for all purposes of VikingPLoP’2005

.NET. The overview of the .NET framework is provided in the “Getting Started”
document (Figure 4), topic “What is the .NET Framework?”. A more detailed
technical overview is provided in the “Technology Overview” document (Figure
6).

This framework overview briefly describes the purpose of the framework, its
application domain and its main components, and refers other documents
containing more specific information about the framework.

Figure 7 Example of the framework overview provided for the .NET framework.

EMF. The overview document of the Eclipse Modeling Framework (EMF), “Eclipse
Modeling Framework Overview”, is another good example (Figure 8). It is very
complete and provides a brief presentation of the framework and its key features
illustrated with the help of concrete examples.

208

Patterns for Documenting Frameworks - Part 1

Patterns for Documenting Frameworks – Part I 12

Copyright © 2005 Ademar Aguiar, Gabriel David. All rights reserved. Permission granted to copy for all purposes of VikingPLoP’2005

Figure 8 Example of the overview provided with the Eclipse Modeling Framework (EMF).

The authors would like to thank Neil Harrison, for having pushed forward this
pattern language to start being workshoped at VikingPLoP’2005, and, most
importantly, for the clear and valuable feedback provided on the previous versions
of this document.

We would like to thank also Juha Parssinen and Sami Lehtonen for their
collaboration during all the phases of this document, Eduardo Fernandez, Kevlin
Henney, Klaus Marquardt, Sergiy Alpaev, Uwe Zdun, and all the other participants
of the writer’s workshop at VikingPLoP’2005, for their motivation, comments and
suggestions for improvement.

[1] Aguiar, A. (2003). A minimalist approach to framework documentation. PhD thesis,
Faculdade de Engenharia da Universidade do Porto.

[2] Hargis, G. (2004). Developing quality technical information. Prentice-Hall, 2nd edition.
[3] Alexander, C., Ishikawa, S., and Silverstein, M. (1977). A Pattern Language. Oxford

University Press.
[4] Beck, K. and Gamma, E. (1997). JUnit homepage. Available from http://www.junit.org.
[5] Eckstein, R., Loy, M., and Wood, D. (1998). Java Swing. O’Reilly & Associates, Inc.
[6] Butler, G., Keller, R. K., and Mili, H. (2000). A framework for framework documentation.

ACM Comput. Surv., 32(1es):15.
[7] Butler, G. (1997). A reuse case perspective on documenting frameworks. Available from

http://www.cs.concordia.ca/faculty/gregb.
[8] Clark, M. (2003). JUnit: FAQ - frequently asked questions. Available from

http://junit.sourceforge.net/doc/faq/faq.htm.

Credits

References

209

209. Patterns of Argument Passing

Patterns of Argument Passing

Uwe Zdun
Department of Information Systems

Vienna University of Economics, Austria
zdun@acm.org

Argument passing means passing values along with an invocation. Most programming
languages provide positional arguments as their ordinary argument passing mechanism.
Sometimes ordinary argument passing is not enough, for instance, because the number
of arguments or their types differ from invocation to invocation, or optional arguments
are needed, or the same arguments are passed through a chain of multiple receivers
and must vary flexibly. These issues can be resolved using ordinary argument pass-
ing mechanisms, but the solutions are usually cumbersome. In many systems, such
as programming languages, programming environments, frameworks, and middleware
systems, advanced argument passing solutions are provided to better address these is-
sues. In this paper we present four patterns applied in these advanced argument passing
solutions:    allow an operation to receive arbitrary numbers
of arguments,   let operations have arguments which can either
be provided in an invocation or not, -  allow arguments to
be passed in any order as name/value pairs, and   are special types
used for the purpose of argument passing.

Introduction

Argument passing is an integral part of all forms of invocations, for instance, performed inArgument
passing object-oriented and procedural systems. All systems that provide facilities for performing

invocations thus must provide some way to pass arguments (also called parameters) to oper-
ations. As a first example for such systems one might think of programming language imple-
mentations, such as interpreters, compilers, and virtual machines. But argument passing is
also relevant for any other kind of system that performs invocations on top of the facilities of-
fered by a programming language, such as middleware systems, aspect-oriented composition
frameworks, component frameworks, interactive shells of operating systems or programming
languages, enterprise integration frameworks, and so forth.

In this paper we present some patterns that provide advanced argument passing solutions.Intended
audience These patterns are important for developers of the systems named above, when they want

to provide some argument passing mechanism in a language or framework. In addition to
that, the patterns are also relevant for developers using these systems, because in some situa-
tions the ordinary (i.e. positional) argument passing mechanisms offered by the language or
framework do not cope well with a particular design problem. Then it is advisable to write
a little argument passing framework on top of the language or framework that supports the
respective pattern.

210

Patterns of Argument Passing

double max (double a, double b) {

 if (a > b)
 return a;
 return b;

}

operation signature

operation namereturn type formal arguments

operation body

Figure 1: Operation definition

To explain the patterns, we use the following terminology applicable to all kinds of languagesTerminology
and frameworks mentioned above: any kind of function, procedure, method, etc., be it local
or remote, is called an operation. Each operation has an operation signature. The signature
contains at least an operation name and a list of arguments. In typed environments the sig-
nature also contains types for each argument and a return type. An operation is “called” or
“invoked” using an invocation.

In the text below, we sometimes refer to “ordinary arguments”. With this term we mean the
typical, positional arguments offered by almost any procedural or object-oriented program-
ming language, such as C, C++, Java, Tcl, etc.

The arguments in the signature are called formal arguments because they act as placeholders
for argument values provided by the invocation. The concrete argument values provided by
an invocation are called actual arguments. Each actual argument is mapped to the formal
argument at the same position.

When the invocation takes place, each formal argument is filled with the value of the re-
spective actual argument. This can be done by copying the value of the actual argument into
the storage space of the operation (call-by-value), as opposed to providing only the address of
the storage space of the actual argument to the operation (call-by-reference). Another scheme
of argument passing is call-by-name, which refers to passing the (unevaluated) code of the
argument expression to the operation, and this code is evaluated each time the argument is
accessed in the operation. In dynamic languages call-by-name can be applied at runtime (ex-
amples are arguments evaluated using eval in Lisp or Tcl), or it can be performed statically
by compilers or preprocessors (e.g. C macros). There are a number of other, less popular
parameter passing schemes, such as call-by-value-return in Fortran, or copy-a-value-in and
copy-it-back.

The terms are illustrated using a Java method and invocation as an example in Figures 1 and
2.

double m = max (10, 2);

invocation

operation namereturn type actual arguments

Figure 2: Operation invocation

211

Patterns of Argument Passing

The following patterns are presented in this paper:Pattern
Language
Outline • A    provides an argument passing mechanism with a special

syntax, which allows the client to invoke the operation using any number of arguments
for this last argument. The actual arguments are put as a list into the last formal argu-
ment.

•   are an argument passing mechanism that uses a special syntax to
denote that one of the formal arguments is optional. A default value is provided, which
is used in case the client does not provide the   in an invocation.

• -  are an argument passing mechanism that allows clients
to provide arguments in an invocation as name/value pairs. Because each argument is
named, the arguments can be provided in any order, and the argument passing mecha-
nism automatically matches the correct actual arguments to the formal arguments.

• A   is a special object type that is used for argument passing. This
object type is used as an argument of the operation (often it is the only argument), and
the arguments to be passed to the operation are encapsulated in the  
(e.g. as instance variables).

There are a number of related patterns, documented elsewhere, that play an important role forRelated
Patterns the patterns described in this paper. We want to explain some of these patterns briefly:

• An    [Zdu04b] converts types at runtime from one type to
another. There are two main variants of the pattern: one-to-one converters between
all supported types and converters utilizing a canonical format to/from which all sup-
ported types can be converted. An    is primarily used by
the patterns presented below for realizing type conversions.

• In a  [BMR+96] architecture all structural and behavioral aspects of a sys-
tem are stored into meta-objects and separated from the application logic components.
The latter can query the former in order to get information about the system structure.
In an argument passing architecture,  is especially used to introspect ordi-
nary operation signatures to perform a mapping between the arguments passed using
the patterns and ordinary invocations.

• The   pattern is a general pattern for passing arguments using a special
object type. Various special-purpose variants of this pattern have been described in the
literature before:   [VKZ04] are   used in dis-
tributed invocations;   [Zdu03, Zdu04a] are   used
in aspect-oriented composition frameworks and interceptor architectures; 
 [Nob97] is an object that contains all elements of an operation signature, for
instance, as variables;  [SR98] describes a generic data container; -
  [Kel03] are   used to encapsulate common data used
throughout the system;   [PL03] are   used to support
a dynamic set of arguments.

• A   [SR98] is a data structure that allows developers to associate names
with arbitrary values and objects. This structure is needed to represent a simple list of

212

Patterns of Argument Passing

- . The   pattern thus can be used to internally
implement the -  pattern.

Figure 3 shows an overview of the patterns described in this paper and the relationships ex-
plained above. The patterns described in this paper are rendered in black, the related patterns
in grey.

Automatic Type Converter

Variable Argument List Optional Arguments

Invocation Context

Context Object

Non-Positional Arguments

Message Context Open Arguments Encapsulate Context

alternative/context object can be used for internal realization

uses internally for type conversions

can realize

uses internally for
type conversions

uses internally for type conversions

Reflection

introspect signature of ordinary invocations

Anything

Property List

can be used for
internal realization

Arguments Object

variant of context object

can realize

Figure 3: Pattern map: Most important relationships of the patterns

213

Patterns of Argument Passing

Variable Argument List

You are writing operations to be invoked for instance in a programming language or in aContext
distributed system.

A particular operation needs to receive a varying number of arguments, and you do notProblem
know in advance how many arguments will be received. You only know that the argu-
ments to be received are all of the same type, and they can be treated in a uniform way.
Ordinary operation signatures, however, cannot retrieve arbitrary numbers of argu-
ments. Thus you have to apply tedious and error-prone workarounds for this situation,
such as abusing polymorphism (e.g. overloading) or passing the arguments in a helper
data structure.
Consider you want to process a list of objects, but do not know in advance how many argu-Forces
ments are in the list. For small numbers of objects, you can use overloading to be able to
invoke the operation with a varying number of arguments:
void processList(Object o1) {

//...

}

void processList(Object o1, Object o2) {

//...

}

void processList(Object o1, Object o2, Object o2) {

//...

}

Besides the problem that you have to write a huge number of unnecessary operations, you face
the problem that this approach does not scale well for possibly larger numbers of arguments:
consider you might receive lists with up to 1000 arguments. You would have to write 999
unnecessary operations.

An alternative solution for this problem is to bundle the arguments in a collection data struc-
ture (such as a list or an array). But this solution is quite complex because in each such
operation you have to process the arguments in the list, and for each invocation you have to
fill the data structure before you can perform the invocation.

A collection data structure requires the caller to put the appropriate arguments into the data
structure, which make the caller more complex. Note that the overloading solution sketched
above, in contrast, makes the callee more complex and error prone.

Another problem of using a collection data structure is that two kinds of invocations exist in
the system. Rather it would desirable that all invocations look the same.

Provide a special syntax for the    that might be added as the lastSolution
argument, or the only argument, to the argument lists of operations. Each argument in
the    is of the same type, which might be a generic type such as
string or void pointer. The language implementation (e.g. the compiler or interpreter)
or the framework implementation (e.g. the distributed object framework) provides a

214

Patterns of Argument Passing

functionality to process the   . Thus, from the developers per-
spective, all invocations of    operations look just like ordinary
invocations, except that they vary in their length. Also, provide an API to make the
arguments passed through a    accessible from within the opera-
tion.
The arguments of    must be distinguishable in the invocation fromDiscussion
other arguments. That’s the reason why    are usually realized as the
last argument in the operation. An alternative is to delimit them in the invocation, for instance
using a special character. But this would violate the goal that invocations with 
  should look the same as ordinary invocations.

In principle it is also possible to have    be placed in the middle of
ordinary arguments. This, however, is not advisable because in this case it is easy that bugs,
such as wrong number of arguments, are not detected.

Similarly, a simple, working solution is to allow only for one    per
operation. In principle it is also possible to have more    in one
operation, if the arguments can be distinguished by their type. Again, this might lead to
bugs that are hard to find, for instance, when one of the argument types can be automatically
converted to another one.

In type-safe environments, type-safety is an issue when using   . The
typical solution is to let all arguments in the    be of the same type.
Otherwise, it would be necessary to define how to handle the different types and maybe de-
limit them, meaning that    would have a pretty different appearance
in the signature than ordinary arguments (which is usually not wanted). If different types are
needed in a   , a super-type of these types can be used for defining
the    or, if this is not possible, a generic type, such as string, void*,
or Object. A    in an untyped environment is equivalent to using a
generic type in typed environments.

In summary, in most cases it is advisable to allow for only one    per
operation signature and enforce that this    is the last argument of the
operation signature. All arguments of the    are passed as the same
type.

Note that we require a way to retrieve the arguments in the    from
within the operation. Here,    arguments must be a bit different than
ordinary arguments, because in the one operation signature element that represents the -
   n arguments are hidden. Usually, an API or special syntax is provided,
which provides a way to (a) retrieve the list of variable arguments (e.g. as a list data structure)
and (b) find out how many variable arguments are passed through. Using this information,
the    can be processed using the operations of the list data structure.

   solve a prevalent concern in writing generic and reusable opera-Consequences
tions. They are an elegant solution because they are applied automatically and do not look
much different to ordinary invocations. Only the operation implementation must be written
in a slightly different style.

If    are not language-supported or framework-supported, some effort

215

Patterns of Argument Passing

to provide an implementation is required. A simple emulation (e.g. using a collection data
structure) is not much work, but one also has to write a little program generator to convert the
invocation to the    format.

A much simpler, but slower solution is to use strings (or other generic types) for argument
passing and an    to convert the invocations back and forth. An
invocation:

processList(3, 1, 2, 3);

would then become:

processList("3, 1, 2, 3");

This is not very desirable in the context of many programming language because again we
would end up with two different styles of invocations. Moreover, the solution is rather slow
because back and forth conversion to strings is required. But there are situations were this
solution is highly applicable. For instance, in string-based programming languages (such as
most scripting languages) there is no difference in the invocation styles. Or, in middleware
implementations the invocations are sent as a byte-array over the wire anyway. Thus, again,
there is no difference to all other invocations.

   can make overloading resolution more complex, ambiguous, or,
in some situations, even impossible. Thus usually it is advisable not to use overloading for an
argument that is realized as a   , or at least introduce an unambiguous
rule for overloading   .

Type-safety might be compromised, depending on the    implemen-
tation (compare the C/C++ and Java known uses below).

Some known uses of the pattern are:Known Uses

• In C and C++    are language-supported. In place of the last
argument you should place an ellipsis (“...”). C and C++ provide an API to process
the    (starting with va) as in the following example:

void processList(int n, ...) {

va_list ap;

va_start(ap, n);

printf("count = %d: ", n);

while (n-- > 0) {

int i = va_arg(ap, int);

printf("%d ", i);

}

printf("\n");

va_end(ap);

}

This operation can be used like any other operation:

216

Patterns of Argument Passing

processList(1, 1);

processList(3, 1, 2, 3);

Please note that functions that take a variable number of arguments (“varargs”) are
generally discouraged in C/C++ style guides (see e.g. [CEK+00]) because there is no
truly portable way to do varargs in C/C++. If varargs are needed, it is advisable to use
the library macros for declaring functions with   .

• In the scripting language Tcl (similar to other scripting languages) a special argument
args can be provided to an operation as the last argument. In this case, all of the actual
arguments starting at the one that would be assigned to args are combined into a list.
This combined value is assigned to the local variable args, which is an ordinary Tcl
list.

• Leela [Zdu04c] is a Web services framework that uses    for
generic argument passing between Web services. A Leela service is bound to a SOAP
endpoint, and this endpoint offers a string-based interface. This interface is mapped
to the Web service operation using  (see also the pattern 
 [Zdu03]).

• In Java, starting with version 5.0, Var-Args are provided. Java’s solution is similar to
the C solution. A major difference is that it is type-safe. For instance, we can specify
an operation for processing a String list:

public static void processList(String... args) {

for (String a : args) {

System.out.println(a + " ");

}

}

Java’s Var-Args can receive any argument type by using a more generic type, such as
Java’s Object, for instance.

• Many programming languages provide a    mechanism to
receive arguments from the command line. This design is due to the argument
passing interface of command shells, especially UNIX shells, which led to C/C++’s
“int main(int argc, char *argv[])” interface to programs. Most contemporary
programming languages support a similar interface, for instance, in Java, command
line arguments are mapped to a special String array that is the argument of the
operation “static void main(String[] args)”.

217

Patterns of Argument Passing

Optional Arguments

You are writing operations to be invoked for instance in a programming language or in aContext
distributed system.

Sometimes one operation can be defined for a varying number of arguments. This sit-Problem
uation can in principle be solved using   . But consider the situ-
ation is slightly different to the problem solved by   : you know
the possible arguments in advance, and the number of arguments is manageable. The
arguments might be of different types (or kinds in untyped languages); that is, they
cannot or should not be treated uniformly.
Constructors are operations that should be able to receive differing numbers of argumentsForces
because different clients want to configure different values. All unspecified values should be
filled with default values. Consider the following Java code as an example:
class Person {

Name name;

Address homeAddress;

Address workAddress;

...

Person(Name _name, Address _homeAddress, Address _workAddress) {

name = _name;

homeAddress = _homeAddress;

workAddress = _workAddress;

}

Person(Name _name) {

this(_name, null, null);

}

...

}

In this example, the variables homeAddress and workAddress are optional and have null as
a default value. To realize this concern, the Person constructor needs to be defined twice,
just to pass the default values to the operation that really does the work. Usually, there are
more such constructors, and we need to provide similar forwarders in subclasses as well. For
instance, to provide the option that the work address is optional, another constructor has to
be added.

The solution in the example uses Java’s method overloading which works by realizing a
concern using multiple operations with different signatures and possibly chaining them with
invocations among each other (as in the example above). This is a heavy-weight solution
for the simple problem of realizing an optional default value. For each optional argument,
and each possible combination of optional arguments, we need to provide one additional
operation. The result is a lot of unnecessary lines of code, reducing the readability of the
program.

Another problem is that we cannot provide all possible combinations of arguments because
Java’s overloading mechanism selects methods only on basis of the signature of the operation.

218

Patterns of Argument Passing

Sometimes the types of arguments conflict, for instance, in the above example we cannot
provide default values for both homeAddress and workAddress, because the two operation
signatures:

Person(Name _name, Address _homeAddress);

and:

Person(Name _name, Address _workAddress);

are conflicting. The compiler cannot distinguish between them because they have the same
types in their signature.

Note that it is not elegant to use    in this and similar examples. The
arguments of constructors are named and typed. With a    you would
have to pass all the arguments using a generic type, and then obtain the individual arguments
using their position in the   . This approach makes it hard to handle
changes in argument lists.

Introduce a special syntax for operation signatures to mark some arguments as Solution
. For each   provide a default value. Provide a language-
support or framework-support for selecting or passing arguments to operations who
have  . It is important that there are no syntactic ambiguities which
actual argument belongs to which formal argument.
  require default values because without them it would be undefined howDiscussion
to handle an invocation in which an   is omitted. Default values can be
provided in different fashions:

• They can simply be provided in the operation signature, where the optional argument
is defined.

• They can be looked up at runtime and added to the actual invocation by the language
implementation or framework. To use this variant is advisable if the default values
should be modifiable after the program has been compiled or started. For example, the
default values can be defined in a configuration file or an external repository.

• They can be defined programmatically: some code handles the situation when an -
  is not provided by an invocation.

• They can be implicitly defined, for instance, by some convention. For example, if
there is an “empty” value or system-wide default value, this value can be chosen by the
language or framework if no value for the   is given. If there is an
old value (e.g. from previous invocations), also the old value can be used as the default
value.

The   pattern is often combined with other patterns. A  -
  is implicitly an   that defaults to “empty”. When the 

219

Patterns of Argument Passing

 pattern is combined with   , it is important that the or-
der of the two patterns in argument lists is clearly defined, so that there are no ambiguities.
-  are often  , meaning that an omitted -
  is treated as being optional. A   implementation might
also provide support for  .

  provide a look and feel similar to ordinary invocations. They can beConsequences
applied automatically. In the operation signature, a special syntax is required for defining an
argument as being optional and for defining or retrieving the default value. Usually invocation
and operation bodies do not have to be adapted to be used with  .

In compiled languages, the default values cannot be changed at runtime. For a change of a
default value a recompilation is necessary.

Some known uses of the pattern are:Known Uses

• In a C++ operation definition, the trailing formal arguments can have a default value
(denoted using “=”). The default value is usually a constant. An example is the fol-
lowing operation signature, which receives two int arguments, the second one being
optional with the default value 5:

void foo(int i, int j = 5);

• Many scripting languages support   for operations. In Tcl [Ous94],
for instance,   can be defined as pairs of argument name and de-
fault value.   need not be specified in an operation invocation.
However, there must be enough actual arguments for all the formal arguments are not
 , and there must not be any extra actual arguments. For instance,
the following log procedure has an optional argument out channel, which is per de-
fault configured to the standard output:

proc log {log_msg {out_channel stdout}} {

...

}

If the last formal argument has the name args, it is treated as a  
. In this case, all of the actual arguments starting at the one that would be assigned
to args are passed as a   . That is, it is not possible that there
are ambiguities between the   and the arguments for the 
 .

• In the GUI toolkit TK [Ous94], constructors of widgets provide access to the widget
options, such as background, width, colors, texts, etc., as  , which
represent either empty values (like an empty text) or values that are often chosen (e.g.
the color of the surrounding widget). A TK widget can therefore be initiated with only
a very few lines of code because only those options that differ from the defaults must be
provided. For example, the following code instantiates a button widget and configures
it with the label “Hello” and a callback command that prints “Hello, World!” to the
standard output:

220

Patterns of Argument Passing

button .hello -text Hello -command {puts stdout "Hello, World!"}

The operation configure allows TK programs to access the widget options. Thus
configure is an operation with -  in which each argument is
an   and its value defaults to the current setting of the widget. This
way only those options of a widget to be changed must be specified in a configure
invocation. For example, we can configure a red background for the button widget:

.hello configure -background red

• The GNU Program Argument Syntax Conventions [GNU05] recommend guidelines for
command line argument passing. To specify an argument as an  , a
so-called long option, it is written as --name=value. This syntax enables a long option
to accept an argument that is itself optional. Many UNIX tools and configure scripts
follow this convention. For example, many configure scripts offer a number of options,
such as --prefix and --exec-prefix (those are used for configuring the installation
path). These arguments can optionally be appended to configure invocations:

./configure --prefix=/usr --exec-prefix=/usr

If the options are omitted, they have a default value, such as /usr/local.

221

Patterns of Argument Passing

Non-Positional Arguments

Named Actual Arguments, Named ParametersAlias

You perform invocations, for instance, in a programming language or in a distributed system.Context

You need to pass arguments along with an invocation. You are faced with one of theProblem
following two problems: firstly, at the time when you design the operation which receives
the arguments, you do not know how many arguments need to be passed. Different
invocations of the operation require a different number of arguments. Secondly, some
invocations require a large number of arguments. These invocations are hard to read
because one must remember the meaning of each argument in order to understand
the meaning of the whole invocation. Matters become even worse when both problems
occur together, i.e. there is a large number of arguments and some of them are 
.
Consider the following invocation:Forces
ship.move(12, 23, 40);

This very simple invocation can only be understood with the specification of the operation
move in the back of the mind. Developers usually have to deal with a lot of such operations
at the same time, and thus it is impossible to remember the meaning of all arguments of all
operations. To understand a program, one has to continuously look at the operation specifi-
cations.

This example illustrates the problem of readability that many ordinary invocations might
have, once a certain number of arguments is exceeded.

Another important problem is that of extensibility. Programming languages like Java offer
overloading to extend operations, such as move in the example above. This way we can over-
load an operation, and provide multiple realization of the operation. For instance, we can
provide one move implementation that receives three integers as arguments (as above), and
one move implementation that receives an object of type ThrustVector. But as overloading
depends on the type system, we can only define overloaded operations with a different num-
ber of arguments and/or different types of arguments. We are not able to provide a second
realization of move that also receives three integers.

From time to time, we make little semantic mistakes when invoking such operations with or-
dinary operations. For instance, we might twist two arguments in an invocation. Most of the
time the compiler finds such mistakes because different types are needed, or our application
code complains because the values provided are not meaningful. But sometimes such mis-
takes stay undetected because the twisted arguments are of the same type and the provided
values are meaningful. For instance, in the above example, a little mistake like:

ship.move(40, 12, 23);

might stay undetected. Such mistakes might produce hard to find bugs.

222

Patterns of Argument Passing

The pattern   [Hen00a, Hen00b] provides a possible solution to this problem. A
  is realized by a lightweight class that has value semantics, and is typically, but
not always, immutable. If we make all values of the example operation  , we
could write the invocation as follows:

ship.move(Left(12), Right(23), Thrust(40));

Together with overloading,   provide a well defined interface for ship move-
ments, which is typed and supports multiple combinations of arguments. Using  -
, however, requires us to change the operation signature. This might not be possible
for third-party code, and thus we need to write a   wrapper for each extended
third-party operation. The   solution does only work well for small numbers
of possible arguments, because operation overloading means writing additional operations
for each possible combination of arguments. Also, types can only be used to distinguish
arguments as long as they are different (consider two Thrust arguments, for instance).

Provide an interface to pass -  along with an invocation. EachSolution
-  consists of an argument name plus an argument value. The
argument name can be matched to the respective arguments of the operation. Thus
it is no longer necessary to provide the arguments in a strict order, but any order is
applicable. Usually -  are  .
Non-positional arguments provide each argument as a name/value pair. We need some syntaxDiscussion
to distinguish names from values. For instance, we can start each argument name with a dash
“-”. Then we can write the above invocation example in a form like:

ship.move -left 12 -right 23 -thrust 40;

Of course, this form does not conform to the syntax of ordinary arguments of the program-
ming language anymore. Thus we must implement some support for dealing with -
  invocations:

• We can provide program generator (preprocessor) which parses the program text, finds
the -  invocations, and checks that they conform to the ar-
guments required by the operation. The preprocessor substitutes the -
 invocations with ordinary argument invocations.

• A more simple way to realize -  invocations is to use a string-
based syntax. That is, all operations receiving -  receive
only one string as an argument in which the -  are encoded,
such as:

ship.move("-left 12 -right 23 -thrust 40");

This syntax is simple, but we need to parse the string, type-convert the arguments (using
an   ), and map them to the ordinary arguments. Runtime
string parsing is slower than invocations injected by a program generator.

223

Patterns of Argument Passing

• We can provide a special kind of   which holds - -
. That is, the   must be able to store a dynamic length table or
list of name/value pairs, and the values must be of a generic type. Thus type conver-
sion might get more simple than in the string-based variant, and the solution is more
efficient than string parsing. The  , however, requires a different syn-
tax than ordinary invocations. Thus in most cases   should rather be
used internally to implement -  and stay hidden from the
developer.

• Finally, it is also possible that a programming language provides support for -
 . Alternatively, some programming languages can be extended
with support for - . All other variants, described before,
required a -  framework – on top of a positional arguments
implementation – for supporting the pattern.

When -  are implemented on top of positional arguments, we need
some converter that is invoked between the invocation and the execution of the operation. The
converter must transform the -  into positional arguments. That is,
it needs to map the named actual arguments to names of the formal, positional arguments. To
do so, the converter must know about the name and type of each positional argument, so that
it can map the -  in the correct way. This knowledge can either be
provided to the converter (e.g. at compile time or load time), or  can be used by
the converter to acquire the information at runtime.

The converter is also responsible for applying type conversions if they are necessary (e.g.
using the    pattern), and must raise exceptions in case of type
violations. Note that the converter must also check for overloaded operations and other kinds
of operation polymorphism, if supported by the programming language, and decide on basis
of the provided -  which operation implementation needs to be
invoked.

In the “programming language support” variant, the language implementation (compiler,
interpreter, virtual machine, etc.) realizes the converter. In the “program genera-
tor/preprocessor” variant, the generator generates the conversion code. In the other variants,
“string-based syntax” and “ ”, the developer might have to manually trigger
the converter. For instance, the first lines in the invoked operation might query the arguments,
or the invoking code must trigger conversion, such as:

system.invokeWithNonPosArgs("ship.move -left 12 -right 23 -thrust 40");

The converter internally needs to hold and perhaps pass around the name-value pairs. The
pattern   [SR98] provides a data structure that allows names to be associated
with arbitrary other values or objects. It is thus ideally suited as an implementation technique
to internally represent the -  before they are mapped to the invoca-
tion. A hash table data structure is an (efficient) means to implement the   data
structure (this solution is used by many scripting languages such as Perl or Tcl).

The pattern  [SR98] is an alternative for  , where   is not
sufficient. It is a generic data container for one (primitive) value of any kind or an associative

224

Patterns of Argument Passing

array of these values. The pattern thus can also be used to implement - -
. Finally, the   pattern can be used (only internally) to hold and pass
around the - .
All -  for which we can assume a default value are usually -
 . For instance, in the example we might want to move the ship without
changing the course, or just change the course, or just change the course in one direction.
Using -  with   we can assume the old value
as default for all values not specified and then do invocations like:

ship.move -thrust 30;

...

ship.move -left 15 -right 23;

...

ship.move -thrust 10 -right 15;

The biggest advantage of -  is that they enhance readability and un-Consequences
derstandability of long argument lists. They can also be used on top of positional arguments,
meaning that they can be used to enhance the documentation of invocations in a framework,
without having to change the positional signature of a (given) target operation (see the SOAP
example below for an example of distributed invocations).

Extensibility is also enhanced because overloading extensions of an operation can be based
on the selection with an identifier (the argument name) and not only using the type of the
argument. The combination with the   pattern supports the extensibility of
-  and enhances the changeability, when extensions are introduced:
developers can define default values for extensions to a given operation. That is, invocations
using the old version without the extension are still valid and do not need to be changed.

-  reduce the risk of mistakes during argument passing because the
developer has to name the argument to which a value belongs.

A drawback of -  is that they are more verbose than positional
arguments. That is, a program with -  has more lines of code.
This drawback does not necessarily occur, when   are used together
with -  and default values can be used. Consider an operation
with 20 options, and you want to change only one of them. - 
with   allow you to specify only the name and the value of that one
argument: the result is an invocation with two extra words for arguments. An operation with
positional arguments that changes all 20 options would require 18 words more than that (plus
invocations to query the old values of the arguments not to be changed).

If the system or language does not yet support -  and you want to
introduce them, depending on your solution, different changes to the system need to be made.
For instance, you might have to introduce a converter, and the converter introduces a slight
performance decrease. In some solutions, discussed above, the signature or implementation
of the operations must be changed. Other solutions (like the language-based or generator-
based variants) require more efforts for implementing them. The efforts and drawbacks of the
individual solutions need to compared to the benefits of - .
If positional arguments are supported as well, two styles of invocation are present. The syntax

225

Patterns of Argument Passing

for both variants should be distinctive, so that developers can see at first glance, which kind
of invocation is used or required by an operation.

Some known uses of the pattern are:Known Uses

• The SOAP protocol [BEK+00], used for Web services communication, uses -
 . For instance, an invocation of an operation GetPrice with
one argument Itemmight look as follows:

<soap:Body>

<m:GetPrice xmlns:m="http://www.w3schools.com/prices">

<m:Item>Apples</m:Item>

</m:GetPrice>

</soap:Body>

In SOAP the response message also contains - .
Web services frameworks implemented in languages that do not support -
  must map SOAP’s -  to the
positional arguments of the programming language. For instance, the Web services
framework Apache Axis [Apa04] contains an    which maps
the -  delivered in SOAP messages to Java invocations, and
vice versa.

• The GUI toolkit TK provides -  for configuring the TK wid-
gets. Each widget has a huge number of options. Most of the time it is enough for
a Widget instance to configure only a few of these options. For both readability and
extensibility reasons, it is not a good choice to perform the configuration of the widget
options using operations and operation overloading, as used by many other GUI toolk-
its. For instance, a button widget with -  can be created like
this:

button .b -text Hello! -command {puts hello}

We can also send any of the possible widget arguments as - 
to the widget for reconfiguration. For instance, we can change the font like this:

.b configure -font {Times 16}

The advantage of -  are that we can choose any of the 32
widget options in TK 8.4 for a button in any order and that we can directly see which
option is configured in which way. TK constantly evolves. For instance, in TK 8.0
the button widget had only 28 options. Nevertheless TK 8.0 scripts usually work with-
out changes, compatibility operations, or other measures, because the -
 are combined with  .

• OpenACS [GA99] is a toolkit for building scalable, community-oriented Web appli-
cations on top of a Web server. It uses the Tcl scripting language as a means for
developers to add user-defined operations and call them from Web pages (or Web page

226

Patterns of Argument Passing

templates). One means to support flexible operations are so-called ad proc opera-
tions. These operations can be declared with regular positional arguments, or with
- . In addition, when -  are used,
it is possible to specify which ones are required, optional, and boolean. Optional argu-
ments require a default value. They are an implementation of the  
pattern. An example is:

ad_proc -public auth::authenticate {

{-username:required}

{-domain ""}

{-password:required}

} {...} {...}

In this operation signature, the arguments username and password are required, the
domain argument is an  , which defaults to an empty string.

• XOTcl [NZ00] is an object-oriented Tcl variant which supports - -
 for all its operations. Its model is similar to that of the OpenACS framework.

227

Patterns of Argument Passing

Context Object

You are invoking operations, for instance, in a programming language or distributed objectContext
system.

You want to deliver complex or varying information to an operation. For instance, thereProblem
is a huge number of arguments, the number of arguments varies from invocation to
invocation, or there are  . So ordinary, positional arguments are not
really working well here. In addition to passing the information to the operation, you
need to process the information in some way. For instance, you might have to transform
them into a different format (e.g. marshal them to transport them over a network).
Or the same information is passed through multiple operations and each one can add or
remove some information. The arguments might be of different types (or kinds) and thus
cannot be treated uniformly. So the patterns    or -
 do not resolve all concerns either.
Consider information that is passed through multiple operations, and each operation can addForces
or remove arbitrary information. For instance, this situation is typical for realizations of the
patterns    [GHJV94],   [VKZ04], and 
  [BMR+96, SG96]. Using ordinary, positional arguments is cumbersome here
because each operation would have to know the signature of its successor to be able to invoke
it. Thus the modifiability of this architecture would be limited: the operations could not be
assembled in arbitrary order.

A    could help to avoid this problem because all operations would
just receive the    and thus have the same signature. The operations
could be assembled in any order. But, as a drawback, each operation would have to process
the    before the arguments could be accessed or changed. This means
a slight performance overhead. Also, it should be possible to reuse the code for processing
the list in different operations because likely most of them will process the list in more or
less the same way – which is not supported directly by the    pattern.
   only support arguments of the same kind. If there are different
types, for instance, conversion to and from a generic format would be necessary.

If just a variable number of named arguments is needed, -  might
resolve the problem. If the arguments or the processing requirements are more complex,
however, this won’t work well either, because -  do not support
complex processing instructions.

Pass the arguments in a special object type, a  . This object providesSolution
all arguments as instance variables. The class of the object defines the structure of the
  and the operations required to process the arguments. Using ordinary
inheritance, more special   can be derived.
A   must be instantiated and filled with values (e.g. with the actual argumentsDiscussion
to be passed to an operation). A typical example looks as follows:
Context c = new Context();

228

Patterns of Argument Passing

c.setValue("left", new Integer(12));

c.setValue("right", new Integer(23));

c.setValue("thrust", new Integer(40));

o1.invokeOperation(c);

In the operation receiving the invocation the arguments must be accessed via the 
’ API. For instance, an access to a value might look as follows:

Integer left = (Integer) c.getValue("left");

The API in this example uses key/value-pairs. This, however, is just an example, 
 can use any kind of data structure. For instance, the same example could be realized
using a special ship   that receives the values as instance variables, such as:

ShipContext sc = new ShipContext();

sc.left = 12;

sc.right = 23;

sc.thrust = 40;

o1.invokeOperation(sc);

A   is an alternative to the patterns   ,  -
, and - .   is more generic than these pat-
terns. This is because each of the other pattern’s solutions can be realized using a 
. However, in the concrete solutions applied by these patterns, the patterns provide
more support than a solution using a generic  . In particular, the patterns usu-
ally allow for invocations and argument access that looks no different to ordinary invocations
and argument access.

There are some style guides that advise the use of  . For instance, an “old” C
programming guide says: “if a function takes more than four parameters, pack them together
in a struct and pass the struct instead”.   can be seen as the object-oriented
successor of this guideline. In general, however,   are especially used in
infrastructure software. That is, they are often not visible to the developer, but only used
internally. Examples are:

• Implementations of the patterns   ,  , and
-  in interpreters, compilers, or program generators can pass
the arguments within their implementation using  .

• Distributed object systems need to be pass the distributed invocation through the lay-
ers of the distributed object system using a  . At the client side, an
invocation gets step-by-step transformed into a byte-array to be sent over the wire. At
the server side, the invocation of the remote object is created step-by-step from the
incoming message. Again the invocation needs to be passed through multiple entities.
Besides invocation information, extra context information must be transmitted, such
as security information (like passwords) or transaction contexts. This special variant
of the   pattern for distributed object frameworks is called 
 and is described in the book Remoting Patterns [VKZ04].

229

Patterns of Argument Passing

• Aspect-oriented software composition framework need to intercept invocations and in-
direct them to aspect implementations. This is most often done with  
(see [Zdu04a]). The pattern language in [Zdu03] describes a pattern for such 


1. The pattern is a special variant of  .

In all three examples the   are hidden from developers and are used inside of
a framework used by the developer. An    is usually applied by the
  implementation to transparently convert generic types, used for instance in
a distributed message, to the specific types defined by the user operation, so that the use does
not have to care for type conversion.

Besides the two variants of   mentioned above,  
[VKZ04] and   [Zdu03, Zdu04a], there are more   variants
documented in the pattern literature:

•   [Nob97] is an object that contains all elements of an operation sig-
nature, for instance, as variables. The   is passed to the operations
with that signature instead of the arguments. The pattern is used in object-oriented
languages as well as in procedural languages (e.g. a C struct can be used to encap-
sulate argument variables).   is a very simple variant to realize a
 . It is advisable to use this variant, if fixed operation signatures should
be simplified (or unified).

•  [SR98] is a generic data structure that can hold any predefined primitive
type, as well as associative arrays of the primitive types. Using these associative arrays,
complex   can be built (the arrays can contain arrays). Note that the
  implementation in the  pattern is scattered among multiple
implementation objects. It is advisable to use this variant, if a generic data container
that can be packed with arbitrary fields and values to be passed along a call chain (e.g.
as in the patterns   ,  , and  
) is needed.

•   [Kel03] is a   that encapsulates common data
used throughout the system. This pattern is used to pass the execution context for a
component or a number of components as an object. The execution context can, for
instance, contain external configuration data. Thus the   pattern
describes one particular use case of the   pattern. Henney presents a
pattern language for realizing  , consisting of four patterns: -
  ,   , - -
, and -   (see [Hen05]). These patterns are generally
useful to implement  .

•   [PL03] are   that support a dynamic set of argu-
ments.

  provides a generalization of these individual patterns.

The   encapsulates the arguments of an operation in an object and makes themConsequences
1In [Zdu03, Zdu04a] this pattern in called  . To avoid confusion with the same-named

pattern from the book Remoting Patterns, we henceforth use the pattern name  .

230

Patterns of Argument Passing

exchangeable. If a number of operations are invoked using the same  , data
copying can be avoided: all consecutive operations work using the same  
and pass it on to the next operation after they have finished their work. The  
couples the data structures (arguments) and the operations that are needed to process these
arguments.   are extensible using ordinary object-oriented inheritance.

The downside of using   is that invocations do not look like ordinary in-
vocations, but much more code for instantiating and filling the   is needed.
This reduces the readability of the code. Thus   are not transparent to the
developer using them. Also, the operation receiving the   is different to an
operation using ordinary arguments. For these reasons,   are often used in
infrastructure software, where they are hidden from the developer.

Note that there are some situations, where a global, well known space is a simple alternative to
 , which avoids passing the   through the whole application
(an example is the environment provided to CGI programs by a web server). This alternative
can easily be abused. Likewise, a danger of using   is that they can be
abused for tasks that are similar to those of  [GHJV94]. They should only be
used for modular chains of invocations. A   that references all elements of
a system and is used like a global data structure is dangerous because it strongly couples
different architectural elements, meaning that the individual architectural elements cannot be
understood, loaded, or tested on their own anymore.

Some known uses of the pattern are:Known Uses

• An aspect-oriented composition framework intercepts specific events in the control
flow, called joinpoints. The aspect is applied to these joinpoints. Thus the opera-
tion that applies the aspect must be informed about the details of the joinpoint. Many
aspect-oriented composition framework use   to convey this informa-
tion. For instance, AspectJ [KHH+01] realizes its joinpoints using the JoinPoint
interface. From an aspect the current joinpoint can be accessed using the variable
thisJoinPoint. The aspect framework automatically instantiates the JoinPoint in-
stances and fills it with values. For instance, the following instruction in an AspectJ
advice prints the name of the signature of the currently intercepted joinpoint:

System.err.println(thisJoinPoint.getSignature().getName());

• In the Web services framework Apache Axis [Apa04], when a client performs an
invocation or when the remote object sends a result, a  , called the
MessageContext, is created before a Web services message is processed. Both on
client and server side, each message gets processed by multiple handlers, which realize
the different message processing tasks, such as marshaling, security handling, logging,
transaction handling, sending, invoking, etc. Using the MessageContext different han-
dlers can retrieve the data of the message and can potentially manipulate it.

• In CORBA the Service Context is used as a   which can contain any
value including binary data. Service context information can be modified via CORBA’s
Portable Interceptors.

231

Patterns of Argument Passing

• In .NET CallContexts are used as  . They are used to transport infor-
mation from a client to a remote object (and back) that is not part of the invocation
data. Examples include security credentials, transaction information, or session IDs.
The data is an associative array that contains name/value pairs:

CallContext.setData("itemName", someData);

•   are often used when objects are simulated on top of procedural APIs.
The first argument is a  which bundles all the data about the current ob-
ject. For instance, the Redland API [Bec04] simulates objects using this scheme. Each
Redland class has a constructor. For instance, the class librdf model can be created
using the librdf new model operation. A   of the type librdf model
is returned. A pointer to this   type is used in all operations of the
librdf model type. For instance, the “add” operation looks as follows:

int librdf_model_add (librdf_model* model, librdf_node* subject,

librdf_node* predicate, librdf_node* object);

232

Patterns of Argument Passing

Conclusion

In our earlier pattern collection Some Patterns of Component and Language Integration
[Zdu04b] we provided the starting point for a pattern language on the topic of software inte-
gration, namely component and language integration. Argument passing is an important issue
in the realm of component and language integration because the argument passing styles of
two systems to be integrated must be aligned. Thus, in this paper, we have supplemented our
earlier patterns for component and language integration with some additional patterns. These
patterns can be used by developers to realize argument passing architectures which provide
more sophisticated argument passing solutions than ordinary invocations. Of course, these
patterns can be applied for other tasks than component and language integration as well. As
future work, we plan to further document patterns from the component and language integra-
tion domain, and integrate them into a coherent pattern language.

Acknowledgments

Many thanks to my VikingPLoP 2005 shepherd Peter Sommerlad, who provided excellent
comments which helped me to significantly improve the paper.

References

[Apa04] Apache Software Foundation. Apache Axis. http://ws.apache.org/axis/, 2004.

[Bec04] Dave Beckett. Redland RDF application framework. http://
www.redland.opensource.ac.uk/, 2004.

[BEK+00] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F.
Nielsen, S. Thatte, and D. Winer. Simple object access protocol (SOAP) 1.1.
http://www.w3.org/TR/SOAP/, 2000.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
orinented Software Architecture - A System of Patterns. J. Wiley and Sons Ltd.,
1996.

[CEK+00] L. Cannon, R. Elliott, L. Kirchhoff, J. Miller, J. Milner, R. Mitze, R. Schan,
E. Whittington, N. Spencer, H. Keppel, D. Brader, and M. Brader. Recom-
mended c style and coding standards, 2000.

[GA99] P. Greenspun and E. Andersson. Using the ArsDigita community system. Ars-
Digita Systems Journal, Feb 1999.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[GNU05] GNU. Program argument syntax conventions. http://www.gnu.org/software/
libc/manual% slashhtml node/Argument-Syntax.html, 2005.

233

Patterns of Argument Passing

[Hen00a] K. Henney. Patterns in Java: Patterns of value. Java Report, (2), February
2000.

[Hen00b] K. Henney. Patterns in Java: Value added. Java Report, (4), April 2000.

[Hen05] K. Henney. Context encapsulation – three stories, a language, and some se-
quences. In Proceedings of EuroPlop 2005, Irsee, Germany, July 2005.

[Kel03] A. Kelly. Encapsulate context. In Proceedings of EuroPlop 2003, Irsee, Ger-
many, June 2003.

[KHH+01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
Getting started with AspectJ. Communications of the ACM, October 2001.

[Nob97] J. Noble. Arguments and results. In Proceedings of Plop 1997, Monticello,
Illinois, USA, September 1997.

[NZ00] G. Neumann and U. Zdun. XOTcl, an object-oriented scripting language. In
Proceedings of Tcl2k: The 7th USENIX Tcl/Tk Conference, Austin, Texas,
USA, February 2000.

[Ous94] J. K. Ousterhout. Tcl and Tk. Addison-Wesley, 1994.

[PL03] G. Patow and F. Lyardet. Open arguments. In Proceedings of EuroPlop 2003,
Irsee, Germany, June 2003.

[SG96] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Addison-Wesley, 1996.

[SR98] Peter Sommerlad and Marcel Rüedi. Do-it-yourself reflection. In Proceed-
ings of Third European Conference on Pattern Languages of Programming and
Computing (EuroPlop 1998), Irsee, Germany, July 1998.

[VKZ04] M. Voelter, M. Kircher, and U. Zdun. Remoting Patterns – Foundations of En-
terprise, Internet, and Realtime Distributed Object Middleware. Wiley Series
in Software Design Patterns. October 2004.

[Zdu03] U. Zdun. Patterns of tracing software structures and dependencies. In Proceed-
ings of EuroPlop 2003, Irsee, Germany, June 2003.

[Zdu04a] U. Zdun. Pattern language for the design of aspect languages and aspect com-
position frameworks. IEE Proceedings Software, 151(2):67–83, April 2004.

[Zdu04b] U. Zdun. Some patterns of component and language integration. In Proceed-
ings of 9th European Conference on Pattern Languages of Programs (EuroPlop
2004), Irsee, Germany, July 2004.

[Zdu04c] Uwe Zdun. Loosely coupled web services in remote object federations.
In Proceedings of the Fourth International Conference on Web Engineering
(ICWE’04), Munich, Germany, July 2004.

235

235. Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

Business strategy patterns for sustainable
knowledge based comp

Allan Kelly - http://www.allankelly.net
“According to leading management thinkers, the manufacturing,
service, and information sectors will be based on knowledge in the
coming age, and business organizations will evolve into knowledge
creators in many ways.

According to [Peter Drucker] we are entering ‘the knowledge society,’
in which ‘the basic resource’ is no longer capital, or natural resources,
or labour, but ‘is and will be knowledge’ ...”

1 Abstract
In the knowledge economy individuals and firms derive their competitive
advantage from their knowledge and ability to act on this knowledge. Before
knowledge can be traded for money it must be packaged and delivered.
Knowledge may be packaged as and delivered by way of a service, e.g. a
motor-mechanic or a management consultant sell their knowledge as a
service; or knowledge may be packaged into products which are sold, e.g.
Honda packaged knowledge of car an engine design into cars, motorbikes,
lawn mowers, etc.

To best exploit knowledge a firm must know when to sell products, when to
sell services, when to switch from one to the other and when, and how, to use
one to complement the other. This paper presents several business strategy
patterns for dealing with this decision:

Start-up Services for Products

Continuing Services for Product

Complementor, Not Competitor

Services Trump Products

Services Before Product

2 Audience
These patterns are intended to codify several common business practices in a
pattern language so they may be communicated and studied more clearly.

The patterns given here are intended for those interested in how corporate
strategies may be applied. This group includes both students of the subject
and new managers.

The author is interested in the applicability of the pattern form to business
domain; whether the form works, what insights it can offer and what value it
offers in codifying and communicating business practice.

(c) Allan Kelly - www.allankelly.net Page 1 of 26

236

Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

3 Background

3.1 Patterns and business strategy
"What is strategy? There is no single, universally accepted definition.
Various authors and manages use the term differently"

It is beyond the scope of this paper to answer this question. However most
authors agree that strategy is something beyond reacting to day-to-day
offence, strategy implies a conscious decision, in effect a design decision.

“The patterns cover every range of scale in our surroundings: the largest
patterns cover aspects of regional structure, middle range patterns cover
the shape and activity of buildings, and the smallest patterns deal with the
actual physical materials and structures out of which the buildings must be
made.”

The patterns presented here document re-occurring business strategies
brought about by conscious business design decisions. They take as their
starting point the idea that the intellectual capital of the business is its
greatest asset.

Although these patterns are to be presented at a conference primarily
concerned with software patterns they differ in one important way from
software patterns.

Software patterns are usually written by those who had a hand in the creation
of the software, in part because only these people know the inside of the
software. In contrast many of Alexander’s patterns come from observation
and critique of existing buildings. (Richard Gabriel discusses this in more
detail in http://c2.com/cgi/wiki?WhereDoPatternsComeFrom.)

The patterns presented here are closer to Alexander’s patterns drawing on
observation and critique of existing literature and practise. These patterns
draw on publicly available sources and the observations of the author.

3.2 Packaging expertise
The Knowledge Economy is based on what you know not what you make.
Individuals and firms with specialist knowledge are able to sell their
knowledge. The more extensive and exclusive the knowledge the greater the
price they can command. However, knowledge cannot be traded in the same
way we trade steel, coffee beans or soap-powder, it is not possible to sell “one
unit of knowledge.”

In order to exploit their knowledge as a commercial product it becomes
necessary for sellers to somehow package their expertise in the field. The
most obvious way of doing this is to sell consultancy services. Thus, if I
require expertise in a field I have no expertise in, say, logistics, I can hire a
expert in logistics; knowledge is provided by way of a service.

(c) Allan Kelly - www.allankelly.net Page 2 of 26

237

Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

Still, the consultant must decide how they are to sell their services. For
example, the consultant may offer to do the work I require for me, they may
do this for a fixed price or on a time-and-materials basis. Alternatively, they
may decide to sell training in the domain so I can do the work. So, when
knowledge is sold as a service it may be packaged and deliver in a dumber of
different forms.

Alternatively, rather than sell their knowledge as consultancy the domain
experts may choose to sell it as a outsourced service. Rather than handle my
own logistics I can sub-contract with TNT, Federal Express or other firms
who specialise in this field.

Another way in which the knowledge holder may choose to exploit their
expertise is to develop an actual product that uses the knowledge and sell that
instead. This is common in the software world where companies like SAP
embed knowledge in software, so, for example, I could solve my logistics
problems by buy a logistics package.

The more knowledge intensive the work the greater the value of the
knowledge:

“In today’s knowledge-based economy, superior knowledge is likely to be
the most valuable resources of all. Knowledge is valuable precisely
because it is hard to manage and hard to trade. ... Knowledge resides
inside the heads of lower ranking staff, not the files of top management.”

Carried to an extreme all firms are knowledge enterprises. For example, a
car manufacturer has knowledge how to build a factory, knowledge of how to
manage a production line, knowledge of car design, knowledge of car
marketing, and so on.

The patterns in this paper look at how organizations can exploit their
knowledge, either as service-products or actual products, and how they can
move between these two types of product.

Sometimes this knowledge is concerned with operations (how we manage our
day-to-day business), sometimes with organisation and structures (how we set
up our business units) and sometimes with the market we are in (customer
tastes and competitor's products).

3.3 Sources
“patterns do not come only from the work of architects and planners”

The patterns documented here draw on personal experience and observation
together with publicly available sources. A conscious decision has been
made to use public sources so the reader can enquire further themselves.

3.4 Value chain for a complex knowledge based product
For a customer it is sometimes easy to realise the value of product, for
example, we buy a new television set, we take it home and plug it in and
watch television, the value is easily extracted. But for a complex product, as

(c) Allan Kelly - www.allankelly.net Page 3 of 26

238

Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

is often the case of knowledge-based products, it is not so easy to extract the
value.

Some complex products are relatively easy to use, for example, if we buy a
new laser printer. We simply plug it in and install the driver software. But
other products require costly installation and configuration, and if we are to
extract the full value of them the product must be maintained during its
lifetime.

Some products, the real value comes when used by expert users, a CAD
(Computer Aided Design) system is of little use to the layman but in the
hands of an architect or trained designer. It not only increase their
productivity will allow them to create designs they otherwise could not.

Other products are valuable, because they can be used by the layman, they
may enable a production line worker to magnify their productivity. Or by
using advanced products the amount of training required can be reduced. For
example, computer aided milling machines can work directly from CAD
files, removing the need for a highly trained operator.

Source of customer value for a complex product

Product
Installation &
Configuration Maintenance

Non-expert
users

Experts users

In some cases simple
possession of the product is
enough to yield value. For
example, a laser printer or a
copy of Intuit Quicken.

A complex may require specialist
installation before it can be brought
into operation and yield value. For
example, a CRM system or a
telephone switch.

For some systems, for example,
a jet engine, it is necessary to
undertake regular and complex
maintenance if the lifetime and
value of the product is to
maximise.

Some systems will deliver their value
by empowering non-expert users.
Such users can, after only limited
training, become far more productive
or perform tasks otherwise beyond
them, for example, advanced call
centres.

Some systems will only deliver
their full via you when they're
used by expert users. For
example CAD systems only
demonstrate their full value
when used by expert designers

Figure 1 - Value chain for a complex product

Figure 1 shows that customer’s value chain for a complex product. Not every
step is required for every product. For example, most of the value from a
laser printer comes from the product itself, installation and configuration on
minimal, most printers require little maintenance and all users receive similar
value.

(c) Allan Kelly - www.allankelly.net Page 4 of 26

239

Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

Yet for another product, for example, it telephone switch, value is created,
both by the product itself and by the particular installation and configuration
options chosen. Indeed, without the correct installation and configuration.
The telephone switch is of little use on its own.

There is knowledge embedded in these complex products themselves. And
there is also knowledge, surrounding them in these follow-on activities.
Configuring the telephone switch is a skilled task, performing maintenance
on a jet engine is a skilled task, and the use of a CAD system is as already
noted, a skilled task.

Some customers will perform these activities themselves, many others would
prefer to have these activities performed by someone else. This opens the
opportunity to services, from many of these advanced products and
knowledge of how to work with them. To configure them maintain them all
use them is as essential as the product itself. Without the product the service
may not exist without the service. The value of the product cannot be
realised.

The patterns contained within this paper deal with the interplay between
products and services. Common to both is the role of knowledge, without
knowledge product cannot be created and without knowledge we cannot
recognise the value of the product. Product is not necessarily better than
service and services are not necessarily better than product. Ideally, the two
are complimentary, but if the relationship is not understood the two can come
into conflict.

Sometimes the product and the service are provided by the same
organisation, and sometimes by different organisations. This too creates the
opportunity of conflict, were there should be concord.

(c) Allan Kelly - www.allankelly.net Page 5 of 26

240

Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

4 The Patterns

4.1 Pattern map

Professional
Services out of

Product Company

Services Before
Product

How should
I run my
business?

Consultants

Service
products

Initial Services for
Products

Product and
Services forever

Certified
Experts

Product Ecosystems
...

Complementor,
not competitor

Customisable
Product ...

Open Source ...

Product Integrator

Patterns included here Thumbnail patterns
only

Potential pattern
languages ...

Strategy changing
patterns

Paterns for a
services
strategy

Patterns for
delivering the

service

Patterns
for the

product

Figure 2 - Pattern relationships

(c) Allan Kelly - www.allankelly.net Page 6 of 26

241

Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

4.2 Thumbnails
Start-up Services for
Products

Page 9.

Your product serves a complicated market,
consequently your product is complicated. Customers
need help to get the most from the product.
Therefore, create a professional services group within
your organization and sell consultancy services to
help the introduction of your product.

Services Before
Product

Page 24.

You are creating a start-up company but you are short
of money and/or need a better understanding of the
market. In order to get a better understanding of the
market you need to get into the market. Therefore,
sell consultancy services to start with, you will
generate money and get a feel for the market before
you start work on your product.

Product Company from
Services Company*

Your established company sells professional services
but you find you keep re-inventing the wheel.
Therefore develop a product that embeds your
knowledge, you will be able to reach more customers
and grow the market.

Local Prophets* When attempting to reposition your organization to
sell a new product of service it can be difficult to
know what to do. Therefore, try to find groups inside
the organization who are doing this already and build
on them.

Continuing Services for
Product

Page 12.

Complex products often require ongoing maintenance
and support. The company that makes the product
already knows a lot about the product so well
positioned to do this activity too. By sharing
knowledge between services and products operations
both can be improved.

Services Trump
Products

Page 21

Your company has been successful selling products
but you are running of growth, you may already be
loosing money. Therefore, use your knowledge of the
products to move up the value chain and sell services
instead of or in addition to products.

(c) Allan Kelly - www.allankelly.net Page 7 of 26

242

Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

Complementor, Not
Competitor

Page 18.

Choosing to compete in multiple product categories
against multiple competitors’ means you sometimes
compete against companies who could help sell your
other products. Therefore, withdraw weaker and less
strategic products, you can now complement your
former competitors and increase sales of your leading
products.

Product Integrator* In a market where products from several suppliers
must be brought together and made to work together
some customers will be willing to pay a third party to
do this work. Product Integrators specialise in this
type of work.

Certified Expert** Your product is complicated and needs experts users.
You don’t want or can’t satisfy the need for these
expert from your own resources. Therefore, create a
certification scheme to endorse expert users.

Consultants** Your company sells knowledge by providing
consultancy services. This knowledge is
communicated and applied by individual practitioners.
To sell more services you need more and more people.
Therefore, build an organization that can find, train
and manage individuals. Each individual is a
consultant.

Product Services** Your company has specialist knowledge and expertise
in a particular service. Customers would like to use
your service but there are many different options.
Therefore, pre-define your services as products; limit
the number of options to “productize” your service.
Customers can now buy your service “off the self.”

Customisable
Product***

There are many ways to customise a product - tool bar
settings, configuration files, scripting. Different
customisations are applicable for different
applications.

Product Ecosystems*** Products like Palm pilots and iPods become platforms
for which third party companies develop products.

*Draft only (not included)

**Currently these patterns only exist in thumbnail.

*** Proposed pattern languages in this field.

(c) Allan Kelly - www.allankelly.net Page 8 of 26

243

Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

4.3 Start-up Services for Products
The author’s employer sells software tools to mobile telephone
operators. The product is very powerful and can be customised in a
number of ways. Some of these customisations are simple and can
be done by users. Others require a high degree of product
knowledge. The company provides professional services consultants
who can tailor the product to customer’s requirements and embed
the product in the customer’s methods of working.

Context Your company makes money by selling a technically advanced
product to other companies. Such products can be difficult to install,
integrate and use. Customers may be put off buying your product
because of these difficulties, or they never realise the full value of
the products.

Such complications can lead to dissatisfied customers or deter
potential customers from buying your product.

Problem How do you help customers get past initial barriers so they can see
the full value of your product?

Your product might be difficult to install, or it might need
complicated configuration, customers might need training before
they can use it, or the customer organisation might need to change
the way it does things as a result of the product.

Forces Your business strategy is to make money from selling products. But,
customers find it hard to use your product out-of-the-box.

The product is difficult to install and requires specialist knowledge to
get it working, but once installed it provides worthwhile benefits.

Some people might consider these difficulties to be the customer's
problem, but if it stops the customer from using your product and
potentially buying more of your product then it is your problem.

You have tried selling the customer the product and letting them
install and configure it, but customers find it difficult to install and
configure the product. This has deterred some potential customers
from even buying the product. Other customers have not realised the
full potential of the product.

Customising the product is complicated but without customisation
the full value of the product cannot be realised, in fact, without
customisation and integration the product may be useless.

Unless customers can realise the full potential of product it is
difficult to charge a high price to the product. Consequently, you
may not recognise the full potential revenue from your product.

Customers can use the product themselves but they may require
specialist training. Since the product is proprietary to your company

(c) Allan Kelly - www.allankelly.net Page 9 of 26

244

Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

so it is difficult to find suitable trainers and costly to hire.

Therefore...

Solution Provide Professional Services to help customers integrate and
customise your product. Your staff may do all of the work or just
assist customers in doing it themselves.

For a complicated and expensive product it is worth holding the
customer’s hand for a while. You can also provide training services
to educate customers and users in how to use the product and how to
get the most from it.

In a small company the services may be provided by development
staff, as your company grows you will want to create a dedicated
group of consultants who work with customers to integrate and
customise the product.

Development staff may not be the best people to provide consultancy
services; temperament and personal objectives often differ between
back-room and customer-facing staff. Such staff may have
deliberately chosen a backroom position to avoid customer contact.

Consequences Your consultants can get customers over the initial hurdles to using
your product. They can install, customise and integrate the product.

Once customers are over the initial blocks they can start to realise
some of the benefits of the product. The specialist consultants can
now move on to customising the product to achieve maximum value
for the customer.

When a product is installed, integrated and customised to a specific
environment there will be a greater acceptance of the product.
Customers are less likely to use a competitors product and more
likely to buy from you again.

By having your people work with the customer, and by tailoring your
product to the customers knees you will create a closer relationship
with the customer, this is good for both sides.

Consultancy is not limited to installation, integration and
customisation. Other services such as training can be offered to help
customers - although different services may be delivered by different
individuals all working for you professional services group.

Your consultants are experts not just in your product but in
customer’s businesses, and integration issues. Consultants who are
regularly seeing customers and dealing with their problems are a
valuable source of information when it comes to deciding what to
develop next.

Providing consultants is not cheap, in addition, there are often travel
and accommodation costs incurred when working with customers.
These costs must be covered somehow. If the costs are included in

(c) Allan Kelly - www.allankelly.net Page 10 of 26

245

Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

the product price, then the overall prize will be higher, and the sale
more difficult. Alternatively, these costs may be billed separately, in
which case the customer must be persuaded to pay them in addition
to the product costs. This too will make the sale more difficult.

Customers may be put off by the costs of customisation and training.
Products such as SAP are reputed to cost a lot in terms of time and
money to install, customise and train users.

You will need to hire and retain consultants. Finding people with
particular mix of skills required may be difficult. Once found these
consultants will need to be paid regardless of whether they work, or
not.

Companies - especially small ones - that use their development
engineers to provide services to customers will find that their
product development is hindered.

Examples Smith Communications (a pseudonym) had one product, an
advanced e-mailing system. The company made its money from
selling the product but it needed to be integrated with a customers
other systems such as a database and accounts system. So the
company set up a professional services group that worked with
customers directly to integrate the product.

Professional services were sold near cost, sales staff would even
throw in several days consultancy to sweeten a sale, consequently the
professional services group never made a profit. When the company
hit financial trouble and layoffs were required the group was the first
to be cut.

However, the product still needed installation and configuration, so
some of the staff found themselves hired back on ad hoc contracts.

Related
patterns

Selling services provides for a second revenue stream but you should
be clear where your competitive advantage lies. If your value added
lies with the consultants not the product it might be time to consider
Continuing Services for Product or Services Trump Products - you
may also consider Open Source options. Some companies become
overly dependent on selling services rather than product without
realising it.

Customisable Product describes how a product may be made more
configurable.

Certified Expert provides another route for solving this problem, it
may be used in combination with or as an alternative to this pattern.

Sources &
Known Uses

The author has worked in several companies that have employed this
model, these cover the telecoms, office automation and financial
sectors.

See also Secrets of Software Success

(c) Allan Kelly - www.allankelly.net Page 11 of 26

246

Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

4.4 Continuing Services for Product
Jack Welch tells how during the 1990’s General Electric (GE)
entered the service business in a big way. What had been thought of
as “after sales service” became a major contributor to profits. For
example, at the start of the 1990’s the firm was already a leading
maker of aircraft engines, by 2000 over 60% of engine revenue came
from servicing such engines - both GE engines and those of
competitors like Rolls-Royce.

Context You are successful in your market and are looking for growth
opportunities.

Your product has a long life span; the sale is only the beginning.
Over its lifetime the product requires on-going service and
maintenance. These requirements go beyond Start-up Services for
Products.

Problem How do you improve your product, your customer’s experience of
your product and grow your company at the same time?

Forces You know a lot about the lifetime management of your products but
you consider yourself a designer and manufacturer, indeed you may
be one of other leading designers or manufacturers; but that is where
your responsibility ends, customers are expected to arrange and pay
for ongoing service themselves.

You have traditionally been concerned with the sale price of your
product but customers are, perhaps increasingly, concerned with the
total cost of ownership over the lifetime of the product. You can
better serve your customers, if you can align your objectives with
their objectives.

Customers understand that complex products need to be maintained
but they don’t necessarily want to do this themselves. In fact, they
may view such activities as distractions from their core business.

In a competitive market you need to undercut your competitors to
make a sale, but, a low price may not be profitable.

You are ready, one of the leading companies in the market, but this
means that growth opportunities are limited. Being number one in
the market is great, but shareholders still expect growth.

Therefore...

Solution Use your product, industry and market knowledge to compete at
additional points in the value chain (Figure 2) and use what you
learn to improve the product. Taking a wider perspective on the
consumer experience will provide new opportunities for innovation,
revenue growth and improved customer satisfaction.

Customers continue to consume your product long after the sale is

(c) Allan Kelly - www.allankelly.net Page 12 of 26

247

Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

closed. As the developer and manufacturer of a complex product you
have specialist knowledge of the product. This knowledge can be
used throughout the product life cycle.

Knowledge gained in design and production may be applicable -
later in the product's life, particularly in maintenance . Similarly,
knowledge gained later in the product life may be fed back to design
and production phase. This allows you to create a virtuous circle of
learning.

... designers can learn
from maintenance
experience...

... maintainers learn
from design and
development....

... knowledge gained in
maintenance can be fed
back to design and
development...

... knowledge gained in
design and development is
pass to maintenance...

Figure 3 - Create a virtuous learning circle between development and
maintenance teams

Having people on site with a customer provides good opportunities
to understand what the customer wants from the product, how they
use it and what features they need and value. This can be of benefit
to both supplier and customer.

Obviously you know your own products best yet competing products
will not be too dissimilar and these will need servicing to. You may
choose to offer service work with these products to this will increase
the size of your market, provide a fuller service to customers and
help you understand the competition better.

Customers who buy your product for its innovative features may be
willing to pay for ongoing support and maintenance charges and
tolerate glitches.

Remember to balance your product development operations against
your service operations. Product development generates little
revenue by itself and costs are incurred long before revenue is

(c) Allan Kelly - www.allankelly.net Page 13 of 26

248

Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

generated. When revenue does arrive there is a simple moment with
product is exchanged for cash.

In service operations the cash will arrive shortly after the service is
performed. However services continue to be delivered so cash
continues to arrive the business. Managers must seek to smooth the
flow of work in cash to ensure a steady flow of work and high
utilisation of resources.

Yours service operations should add value to the customer; it is no
use shipping a low quality product in the hope of charging them for
service. Customers may feel stung if they receive a poor product and
hefty service bill. Table 1 illustrates this. It is important to
understand the incentives created on both sides by your sales model.

Physical
product

Service
product

Sell at profit Sell at profit Good position for seller - be careful not to over
charge the customers or they may find an
alternative supplier. (Continuing Services for
Product is being used.)

Sell at profit Sell at loss,
or

Sell at cost

Only sustainable in the short run; incentive to
create a product that does not need service so
this is good for the buyer.

Free service may be seen as a type of quality
guarantee.

Sell at cost Sell at loss,
or

Sell at cost

Not sustainable. If you can’t make money for
either product or service sales you should quit
the market.

Sell at cost,
or

Sell at loss

Sell at profit Sustainable if both sides understand the model
and incentives are aligned. (Continuing
Services for Product is being used.)

If Software Ltd agrees to write a special
software application for Mega Corp at a fixed
price but charge for each bug-fix then it will
be in Software's interest to delivery a low-
quality product and make profits on bug fixes.

If on the other hand Software Ltd agrees to a
fixed price contract with a fixed annual service
fee it will be in their interest to delivery a high
quality product to start with, this ensures
ongoing service costs are minimised.

Of course Software may still deliver a low

(c) Allan Kelly - www.allankelly.net Page 14 of 26

249

Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

quality product, and in the short term this may
save them money, but in a long-term this isn't
not in their interest.

Table 1 - Source of profits determines incentives when using Continuing
Services for Product

Consequences Using this pattern the sale and installation are only the start of a
commercial relationship between buyer and seller, the initial
revenues are only a small part of the overall revenue stream. For
such a product the ongoing service revenue, over a number of years,
may be far greater than the initial sale price.

As long as your service offering is priced to make a enough profit
you can afford to reduce your initial selling price in the hope that
you will make a profit on future services. You may even sell your
product at a loss provided you are sure can be recover the money on
services.

Buying your product solves one problem for the customer but creates
another. As the seller you know this first and best, you can solve the
customers problem, make your product more attractive and generate
a revenue stream for yourself.

Gaining an ongoing revenue stream may allow you to reduce your
sales price to gain a sale. It also means the company's future income
is in place and is less dependent on the next sale.

(Competitors may still win the business if they can show that the
total cost of ownership of your product is higher than the total cost of
ownership of theirs. However such figures are difficult to calculate
and some customers may be prepared to pay a higher price overall if
they can reduce their initial capital outlay.)

Using this model to expand your business you must be able to sell
more consultants and service technicians, thus you need to hire more
people. It takes time to recruit and train new people in technically
complex so your growth rate may be constrained. Retaining current
staff can also be a problem, especially when they are highly trained
and experienced.

Apportioning costs and benefits becomes very difficult - as we see
with quality. In the short run it may be more profitable to hold back
on new features and quality improvements to reduce costs and boost
fees. However, in the longer term this risks the product becoming
dated and uncompetitive.

There are opportunities created by having design, production and
maintenance with in one organisation. For example, GE has
designed software into its aero engines to provide additional
information from maintenance services. Increased development
costs will be offset by reduced maintenance costs.

(c) Allan Kelly - www.allankelly.net Page 15 of 26

250

Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

If you choose to service competitor products in addition to your own
products you must respect your competitor's intellectual property
rights. You may become aware of innovations in rival products that
you could incorporate into your own products. However, in doing
so, you may break, intellectual property law.

Examples This pattern is itself a variation on the classic razor sales technique -
sell the razor cheap and make the money on the blades. Other
examples include games console manufacturers (e.g. Sony,
Nintendo) who make their money on the games, and printer
manufactures (e.g. HP, Lexmark) that make money on ink cartridges.
However, in this case, it is a knowledge-based service that is being
sold rather than consumables.

Related
patterns

Its a Relationship, Not a Sale advises us to look the beyond the
current transaction and consider the long-term relationship during
which time there may be multiple sales.

Start-up Services for Products discussed the need to provide services
to get a product installed and working correctly. Continuing
Services for Product goes beyond this model and shows how ongoing
services can be sold in addition to the initial product.

Services for competing products may include support for Open
Source products.

Sources and
Known
examples

The author has seen this pattern applied in both its functional and
dysfunctional versions.

Welch describes GE's entry into the jet engine services market.

An aside: Dysfunctional Product with Continuing Services
There is a dysfunctional version of Continuing Services for Product. It occurs when
the incentives for seller are misaligned. This is illustrated by the story of Ball Group
(a pseudonym).

Ball Group sold software to manage banks’ treasury operations. The
company had little capital and found the revenue from selling consultancy
services useful.

After a while the company had more consultants than developers and made
more revenue from selling services than product so the product was sold
cheaply. The incentive for Ball Group was to cut corners, spending less on
quality and documentation made customers more dependent on consultancy
services. This might appear as a win-win: lower costs and higher revenues
but it was not a win-win for customers.

For a while Ball Group flourished and grew, staff numbers increased and
new product development began. However the model was unsustainable and
after several rounds of redundancies the company was acquired.

(c) Allan Kelly - www.allankelly.net Page 16 of 26

251

Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

While Ball Group’s product added value to the customers operations the subsequent
services did not, work was merely displaced from pre-sale to post-sale. The need to
buy services detracted from value of the product.

Customers were paying twice, once for the product, and again for consultants and
fixes, this might look good on the balance sheet of Ball Group -who made the
customers pay for work which should have been done before the product ships,
thereby reducing their costs and increasing the revenue. Eventually customers would
realise the true cost of the product and the low initial quality.

Neither was about being developed for long-term, the only work that occurred was to
address the immediate problems or to implement customer requested features.
Meanwhile competitors were developing products with a longer-term view.

Moral: Continuing Services for Products can be Win-Win or
Lose-Lose
If implemented well Continuing Services for Product can be win-win for supplier and
customer. The supplier wins, because they get to increase their revenues and learn
more about the hall product lifecycle, which in turn allows them to improve the
product.

The customer wins, because they get better value for money from their supplier and
service organisation, and overtime they get an improved product because the supplier
is able to use what they have learned in servicing the product to improve the original
product.

However, if implemented badly Continuing Services for Product can be lose-lose: the
supplier can ship, inadequate product knowing they can hide the defects behind their
service contracts, over time these contracts and the product will become more
expensive.

The customer loses, because they get an inferior product and an increased total cost.
Eventually, they will change supplier.

(c) Allan Kelly - www.allankelly.net Page 17 of 26

252

Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

4.5 Complementor, Not Competitor
“Three years, a lot of activity, and a few billion dollars later, we still
weren’t [application software] leaders...

However, one thing we were doing exceptionally well was irritating
the heck out of the leading application providers - companies like
SAP, PeopleSoft and JD Edwards. These companies were in a great
position to generate a lot of business for us ...

What we said to them was ‘We are going to leave this market to you;
we are going to be your partners rather than your competitor’.”

Context Within your product portfolio you sell two products that are
complementary and usually sold together, say Widgets and Foobars.
It doesn’t make sense to buy one without the other. You are not the
only company selling such products but most of your competitors
sell just Widgets or Foobars. Indeed, some people buy your Widgets
and use them with other people’s Foobars. (The reverse seldom
happens even if it possible.)

Problem How do you arrange your product and services portfolio so you
maximise your profits and don’t loose money on products?

Forces Customers look to buy a total solution of Widgets and Foobars, and
this is what you have traditionally sold. But, while your Widgets are
very good there are better Foobars on the market. Customers may
choose to buy Foobars elsewhere and your competitors are unlikely
to recommend your Widgets to go with their products.

Developing both Widgets and Foobars has allowed you to innovate in
the past but your competitors are focused on innovation in Widgets
or in Foobars, having both does not offer a lot more opportunities for
innovation.

By selling these products together you make a bigger sale so the
revenue is greater but when you look at it in detail you are making
most of your profit from the Widgets.

Both Widgets and Foobars are expensive to develop, Widgets make
money but Foobars are less profitable and may be losing money.

Traditionally both Widgets and Foobars have fitted with your core
competencies - the production of both was important in your
business. But your business strategy and core competencies have
changed, Widgets, but Foobars are no longer core to your business.
Even if you still make money on the sale of Foobars they may not fit
to be a long-term goals.

Therefore...

Solution Concentrate your activities on the most profitable part of the
solution, discontinue the less profitable parts and replace the missing

(c) Allan Kelly - www.allankelly.net Page 18 of 26

253

Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

pieces with ones from other producers. Rather than competing with
everyone seek to complement those who can help you sell more of
your most profitable products.

Customers will want to buy Widgets and Foobars, now you no longer
compete with the Foobar makers they can be a source of customers.
Work closely with Foobar sellers, get to know their products and
form strategic partnerships to ensure their products work well with
your Widgets.

Discontinuing a loss making product should immediately help your
balance sheet. By partnering with others you can increase sales
revenue for your profitable products - a classic win-win situation.

You need to prove to your new partners that you are committed to
this strategy. Move fast and decisively to show that you are now a
friend not an enemy. Foobar manufacturers could still recommend
one of the other Widget manufacturers so work together to be the
best Widget for their Foobars.

Consequences You no longer supply a total solution with your own products, you
sell your most profitable product and complement it with third party
products to offer a total solution.

Opportunities for innovation between Widgets and Foobars are more
difficult to find and exploit, however, you can be more focused on
innovation in Widgets.

Sales of Widgets only may be smaller but they will be more
profitable, plus you are hoping to sell more Widgets by working
together with the Foobar manufacturers. You may look to make up
revenue from consultancy services too (see other patterns in this
paper).

You have saved the cost of developing an expensive product.
Product development costs are lower, the cash may be used
elsewhere, say, in new products or services.

However, if you will need to ensure that your Widgets are compatible
with the various Foobars available elsewhere. Ensuring
compatibility can in itself be a timely and costly endeavour.

Customers are no longer locked into your products; they now choose
your products because you have the best solution to their needs, not
because they have no choice.

New partners may seek to lock you into their product; if you become
dependent on one Foobar maker you will be in a weak position if
they ask for special consideration and price cuts. Work with several
Foobar partners so you have the choice to walk away from a deal if a
partner asks too much.

Examples Games console manufactures usually lose money on each console

(c) Allan Kelly - www.allankelly.net Page 19 of 26

254

Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

sold while making large profits on the games for the consoles. After
selling over 6 million Dreamcast consoles and losing $500 million,
Sega left the market in 2001 and chose to focus on producing
software for Sony, Microsoft and Nintendo consoles. In 2004 Sega
merged with Sammy and made healthy profits in 2005.

Related
patterns

Contrast with Continuing Services for Product where the sale of one
product - possibly at a loss - allows you to make money from a
second.

You still know a lot about Widgets and Foobars so you may also be
in a position to sell integration services – see Product Integrator.

Sources &
Known
Examples

The Economist details the Sega story, while Louis Gerstner tells the
IBM story at length.

Aside: Competitor not Complementor
There is a mirror image to this pattern. Sometimes a company which could be a
complementor in a market decides to enter the market as a competitor. For example,
at around the time, Sega decided to leave the games console market Microsoft entered
the market with their Xbox console.

The firm spent millions of dollars researching and developing the new console to enter
the same highly competitive market Sega was leaving. Microsoft could have chosen
to play the role of complementor and develop games for Sony and Nintendo consoles
but instead chose become a player in the market themselves.

Microsoft reasoned that despite the cost of entering the games console market. It was
a market they had to be in as part of their overall strategy. To enter the market the
company leveraged their existing core competency of software development but had to
develop new competencies in hardware development and console marketing.

(c) Allan Kelly - www.allankelly.net Page 20 of 26

255

Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

4.6 Services Trump Products
By the early 1990’s IBM was in trouble, companies where buying
PC’s not mainframes. The company realised that customers wanted
services and results rather than products. As the IT industry became
more complicated customers would rather pay someone else to
provide IT. So, IBM re-invented itself as an IT services company.

Context You have high brand awareness with customers and your products
have a good reputation. Yet sales growth is slowing or declining.

Your market may be nearing saturation, or, maybe competitors are
producing better (or cheaper) products, maybe your market has
changed - new products don’t have the margins of old products.

Problem How do you grow your business when selling more products doesn’t
work any more?

Forces Customers want your product not for its innate qualities but for the
capabilities it provides, e.g. they aren’t interested in buying a
computer for its technical specification, they are interested in
running a stock-control system.

The products you sell are increasingly commodities; customers can
buy similar products from competitors. Consequently, you're forced
to compete on price, but you do not have a price advantage, your
company is not designed to be a low cost producer, neither do you
believe you can become a low-cost producer, any time soon.

Your business is centred on the first stage of the value chain (the
product part of Figure 2), growth and profits are increasingly
difficult to get in this stage, but the later stages of the value chain
still offer opportunities. Even as the products become increasingly
commoditized, the opportunities to add value, and later in the chain
increase.

Your product is just one part of a bigger solution. There are a host of
activities that occur around your product. But, it is these activities
that add value to the customers not your product itself.

Since these activities add more value there is more profit to be had
from supplying these services than there is from supplying the
product.

Therefore...

Solution Use your experience from selling products to sell services in the
same industry. This allows you to move to a more profitable part of
the value chain.

Selling services may help you to sell even more products (see Start-
up Services for Products for examples) or it may mean you have to
drop products so you can work with different suppliers - see

(c) Allan Kelly - www.allankelly.net Page 21 of 26

256

Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

Complementor, Not Competitor.

Unlike a one off product sale, a service contract represents an
ongoing commitment by both buyer and seller so the revenue stream
will continue. You may earn less from a sale on day one but
overtime, your total income will be greater

Providing a service is different from selling products, sales are based
on relationships not short transactions. It is important to ensure
compensation schemes are aligned to support the new goal not the
old one..

To justify customer trust and costs you must show customers that the
end result is noticeably better, this involves a number of intangible
factors. Although these intangibles are difficult to get right and
quantify they are the important in beating competitors.

Scaling up a services business can be more difficult than expanding
a product company. Service delivery is inherently dependent on the
people delivering the service, finding the right people, motivating
and retaining them rather. Growth is no longer simply about
manufacturing and selling more products, it is about hiring the right
people and helping them work in the most effective manner possible.

Try to find some Local Prophets and use these people and groups to
help create your new organization, e.g. IBM built on the experience
of the ISSC group .

Even if the company is retreating from product activities and laying
off staff you may need to hire staff in your services business.
Similarly, you may find the need to buy in more services expertise to
provide more skills and experience in your new strategy.

This pattern is not just about retreating from one sector and
expanding in another more profitable sector. It is about building on
what you already know and serving your customers better.

Consequences You no longer sell a commodity product; you sell capabilities as a
value adding service. Rather than sell the computer you sell the
results of the computer. This is reflected in a improved profit and
growth.

The sale focuses on the final product rather than the individual
pieces and activities that go to make up the results. You address the
customers needs directly rather than showing how your product
allows others to address their needs.

If your analysis is right the services you supply will carry a higher
profit margin than products. This is especially true where products
are becoming a commodity - and products become a commodity
faster when common standards are in place.

Examples IBM is one of the best known examples of a product company that

(c) Allan Kelly - www.allankelly.net Page 22 of 26

257

Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

has converted itself into a services company. There are many other
examples in different industries, e.g. Home Depot in the US home
improvement market and Rolls-Royce aero-engines.

Another, less successful, example is the UK based Boots the
Chemist. In the late 1990’s supermarkets started to undercut Boots
prices, its brand name offered little protection.

Boots responded with “Wellness” centres. The company had long
offered optician services through Boots the Opticians, now it added
dental, aromatherapy and other “medical” services. However, the
company found it difficult to produce profit from these operations
and in autumn 2004 the company sold the dental and laser eye
treatment operations.

Related
patterns

Complementor, Not Competitor can be used word you wish to offer
services for products produced by (former) competitors.

Compensate Success discusses the need to ensure that your
employees are rewarded in line the company's goals.

This pattern has similarities to Continuing Services for Product, both
are about product companies that move into services. However, in
Continuing Services for Product the company expands into the sector
while in Services Trump Products the company retreats from
product.

Sources Home Depot is described in the Financial Times of 9 May 2004 .

Lou Gerstner describes IBM’s change of strategy in Who says
Elephants can’t dance?

Boot strategy is described in The Economist and the companies own
press releases on its website.

(c) Allan Kelly - www.allankelly.net Page 23 of 26

258

Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

4.7 Services Before Product
The author once worked for a British company that pioneered
handheld PC’s. The founders had left a previous company and
undertaken consultancy projects before raising enough capital to
develop a 8088 based pocket PC.

Context You have an idea for a product; you have some expertise and a little
money but not enough of either.

Problem How do you leverage your existing expertise and money to get closer
to your goal of creating a product ?

Forces You need money to develop products but those with money (e.g.
business angels and venture capitalists) expect to see some business
plans. Worse still, there may not be anybody willing to risk money
in your field.

In order to develop business plans you need get into the market, but
you can’t get into the market without something to sell.

Founding a company requires good timing. Founders need to be
ready to quit their jobs and join the new company, business plans
should be laid out, funding should be in place, the sales pipeline
should be ready to go. But, getting all factors to coincide can be
difficult and delay the endeavours. Delays may lose customers (who
find other suppliers) or founders may be offered attractive positions
elsewhere.

Therefore...

Solution Fund your new company by providing professional consultancy
services in the same field as your envisioned product. Increase your
expertise and knowledge of the field and, improve your cash
position.

Selling expertise through consultancy services requires less
preparation than developing and manufacturing a product. Cash can
be produced relatively quickly thus allowing you and other founders
to eat while you develop products and business plans.

(This is not to say, consultancy provides for a free lunch, creating a
consultancy will require expenditure. However, cash can be
generated more quickly via consultancy than through product
development.)

Being in the market allows you to identify potential customers, their
needs and where existing products fail. You will also be able to meet
potential competitors and complementors.

When your knowledge and cash reserves are good you can start to
develop products for sale.

There are risks in changing your business model. Changing from a

(c) Allan Kelly - www.allankelly.net Page 24 of 26

259

Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

services based to a product based company is not simply a case of
“flipping the switch.” Culture, people and financing are all different.

Consultants and product developers are different. People hired to
work as consultants may not want to work on product development
when the time comes to switch, similarly, product developers might
not like the idea of spending time with customers and in hotels until
the cash is available for product development.

Consequences Being in the market increases your credibility when you go looking
for funding. You can refine your product ideas, your marketing, your
strategy and expand contacts. Even if you have not been able to start
developing product you will be able to make a better case for the
product.

You have entered the market by selling yourself. As a short-term
move this gets you exposure to the market and cash, you can enhance
your technical knowledge and understanding of the market.

This move also buys time to get organised - the founders don’t have
to all join on day one. As you develop the sales pipeline you can
bring more people onboard. However, while you are organizing and
improving your knowledge the market is moving forward, you have
also provided time for potential rivals to enter the market too.

Consultancy work can provide a steady, lucrative, cash flow. This
can be addictive. Using your staff for product development will cut
cash flow until the product is ready. Product launch can be
expensive and risky; the promise of cash today may be more
appealing than cash tomorrow.

Indeed, provided you are successful at offering services you should
consider the need to change your business plan altogether. Just
because you originally envisaged producing products does not mean
you have to produce products someday. If there is good money made
in services than there is no reason to stop.

Examples John is CEO of a small software company in central England. The
company makes money by developing software for other businesses.
Profits are used to help develop the company’s own products. The
time has been used to focus the company on markets where its
technology is useful.

Also known as Bootstrap

Related
patterns

Contrast this pattern with Services Trump Products. In both patterns
the company provides services, however, in one the company is
moving from products to services and in the other the company is
moving from services to products.

Early versions of the product may provide an opportunity to follow
Continuing Services for Product, later, when the product is better
developed consider Complementor, Not Competitor, other firms may

(c) Allan Kelly - www.allankelly.net Page 25 of 26

260

Business strategy patterns for sustainable knowledge based comp
Business Strategy Patterns 17-Dec-05

supply the services and allow you to concentrate on the product.

It is important that you whole know which pattern you are following.
Problems can occur when people are pursuing different objectives.

Sources &
Known
Examples

Authors observations

Martek Marine, Financial Times - undertook ship services work to
finance development of maritime safety technology.

Acknowledgements
The author would like to thank Klaus Marquardt for his valuable advice and suggests
during shepherding for VikingPLoP 2005 - and for keeping me working until the last
minute!

In addition, this paper was greatly enhanced by comments and feedback from the
business patterns workshop group at VikingPLoP - in particular Linda Rising, Cecilia
Haskins and Florian Humplik - who was also good enough to give a second set of
comments on the revised paper.

History
Date Event

April 2005 Submitted to VikingPLoP 2005 conference.

August 2005 Shepherded version submitted for VikingPLoP.

November 2005 Incorporated VikingPLoP comments and feedback.

December 2005 Additional editing and comments from Florian Humplik.

Bibliography

(c) Allan Kelly - www.allankelly.net Page 26 of 26

261

261. Load Balancing and High Availability Patterns

Load Balancing and High Availability Patterns

Kai Wei and Antti Ylä-Jääski
Telecommunications Software and Multimedia Laboratory

Helsinki University of Technology
kaiwei@cc.hut.fi

Abstract

To resolve the limited power of a single computing machine, clusters are widely
used in the Internet world. As a result of using clusters great attention has been
paid to load balancing. In this paper, from the cluster point of view, various load
balancing and high availability related patterns are introduced. Software developers
can utilize the patterns presented in this paper to develop load balancing and high
availability applications.

1 Introduction

Load balancing and high availability solutions have been implemented in critical equip-
ment for a long time. Their importance has been further highlighted as the Internet
evolves to be an essential part of people’s life. More and more efforts have been spent on
the development of load balancing and high availability solutions. This paper presents
patterns of commonly used load balancing and high availability solutions.

Load balancing provides benefits to the Internet in a number of ways: it improves effi-
ciency for network bandwidth and server utilization, increases the reliability of services
to clients and enhances scalability of services. Identifying the need and choosing the
pattern accordingly may help to design a load balancing solution. In addition to load
balancing, high availability of a service is usually required to make the service available
all the time. Thus, the high availability solution is designed along with the load balancing
solution.

The relationships between the patterns to be introduced in this paper are presented in Fig-
ure 1. From the figure, we can see that both load balancing with pre-defined algorithms
pattern and high availability of server in cluster pattern can support the pattern of server
cluster with one unique virtual access point. This means that a load balancing pattern can
work with high availability pattern within the scope of a cluster environment.

1

262

Load Balancing and High Availability Patterns

HUT TML VikingPLoP2005

Figure 1: Pattern Relationships

The persistent load balancing with pre-defined algorithms pattern and geographical load
balancing using DNS and proximity by source IP address pattern complement the pat-
tern of load balancing with pre-defined algorithms. Meanwhile, it is possible for them to
enhance each other. A load balancing pattern could be chosen according to the require-
ments, such as distance between servers, the persistence of traffic, etc. In general, several
patterns can work simultaneously without conflicting with each other.

In addition to providing the function of load balancing, geographical load balancing using
DNS and proximity by source IP address is a specialization of high availability of server
in cluster. Geographical high availability may be the best name to describe this function.
It can balance the load according to the availability of sites. In other words, the DNS
server only returns the IP address of the available real server when it is enquired.

The terms used in the patterns are explained at the end of the paper.

2 Patterns

2.1 Pattern: Server Cluster with One Unique Virtual Access Point

Context: In a network, each server is usually dedicated to provide a specified amount of
unique services. A certain service in one of these servers might be in high demand.

Problem: When the server is over utilized, it responds the clients’ request slowly or does
not respond at all. This in turn can reduce the performance of the entire network, as
requests of clients are rejected by the server and then resubmitted by the clients.

Forces: The server in which one service runs has limited capability, adding more hard-
ware or upgrading hardware results in a more complex application and an increase in

2

263

Load Balancing and High Availability Patterns

HUT TML VikingPLoP2005

cost.

If one specific service runs over only on one server, the service is not available when it
needs maintenance or OS upgrade.

Under the condition that requires the availability of 24X7, such as in production line or
B2B web, interruption of a service is not allowed.

If the service is critical in the Internet, such as an authentication service, its unavailability
affects the entire network even though other services are available.

Bugs in application program could cause an interruption of service. They may result in
financial loss. For example, a one-hour interruption of an online shop may lead to big
losses.

Solution: One unique virtual access point is adopted for handling the requests from
clients. Identical services run over multiple servers that connect to all the other servers
directly or via a back-end network. These servers are named real servers. The number of
servers expands with the increasing requests. One unique virtual access point is exposed
to the client side so that all requests are sent to this virtual access point, followed by
further deliveries to real servers.

A dedicated piece of equipment, in the form of specialized software running on a PC or
a specialized hardware, can be put in-between the real servers and clients. On the real
server side of this dedicated equipment, all real servers connect to it directly or via a
back-end network. On the client side, a virtual IP address is assigned to a pool of real
servers in which an identical service is running. The requests from the clients are first
sent to the virtual IP address, and then the dedicated equipment distributes them to the
available real servers. The responses from real servers will be returned to the dedicated
equipment, then forward back to the client. The dedicated equipment works like a relay,
taking care of collecting and distributing the requests, and forwarding the responses.

Resulting Context: When a server cluster is used, no more hardware is required to be
added to each server, the possibility of complicating the service is avoided.

The real servers behind the virtual access point are connected directly or via a back-end
network. This makes dynamic expansion possible.

When one server is not available for some reasons, the rest of the servers can take over its
load. However, an interruption of service will happen when all the real servers go down.
For example, if all the real servers are put in the same physical place and there is a power
cut, the real servers will lose their power supply and it will result in the interruption of
the service. The high availability of server in cluster pattern can provide a solution to
overcome this problem.

Even when multiple real servers are available to provide an identical service, it is likely
that the service will not always be available for certain clients if the load to them is
balanced unevenly. The load balancing pattern that will provide a solution for this will
be described later.

3

264

Load Balancing and High Availability Patterns

HUT TML VikingPLoP2005

For some of traffic, especially ones based on TCP or UDP, persistence is required. Namely,
requests over one connection must be handled by one real server all the time. This issue
will be discussed in the persistent load balancing section.

2.2 Pattern: Load Balancing With Pre-defined Algorithms

Context: There is a server cluster. The real servers in it have either similar or different
capabilities.

Problem: If the virtual access point in a server cluster virtual access point cannot bal-
ance traffic according to the capability of each real server, real servers with low capability
might be overwhelmed while real servers with high capability will have redundant capa-
bility.

Forces: The performance of real servers should not be sacrificed when implementing the
load balancing solutions. Thus, it should be implemented via the virtual access point.

In case of real servers in cluster having the same capabilities and their capabilities re-
maining equal during the handling of requests, evenly balancing the load can result in
maximum benefit.

In some cases, even though the servers in cluster have the same capabilities, varied re-
sources required by each request may result in the real-time capability of each server
being different at any time. To balance the load according to the actual capability of
servers can lead to good performance.

When traffic load rockets and the capabilities of existing real servers are saturated, new
real servers should be added to the pool transparently without interrupting access to the
service.

Solution: The load of traffic can be controlled in virtual access point by using various
algorithms. Using these algorithms, the load can be balanced intelligently and the capa-
bility of whole cluster can be fully utilized. The most popular algorithms are roundrobin,
least connection, response time, dynamic load and weight balancing. These algorithms
can be used separately, as well as combined together, e.g., the weight algorithm can work
with any other algorithm at the same time.

With the roundrobin algorithm, new connections are distributed to each real server in
turn. Namely, the first connection goes to the first real server in the server cluster, the
next connection goes to the second real server, followed by the third connection, and so
on. When all the real servers in this cluster have received at least one connection, the
distributing process starts all over again.

With the least connection algorithm, the number of connections currently distributed to
each real server is measured by the virtual access point in real time. The real server with
the fewest connections is chosen for distributing the next client connection request.

4

265

Load Balancing and High Availability Patterns

HUT TML VikingPLoP2005

The response time algorithm uses the response time of real servers to distribute new con-
nections to real servers. The virtual access point monitors the response time in real time
and distributes new connection inversely proportioned to response time. For example, a
real server with half the response time as another real server will receive twice as many
connections. This algorithm is the most self-regulating. The fastest real servers typically
can get the most connections over time. As a matter of fact, the response time algorithm
is one of the dynamic load balancing algorithms. Besides it, more statistics about real
servers can be collected at the virtual access point in real time, such as CPU usage, mem-
ory usage, the number of connections, etc. These statistics are analyzed by the virtual
access point and the actual capability of each server is determined according to the anal-
ysis result. Then the traffic load is distributed according to the calculated actual capability
of each real server.

With the weight algorithm, weights are assigned to each real server permanently accord-
ing to their design capabilities. For example, there are two real servers in a server cluster.
If the capability of server1 is half of that of server2, the weight of server1 is 1, and the
weight of server2 will be 2. The more weight the real server gets, the more new con-
nections the virtual access point distributes to it. For instance, using the same example,
the first two connections go to server2, and the third connection goes to server1. In this
fashion, the connections are distributed proportionally to the weight of each real server.

Taking advantage of load balancing algorithms, new real servers can be added to the pool
of servers transparently without interrupting access to service.

Resulting Context: The new real server can be added to the cluster seamlessly when the
maximum capability of the cluster has been reached. When the new server is ready to
accept the request, virtual access point starts distributing the load to it. The virtual access
point distributes new connection depending on the adopted algorithm. When using the
roundrobin or response time or dynamic algorithms, the new real servers are treated as
existing real servers. When using the leastconn or weight algorithms, new connections
will be distributed to new real servers until the connections that they carry match the rule
of algorithm, namely proportional to the connections carried by old real servers.

When real servers in the cluster have the same capabilities and their capabilities remain
equal during the handling of requests, the roundrobin or least connection algorithm can
be adopted.

By using the response time or dynamic load balancing algorithms one can provide real
time load balancing. They are suitable for real servers whose capabilities change from
time to time.

When real servers in cluster have different capabilities, the weight algorithm is the best
choice.

The location of real servers can be far away from each other. In some cases, the real
servers may be located in difference countries. Thus, the algorithms mentioned in this
pattern are not suitable anymore, because the real servers cannot be connected to each
other directly or via a back-end network. Instead, wide area network technology is

5

266

Load Balancing and High Availability Patterns

HUT TML VikingPLoP2005

adopted between real servers. This issue will be discussed in the pattern of geograph-
ical load balancing using DNS and proximity by source IP address section.

2.3 Pattern: Persistent Load Balancing

Context: The traffic over socket and connection oriented protocol can be exchanged
only after the connection has been established, when balancing it, in addition to using
the algorithms in load balancing with pre-defined algorithms pattern, persistency must be
guaranteed.

Problem: Any packet over one TCP connection should be forwarded to one real server
that initially handled the request, otherwise the connection will be aborted and the client
cannot be served. It is also true for some traffic based on UDP. How is persistency
achived?

Forces: When load balancing algorithms, such as roundrobin or least connection are
used, the packets from one client may be distributed to different real servers. The TCP
connection should be established in advance, thereafter requests and responses are ex-
changed over this established connection. If any server receives a TCP request or re-
sponse without a connection being established in advance, it would discard the request
or response silently. In this case, no client can be severed.

Even though UDP is a stateless protocol, some applications developed over it also have
the requirement of connection persistence. It is called protocol specific persistence.
For example, to take advantage of simplicity of the UDP, Wireless Application Proto-
col (WAP) has been invented over UDP. The WAP message can be in connection mode
or connectionless mode. For the connection mode WAP message, UDP connection per-
sistency is obligatory for keeping it working. With load balancing algorithms such as the
round robin algorithm, UDP packets from the same source socket may be forwarded to
different real servers without taking established connection to the account. Real servers
will drop any packet that cannot match an established connection.

In any authenticated web-based application, it is necessary to provide a persistent con-
nection between a client and the web server to which it is connected. Because HTTP
does not carry any state information for these applications, it is important for the browser
to be mapped to the same real server for each HTTP request until the transaction is com-
plete. This ensures that the client traffic is not load balanced mid-session to a different
real server, forcing the user to restart the entire transaction.

In e-commerce web sites, a real server may have data associated with a specific user that
is not dynamically shared with other real servers at the site. If the request from this client
is not forwarded to the real server with associated data, the transaction cannot go on and
the trade will be interrupted.

Solution: The traditional way to achive TCP or UDP session persistency is to use the
source IP address or source socket as the key identifier to do load balancing. The packets

6

267

Load Balancing and High Availability Patterns

HUT TML VikingPLoP2005

from the same IP address or same sockets are always forwarded to a certain real server
within a period of time.

Cookies are strings passed via HTTP from servers to browsers. The cookies can be
inserted in HTTP packets and it can be queried to identify the client. The virtual access
point can query each HTTP packet and ensure the packet with the same cookie or certain
content residing in the cookie is distributed to a certain real server, hence the connection
persistency can be ensured.

The SSL session ID is fixed when SSL transactions are running. Persistency based on
SSL Session ID can be ensured until the transaction is complete.

Resulting Context: The IP address and port used by client are not changed after con-
nection is established to a virtual access point. Thus, if the virtual access point always
distributes the packets from certain socket to a certain real server, the persistency can be
guaranteed.

SSL is a set of protocols built on top of TCP/IP that allows an application server and
client to communicate over an encrypted HTTP session, providing authentication, non-
repudiation, and security. The SSL is adopted by e-commerce web site. The SSL session
id is assigned to each client when the request is initialized, and is unchanged during
entire transaction. Using SSL session ID, a virtual access point forwards the requests
from clients to the same real server to which it was bound during the last session.

2.4 Pattern: Geographical Load Balancing Using DNS and Proxim-
ity by Source IP Address

Context: High content availability is achieved through mirroring content at all sites. If
one site fails, the others take over the load.

The real servers can be reached through many routers or exchange equipment. In some
cases, the real servers may be located in different countries.

Domain name resolution is required before clients sending requests to application servers.

Problem: When the algorithms mentioned in the load balancing with pre-defined algo-
rithms pattern are used, it not only results in latency, but also under utilization of the best
performing site. How can this be avoided?

Forces: The real servers are located in multiple physical sites. It is not guaranteed that
the request will be sent to proximal real server. For example, there are two real servers;
one in Helsinki, the other is in New York. When the roundrobin algorithm is adopted,
requests from the client in Helsinki may be forwarded to New York. Obviously it will
lead to huge latency comparing with sending this request to the real server in Helsinki.
In addition to country, the border of sites can be defined by less bandwidth within the
network topology, political restriction, service provider and security measure.

7

268

Load Balancing and High Availability Patterns

HUT TML VikingPLoP2005

The best performing sites should receive the majority of traffic over a given period of
time but they should not be overwhelmed. The performances of sites vary according to
their capability and load on them. The performance indicators can be collected over a
given time period to balance the traffic, for example, every minute. The period should
be adjustable, because if performance indicators are collected frequently, it will increase
unnecessary load; if they are collected rarely, it cannot reflect the true situation of each
site.

It is possible to configure global load balancing by using complex system topologies
involving routers, protocols, and so forth. However, due to the complexity, it makes the
configuration difficult to be designed and implemented and hard to maintain.

Solution: Utilize Domain Name System (DNS) and proximity by source IP address to
balance traffic.

The domain name, not the IP address is used in the application and all the IP addresses
of real servers are recorded in DNS server. When application queries DNS for name
resolution, the DNS first checks the source IP address of DNS request, and picks up one
IP address of a real server, which is closest to the location of this IP address[1].

In addition to providing to DNS resolution, the DNS can utilize tools to monitor the status
of real servers periodically.

Resulting Context: When a client initiates a DNS query, the DNS server can return the
IP address of real server closest to the client. With this mechanism, the client can be
served by the proximal real server, and there will be no latency during client connection
set up[1].

Tools on the DNS server monitor the status of the real servers so that the IP address of
real server with lighter load can be returned by the DNS. Thus the best performing sites
receive the majority of traffic over a given period of time but are not overwhelmed

Because the DNS server plays an important role in the geographical load balancing, the
routers and protocols are not required for load balancing purpose. Even though routers
and protocols could be used in this topology, they exist to aim other targets. Thus the
topology can be simplified.

Due to the fact that the DNS is only involved in the DNS resolving phase, not in later
connection establishment, tear down and transaction processing, the pattern of load bal-
ancing with pre-defined algorithms and persistent load balancing are compatible with
it.

2.5 Pattern: High Availability of Server In Cluster

Context: In a cluster, when one real server or service on that server is not available for
some reason, but the virtual access point still distributes requests to the failed real server
or failed service, the client cannot be served.

8

269

Load Balancing and High Availability Patterns

HUT TML VikingPLoP2005

Problem: How can it be ensured that requests from clients are distributed to running
server or service, not to failed one, so that clients can be served properly?

Forces: In a high demand network topology, no device can create a single point of failure
for the network or force a single point of failure to any other part of the network. This
means that your network remains in service despite the failure of any single device.

In the geographical load balancing situation, if the DNS server returns the IP address
of failed real server to client, the further client request to failed real server cannot be
handled.

If just one virtual access point exists, the cluster cannot work if it fails.

Solution: The virtual access point monitors the status of real server periodically. It is
called a health check. When the real server is healthy, traffic is distributed to it. Otherwise
traffic is not sent to it until it is detected to be healthy again. When multiple services are
running over one real server, the status of each service is monitored. Once a service on a
real server is unhealthy, traffic is merely not sent to this service. This does not affect the
traffic to other services in this real server.

To guarantee high availability, put two or more virtual access points in-between clients
and real servers. Multiple virtual access points monitor the healthy status among each
other.

The DNS monitors the status of real server periodically. When the real server is not
available, the DNS server will remove its IP address from the DNS records.

Resulting Context: As one kind of health check, the virtual access point sends requests
to all real servers or services. When the expected response comes back, the virtual access
point continues to distribute traffic to it. Otherwise the virtual access point stops forward-
ing traffic. However, when a real server fails between two consecutive health checks, it is
likely for a virtual access point to still distribute traffic to failed real server. In this case,
the interval between two health checks can be adjusted to improve the above situation.
Bear in mind that too small interval may result in performance downgrade of the virtual
access point, because virtual access point has to utilize certain resource to carry on the
task of health checking.

When geographical load balancing is adopted, the DNS removes IP address of failed
server from the DNS record. Thus it is impossible for DNS to return it to client upon
DNS query request. Consequently the client request is not forwarded to a failed real
server.

Multiple virtual access points could be in the mode of either active-standby or active-
active. When using active-standby mode, one virtual access point holds the active flag.
The clients only send traffic to the one with the active flag. The other virtual access points
monitor the status of active one periodically. When the standby ones detect the failure of
the active point, one of them takes over the active flag and starts to handle traffic. When
using active-active mode, all virtual access points have activated their own flags. When
one of them fails, one of the working access points takes over the active flag from the

9

270

Load Balancing and High Availability Patterns

HUT TML VikingPLoP2005

failed one and starts to handle traffic on behalf of it.

When multiple virtual access points are adopted, they check the healthy status of each
other periodically. The virtual access point may fail between two health checks from
other virtual access points. So the interval of health check should be adjusted to avoid a
long delay in detecting failure, but also avoid affecting the performance of virtual access
point too much. In addition, when one virtual access point fails, the failover happens.
Usually the network topology has to be reconstructed. It may take time for events such
as reconstructing the network with the spanning tree protocol enabled; this can take up
to 45 seconds. During the network reconstruction, no traffic can go through. To mini-
mize reconstruction time, the network topology and protocol used in network should be
selected with consideration.

3 Related Patterns

The patterns presented in the paper extend the performance and reliability patterns [2].
The key improvement is that geographical load balancing and high availability are cov-
ered by this paper. They are not introduced in the earlier performance and reliability pat-
terns. Additionally, in the solutions of load balancing with pre-defined algorithms pattern
and persistent load balancing pattern, more methods and concrete implementations are
presented in this paper.

4 Glossary

Cluster: a group of servers or services that act like a single system. In the external world,
the clients experience only a unique machine or a unique access point.

Client: the application or user which is using services in a client/server relationship.
For instance, when using a browser to surf the Internet, the browser is the client. The
computer, which handles requests of a browser and respond HTML pages, is called the
server.

Persistency: all of transactions from a certain client are always distributed to a certain
real server, to avoid the service interruption.

Real Server: a computer or computer program that physically provides services to clients.
It is opposite to a virtual access point.

Session: a series of interactions between two communication end points that occur during
the span of a single connection. Typically, one end point requests a connection with
another specified end point and if that end point replies agreeing to the connection, the
end points take turns exchanging commands and data. The session begins when the
connection is established at both ends and terminates when the connection is ended. [4]

10

271

Load Balancing and High Availability Patterns

HUT TML VikingPLoP2005

Transaction: a sequence of packets exchanging between client and server to satisfy a
request so that the integrity of request can be ensured.

Virtual Access Point: the access point for each collection of services. Clients send re-
quests to a virtual access point and are not aware of real server cluster behind the virtual
access point.

5 Acknowledgements

We would like to thank Dietmar Schuetz for his excellent shepherding and his patience,
and Juha Pärssinen for his valuable comments.

References

[1] Coyote Point System Inc, Establishing Geographically-Distributed, High-
Availability Internet Presence with Coyote Point Envoy, 14.02.2000 [Referred
20.03.2005] <http://www.coyotepoint.com/pdfs/cpenvoywp.pdf>

[2] Microsoft, Performance and Reliability Patterns, 2005 [Re-
ferred 20.05.2005] <http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/dnpatterns/html/DesLoadBalancedCluster.asp>

[3] Mockapetris P., RFC 1035 - Domain names - implementation and specification,
11.1987 [Referred 13.04.2005] <http://www.faqs.org/rfcs/rfc1035.html>

[4] whatis.com, session, 30.06.2004 [Referred 11.03.2005]
< http://searchwebservices.techtarget.com/sDefinition/0,290660,sid26_gci541649,00.html>

[5] Zeus Technology, Seven Myths of Traffic Management, 2004 [Referred 14.03.2005]
<http://www.zeus.com/library/white_papers/7_myths.pdf>

11

273

273. Applied MVC Patterns

Applied MVC Patterns

A pattern language
© 2005 Sergiy Alpaev

mailto: s_alpaev@acm.org

+380 050 342 49 21

Ukraine, Dnepropetrovsk, Mironova str 15

Permission is hereby granted to copy and distribute this

paper for the purposes of the VikingPLoP '2005 conference.

Version 1.0

Abstract
How to get advantages of MVC model without making applications unnecessarily complex?

The full-featured MVC implementation is on the top end of ladder of complexity. The other

end is meant for simple cases that do not call for such complex designs, however still in

need of the advantages of MVC patterns, such as ability to change the look-and-feel. This

paper presents patterns of MVC implementation that help to benefit from the paradigm and

keep the right balance between flexibility and implementation complexity.

1. Introduction

We state that full-featured MVC implementation as described in [POSA] can be considered

quite complex in certain cases or it may lack solutions for some issues in other contexts.

For example, distributed applications have some specifics related to handling latency

issues, network connection errors, which affect the way we design interactions with user.

Such issues are typically beyond the scope of MVC papers. These issues are important part

of the context in which we apply MVC pattern.

The statement that classical MVC is hard to apply in some applications today is partially

proved by the fact that there is a huge set of various patterns which implement more

general paradigm of separation between data, presentation and interaction logic, for

example, see Document-View pattern [DOCVIEW], Hierarchical MVC [HMVC], Model-

View-Presenter [MVP].

This paper contains several MVC implementation options, which we identified applying

MVC in different contexts, such as interacting with remote Services layer, implementing

complex Presentation layer for the simple interaction scenarios and others.

2. Scope

This paper covers implementation of traditional MVC as described in [POSA] in the

context of information systems. We do not cover implementation of MVC in the context of

technologies like J2EE or others although the particular examples of pattern usage may

refer to certain frameworks or platforms.

In this paper we do not include the MVC variations, which omit one of the parts of the

traditional MVC triad concentrating its responsibilities in some other member of (former)

triad such as Document-View pattern (see [DOCVIEW]).

274

Applied MVC Patterns

 2

We also do not attempt to analyze all known variations of MVC although we mention quite

a lot of them in the pattern descriptions where appropriate. We focus on patterns, which are

rather specializations of general MVC paradigm, so the context in which MVC is applied is

also an implied part of the context for all patterns listed here.

3. Roadmap

This chapter is a kind of informal table of contents for the paper, which may help reader to

jump right to the most interesting pattern combination bypassing the rest of the paper.

The full-featured Model-View-Controller (MVC) triad is composed from a set of design

patterns, making it possible to handle quite complex scenarios of user interactions.

Nevertheless not all the scenarios actually need the full MVC complexity. We can arrange

various MVC implementation options into a kind of a virtual ladder of complexity from the

simplest scenarios to the most complex ones, as shown below. All examples and pattern

descriptions are written with the assumption that the application is built according to the

architecture described in Reference Architecture chapter (see chapter 5).

3.1 Simple data model and one View

Simple data models and lack of multiple views in the application is what often makes

people think that applying MVC in this case is overkill. However, in long run keeping strict

separation of View and Model has many benefits.

PASSIVE View and CLOSED MODEL patterns may help to keep the balance between

implementation complexities of today’s use cases and needs for future evolution.

3.2 Applications with large number of similar interaction patterns

To maximize reusing of code that implements similar interaction patterns is the primary

design goal for such applications. We need to make the Controller part as common as

possible to reuse it in the scenarios where user interactions are common.

ACTIVE VIEW pattern frees the Controller from responsibility of filling the View with data.

MODEL AS SERVICES FAÇADE pattern frees the Controller from knowing where the data are

taken from. Both patterns used together allow extracting common Controller, which can be

reused to handle common workflow.

3.3 Applications with complex interactions with remote Services
layer

Certain application requirements may make impossible providing communication with

remote services in transparent manner to the user ([NOTEDC]). For example, if application

is supposed to communicate over slow connection then latency becomes a serious usability

factor. Another issue, which typically affects the way we design interactions with user is

network connection errors. In case of connection interruption we often cannot do anything

else than suggest the user to repeat the operation later, so speaking MVC language we have

to introduce special logic in the Controller which handles interactions with user to resolve

network connection problems. DISCONNECTED MODEL pattern addresses separation of

responsibilities of interacting with remote Services layer between parts of the MVC triad.

275

Applied MVC Patterns

 3

3.4 Applications with complex Presentation layer

The complexity of some applications is mostly driven by the way the domain objects are

presented on the screen. If we drop the user interface details from the use case descriptions,

and extract high-level abstract scenarios from the use cases, these scenarios will be quite

simple. The likely direction of evolution for such applications is increasing Presentation

Layer complexity and adding new extensions to the use cases, being related to the way

domain objects are presented to the user. To provide grounds for the smooth evolution of

the Presentation layer we add direct connection from the View to the Model, see ACTIVE

VIEW pattern.

Other patterns that may help in implementation of such applications are USE CASE

CONTROLLER (see [UCC]) and MODEL AS SERVICES FAÇADE.

3.5 Applications with complex validation rules and requirements
for online viewing of application data

OPEN MODEL pattern relaxes the requirement to keep data in the Model conforming to

business rules of an application all the time. This helps to implement quite complex

interaction scenarios, for example, having many View instances for the same domain object

that show the object data in online mode, and checking complex validation rules on the fly,

as the data are being edited.

3.6 Pattern relation map

The diagram below shows relations between patterns presented in this paper. Names near

the connections reflect the value, which the patterns bring to each other when implemented

together. For example, we may allow extracting of common Controller component for the

set of similar interaction patterns using MODEL AS SERVICES FAÇADE and ACTIVE VIEW (see

bidirectional connection between MODEL AS SERVICES FAÇADE and ACTIVE VIEW patterns).

enables reusing
validation rules in
domain objects

ensures
that only the Controller
is in charge
of handling validation
errors

decouples View
from Model

allows making online
presentation of domain
objects with validation
rules

these two patterns
make possible
extraction
of common Controller

hides
Services Layer details
from Controller

separates
data model concerns
from Services Layer interaction concerns

hides View<->Model
data exchange protocol
from Controller

Open Model

Closed Model

Passive View

Active View

Model as Services Facade Disconnected Model

MVC

276

Applied MVC Patterns

 4

4. Considerations

The following are common considerations that were taken into account analyzing the

patterns included in this paper.

Separation of responsibilities. The patterns in the paper differ in the way they distribute

responsibilities between parts of the MVC triad. Two examples of different ways to

distribute responsibilities of interacting with Services layer are DISCONNECTED MODEL and

MODEL AS SERVICES FAÇADE;

Automated testing. In certain cases, we may simplify writing automated tests for the parts

of the triad by using some of the patterns. The typical examples are

PASSIVE View and DISCONNECTED MODEL;

Common code isolation. Several patterns facilitate extraction and reusing of the common

code which implements typical interaction patterns with user, for example: “Do you want

to save changes, Yes/No/Cancel”, “Abort/Retry/Ignore” idioms and applications with

common “Open/Save changes/Close” user actions;

GUI dependencies. All patterns take into account the need to keep dependencies of

application code from GUI framework as thin and as isolated in the View as possible.

5. Reference Architecture

The patterns described in this paper are applied in the context of specific layering scheme.

The short description of the layers is given below:

• Presentation layer contains classes, which interpret user actions and present

information to the user.

• Services layer defines an application's boundary and its set of available operations

from the perspective of interfacing client layers. It encapsulates the application's

business logic, controlling transactions and coordinating responses in the

implementation of its operations [FOW]. Some patterns in the paper assume that

Services layer is physically placed in remote components and accessed through

some sort of façade (for example, Business Delegate, see [J2EECORE]).

• Domain Model is an object model, which implements business rules and defines

object-oriented abstractions of problem domain [FOW].

• Data access layer makes domain objects persistent.

6. MVC Patterns

Model View Controller

There are so many books and papers, which describe MVC that it is impossible to list them

all. Instead, we decided to select description of the pattern given in “Pattern-Oriented

Software Architecture. A System of Patterns” (see [POSA] for detailed reference), which,

in our opinion, is quite comprehensive for the needs of this paper on the one hand and

widely known on the other hand to be considered as commonly accepted description of the

277

Applied MVC Patterns

 5

pattern. There are other great sources, which give description of MVC, one of which is

GoF book (see [GOF]).

For convenience of reader we include small excerpt of the pattern from POSA book:

Context Interactive applications with a flexible human-computer interface

Problem … building a system with the required flexibility is expensive and error-

prone if the user interface is tightly interwoven with the functional core.

This can result in the need to develop and maintain several substantially

different software systems, one for each user interface implementation.

Forces The same information is presented differently in different windows, for

example, in a bar and pie chart

The display and behavior of the application must reflect data manipulations

immediately

Changes to the user interface should be easy and even possible at run-time

Supporting different “look and feel” standards should not affect code in the

core of application

Solution The Model component encapsulates core data and functionality. The Model

is independent of specific output representations or input behavior.

The View components display information to the user. A View obtains data

from the Model.

Each View has associated Controller component. Controllers receive input,

usually as events that encode mouse movements … or keyboard input …

Events are translated to service requests for the Model or the View.

Passive View

Context Data model of the use case is very simple and is not likely to evolve.

View does not have any internal MVC triads that might require accessing

Model data bypassing the Controller.

The MVC triad is not going to be extended by adding new View types.

The mapping between Model domain and View domain is very simple.

View does not need to interpret Model data in own way to present them on

the screen or this interpretation is common and is not part of application

specific logic.

Problem Full-featured MVC triad assumes that View has knowledge about Model.

That couples View to Model and unnecessary complicates View

278

Applied MVC Patterns

 6

Forces Isolation of components from each other. The more components are

isolated from each other the easier the application is to maintain.

Reusing View. The same view needs to be reused to present different types

of data. For example, GUI Widgets that were enhanced for the one

application might be useful in other applications. Common dialogs and

forms like Microsoft Windows Common Print Dialog are good to reuse too.

Solution Make the View unaware of the Model. Make the Controller responsible for

synchronizing the View state with the Model state.

Rationale The View becomes simple translator of Controller calls to calls to the GUI

framework. The View also gets completely decoupled from Model and as a

result the View gets freedom of speaking own domain language in its

programmatic interface; in extreme case the View can be just some GUI

control reused from the framework as is.

 The lack of need to extend the application later with new View types and

simple data model are prerequisites for using this pattern. If these

prerequisites are not met, we do not get the benefits promised by the pattern

because the design is not simplified so much comparing to full-featured

MVC when this pattern is applied.

 When the data model of application is complex and will likely evolve over

time, then using the PASSIVE VIEW pattern complicates the design. The

Controller is involved in the process of data exchange between View and

Model so we will have to touch Controller whenever the data model evolves

(for example new fields are added or the structure of entities is changed).

 When the application has several types of View and is going to be extended

with more View types, the fact that the Controller is included in the chain of

data exchange between View and Model also plays its negative role. The

Controller has to know about every particular type of View to be able to feed

it with data (assuming that the views show different types of application

data). This makes the task of adding new types of views more complex. The

better solution in this case is ACTIVE VIEW pattern that moves the Controller

out of the chain of data exchange.

Resulting
Context Automated testing

 Provided that actual View implementation is hidden behind abstract

interface to isolate GUI framework specifics from the Controller both Model

and Controller can be subjects for automated testing. To do that we will need

to provide mock View implementation.

Separation of responsibilities

 View is not responsible for contacting Model to get data anymore, and the

only responsibility it gets is to maintain image on the screen. The View and

the Model get simple and isolated from each other.

279

Applied MVC Patterns

 7

 The Controller becomes less reusable since it is coupled with the View in

this pattern. This is typical for classical MVC so we do not loose anything

here comparing to MVC.

In extreme cases when the View type is just a class from GUI Widget

without any wrapper over it, the Controller becomes coupled to GUI toolkit.

Example Suppose we are designing new GUI control, for example, new fancy edit

box which supports entering data by mask. We assume that the design is

done in the way that mapping of data entered by user to what is expected by

application (ZIP code, for example) is done by application, which is out of

the scope of the control. For the control the data are just string conforming

to the mask. The data model of the control is as simple as it could ever be.

 The logic of interpreting user keystrokes and evaluating them against the

mask is placed in the Controller and this is what makes our edit box unique

among other edit boxes. This is highly unlikely that we will need to reuse

the same Controller with other View types other than edit box (or those,

which cannot be implemented somehow as an edit box).

 Thanks to all listed above we can simplify our MVC triad eliminating

connection between View and Model and making the Controller a bus of all

interactions between the two.

 That modification simplifies View effectively decoupling it from the Model

interface. Evolution of the Model does not affect the View.

 With that modification we can use some third-party object as a View

instance, for example the View may be implemented as a thin wrapper over

Swing JTextField. Since the View is decoupled from the Model, it does not

have to implement string representation of edit box content as a member

variable. Actually, our View does not need even to speak the language of

application, so it does not need method setString (unless we want it to be

designed that way). For this particular example, the View probably will need

something like setCharAt(int pos, char ch) method, since the mask will

define where the next character will appear and if it will be the preceded by

symbol from the mask (like ‘)‘ for phone number). That makes the View

responsibility very narrow and focused (the responsibility is maintaining

image on the screen).

Closed Model

Context The user input may violate domain validation rules.

View has own cache of data for presentation and does not request model

updates on every keystroke (this is true for most designs of dialogs and

forms based on today’s GUI frameworks).

The application use cases do not require showing same data online in

multiple views when the views are updated immediately when something is

changed in the Model.

Problem Wrong or inconsistent data break integrity of system if not validated prior to

280

Applied MVC Patterns

 8

using inside the system.

Delegating validation to Services layer may decrease performance.

Forces Reusing domain model classes. It is desirable to reuse domain model

classes in the Model.

Reusing of domain model validation rules. Classes that represent domain

model of application already have reach validation rules, which are checked

in their mutator methods. It is highly desired to reuse this functionality.

Solution Make the Model responsible for validation of the data by triggering the

validation in all mutator methods. Treat the validation rules as the invariants

of the Model object. One of the options may be to keep an instance of

domain object in the Model and delegate all validation to that object making

it responsible for keeping itself in a consistent state.

Resulting
Context

The Model contains valid and complete data that are safe to use by anybody

around.

The user cannot enter everything at once so data visible on the screen are

typically inconsistent until the last moment (when the last field is filled).

The Model cannot do validation until the data form something meaningful

and compose something, which can be validated. Typically, the data are

ready for validation when user requests application to commit changes. To

make sure the data are not passed to the Model until they compose

meaningful block the View has to have own cache for the data and keep

them until the Controller requests updating the Model. This requirement for

the View to have internal cache for the data is a restriction for the pattern.

See OPEN MODEL pattern if that restriction makes the pattern inapplicable.

Disconnected Model

Context Services layer introduces new concerns to the application. One of typical

concerns is dealing with remote nature of calls to the components, which

are typically hidden by Services Layer facade. Other issues are handling

concurrency exceptions in client-server environment, timeouts in

communications, etc. For interactive applications these issues are

important usability factor.

Problem Allocating responsibility of getting data from Services layer to the Model

looks natural since the Model owns data in MVC, so it knows best what

data are needed at which moments of time (Model is the Expert according

to GRASP patterns, see [GRASP]).

However, this makes the Model responsible for two things – keeping data

consistent and dealing with Services Layer specifics. This makes the

Model code less manageable and complicates support.

Forces Separation of concerns. We do not want to mix the code that provides an

abstraction of data to display with details of how reading of that data from

the Services layer is handled.

281

Applied MVC Patterns

 9

 Providing safe access to Model accessor methods for the View. We

want to make sure that Model does not report any exceptional situations,

which might require involvement of user to Views according to the

convention described in chapter 7.1, Handling exceptions thrown by

Model.

Solution Place the responsibility of interacting with Services layer on the

Controller effectively disconnecting the Model from Services layer.

Controller gets responsibility of feeding the Model with data.

Rationale You’ve got an excellent idea and switched back to your mail client

application to share the idea with a friend and but application hangs. You

are waiting and getting nervous… It wakes up but the idea is gone… One

of the reasons why it may happen is that there is the code somewhere in

the email client, which does some network operations whenever you have

an excellent idea. That code probably has even an evil comment,

something like “This code is loading Contacts when user opens window

for new message. Since the process of loading contacts from remote

server is slow we do not load them until user starts composing new

message (see LazyLoad pattern)”. This example illustrates that network

operations rarely can be designed in the way that they are happening

behind the scenes without involvement of user. Even if application does

loading of contacts in separated thread, that loading still can end up with

network connectivity errors, which may need user attention (or that

loading may not finish on time and user has to wait anyway).

The given example shows that while the Model can be considered an

Expert (see [GRASP]) in the way how data should be managed it rarely

can be good at managing how these data are obtained, since the process of

getting data (or saving) in client-server application typically involves

interaction with user. The Controller is our Expert in interactions with

user. Putting responsibility of interacting with remote services to get data

to the Controller is beneficial since this way the Controller naturally

becomes a handler of all user interactions related to handling network

issues. For our example above, our mail application might give to the user

some control over loading contacts in background mode. One of the

options might be to load them in asynchronous mode keeping UI

responsive (Controller decides if to start loading and instructs Service

layer adapter to fill the Model in background) and present some indicator

in the UI of the pending loading process (Controller would watch the

progress and instruct View to update indicator).

Note that the Controller interacts with remote services by means of some

façade so it does not have to deal with any network specifics. The job of

the Controller in this case is just interaction with user to resolve problems

and handling latency issues from user interactions point of view (for

example, instructing Presentation layer to show progress bars).

Resulting
context Separation of responsibilities

 Model is responsible solely for mapping domain objects to meet what

Views expect to see.

282

Applied MVC Patterns

 10

 In most applications, this is quite simple a task so the Model also gets

very simple.

 In addition to standard responsibilities implied by MVC the Controller

gets the responsibility of talking to Services layer (to façade over Services

layer). That makes Controller more complex and may lead to mixing of

concerns because the same component gets responsibility of managing

high-level workflow of interaction and workflow of interaction with

Services layer. That may be solved by delegating responsibility of

handing remote interactions to some other Controller placed on top of

Services layer.

Automated testing

 Model becomes an autonomous object that does not have any

dependencies to other objects. This makes the task of writing automated

tests for it quite easy.

 If OPEN MODEL is used with DISCONNECTED MODEL (this way, Views do

not use domain objects directly) we may need to make some precautions

in order to prevent invalid data from being given to Services layer without

proper validation. The Model (which knows when data are valid and when

they are not) in OPEN MODEL pattern is allowed to have invalid data and it

cannot guarantee that Controller takes them after proper validation.

 One of the options may be drawing a clear boundary between interfaces of

the Model designed for Controller and those designed for Views. Model

methods of the Controller interface should perform required validation

before returning data to the Controller. In its turn, the Controller should

expect validation errors reported from the methods of this interface and be

ready to handle them.

Example The dialog that shows some large sets of data in page-by-page manner

may be a good candidate for applying the DISCONNECTED MODEL pattern.

 As an example, let’s use a scenario for the application: the dialog that

shows a long list of employees expecting user to select ones for a project

in some Human Resource (HR) Management system.

 Since the data set is large, we usually do not want to keep everything in

memory. Instead, the data are read on demand. As we noted, reading data

on demand can be rarely considered a private implementation detail of

Model object since it involves interactions with user.

 The solution with DISCONNECTED MODEL pattern is presented on the

following figure.

283

Applied MVC Patterns

 11

 Controller keeps track of what was already read and calls Services layer

(represented by EmployeeBrowsingService object) when required.

Model as Services façade

Context Use cases of application have many standard interaction patterns, which

differ only in the types of the objects that are manipulated by user. For

these standard interaction patterns the logic of handling exceptional

situations, which require involvement of the user, is also standard and the

same for every use case.

Interaction with remote Services layer does not require dealing usability

issues caused by remote nature of communication such as overcoming

network delays by using asynchronous loading of data.

Problem Allocating responsibility of interacting with Services layer to Controller

has some advantages, for example, the Controller is naturally becomes

handler of exceptional situations caused by Services Layer if those

exceptional situations require involvement of user. However, such a

distribution of responsibilities makes all three parts of the triad dependent

on types of domain objects being manipulated by the triad and prevents

reusing the Controller for all typical interaction patterns listed in the

Context.

Forces Reusing Controller. We want to reuse the Controller in all MVC triads

that implement the same scenarios and differ only in types of objects

being manipulated (Model) and the way they are presented (View).

Solution Make the Model responsible for fetching data from Services layer. Apply

ACTIVE VIEW pattern to isolate Controller from knowledge about the

types of objects being manipulated by the triad.

284

Applied MVC Patterns

 12

Rationale To maximize code reuse we need to hide variances between different

MVC triads that handle typical interaction patterns so that common code

can be isolated and parameterized to handle a particular use case.

 According to Context of the pattern, the only difference between

interaction scenarios of an application use cases is the types of domain

objects, which are handled in use case steps. We hide these variances

behind the Model, making it responsible to know the type of domain

object and Services layer interface used to obtain it. This way we

concentrate variable part of the use case scenario in two components: the

Model (which knows type of object and source to get it from) and View

(which knows how to present the object to the user). As a result, the

Controller has only one responsibility, and namely that one of handling

common interaction patterns; it can be reused with other Model/View

pairs.

The Model is the Expert (from GRASP patterns, see [GRASP]) in

knowledge which data to get since it holds the data.

Note that the Model becomes a Façade over Services layer only in context

of given MVC triad meaning that the Model is the one among other

members of the triad who takes over the responsibility of contacting

Services layer and isolates other members from knowing specifics of

Services layer. That does not mean however that the Model is the only

façade for Services layer in the context of whole application. The Model

does not have to contact Services directly; it can (and should) be done

through application level Services façade.

Related
Patterns

This pattern is used together with ACTIVE VIEW to achieve isolation of

Controller from domain model.

Resulting
Context Common code isolation

 The Controller becomes independent from the data types exchanged

between Views and Model. This makes it possible to reuse Controller in

order to handle all these similar use cases. For every use case MVC triad

is composed from common Controller and View/Model pair unique to the

use case. To make it work all the Views and Models have to conform to

common interfaces for View and Model respectively.

Separation of responsibilities

 Model gets responsibility to contact Services to get data when needed. As

it is noted in chapter 7.1 (Handling exceptions thrown by Model) it is

quite important to make sure that Views do not get exceptions reported by

Services to Model on behalf of View calls. To allow this the Controller

might need to make sure that the Model loads all required data prior to

receiving any call from View.

285

Applied MVC Patterns

 13

 Controller has responsibility to handle exceptions thrown by Model when

the Model contacts Services. If the requirements to handle exceptions

differ from scenario to scenario, the task of making reusable Controller

gets more complex. We suggest applying this pattern in simple scenarios

where all interactions with user are similar (see Context chapter of the

pattern) including exceptions handling.

 All knowledge about types of the data needed to serve the Views, and

how the data are retrieved is encapsulated in one object (Model). That

simplifies other parts of the triad.

Automated testing

 To test Controller we will need to provide mock View and Model.

 The pattern implies that we have abstract interfaces for Model and for

View so introducing mock View and Model does not require changes in

application code to extract interfaces.

Example Information systems typically work with two types of data: operational

data such as orders and dictionary data such as descriptions of customer

types, types of discounts available etc. These rarely changing data define

initial setup of the system for particular enterprise. Typically, the

workflow of editing this kind of data is common for all types of reference

data. It may look like simple sequence of steps such as the following:

open the entity, make changes, save the entity. In large information

system we may easily have up to hundred types of reference data types.

 The solution with Model as Services façade for a simple application that

manages types of discounts and types of customers is shown below. Note

that one type of Controller is used to serve both types of reference data.

286

Applied MVC Patterns

 14

 The Model and the Views take the knowledge about the particular type of

entity out from Controller making the Controller common for all entities.

Active View

Context Application manipulates complex domain objects but high-level workflow

of that manipulation is simple. There are many extensions of main simple

use case related to the way the domain object is presented on the screen.

The primary driver of complexity of application use case is the

complexity of domain objects and the way they are presented to the user.

Most likely, the future changes in application will affect the way the

complex domain objects are presented to the user or the domain model

itself while the high-level use case scenarios remain stable.

Complexity of presentation will be handled by internal Presentation layer

controllers, which may need to access the Model.

Problem Traditionally MVC assumes that the Controller is involved in interaction

between Model and View. If that interaction is designed in the way that

Controller becomes dependent on the domain model of application then

the evolution of the domain model affects the Controller. Changes in the

domain model may break the implementation of high-level use case

workflow concentrated in the Controller.

Forces Separation of concerns. We want to keep implementation of basic use

case workflow separated from complexity of the Presentation layer so the

two may evolve independently.

 Reusing Controller. We want to reuse main use case Controller with

other Model/View pairs

Solution Allow Views to talk directly to the Model to fetch data they need to

display hiding this way the knowledge about domain model from the

Controller and concentrate it in the Model and View. Delegate the

responsibility of transforming model data into data used for presentation

to the Views.

Rationale The complexity of Presentation layer in some applications may require

adding internal MVC triads to top-level View objects handle presentation

options of complex domain objects. For example, some parts of these

objects may be initially hidden to show later by user request. Interaction

scenarios may include quite complex steps such as drag&drop to adjust

some characteristics of domain objects, or launching wizards to perform

complex tasks.

 Internal MVC triads that implement these extensions of main workflow

require access to the Model.

 Allowing main MVC View object to access the Model directly simplifies

future evolution of View object. In this case adding new internal MVC

triads will not affect the main Controller.

287

Applied MVC Patterns

 15

Related
Patterns

ACTIVE VIEW decouples Controller from domain model if used together

with MODEL AS SERVICES FAÇADE.

However, it can also be used on its own to enable smooth evolution of

Presentation layer if reusing the Controller is not important.

Other patterns which enable smooth evolution of Presentation layer and/or

reusing common controllers are following:

USE CASE CONTROLLER pattern suggests implementing the Controller

very close to the use case abstraction level greatly simplifying

maintenance and evolution of application, see [UCC].

HIERARCHICAL MODEL VIEW CONTROLLER pattern breaks application into

many MVC triads that have their controllers linked together in

hierarchical manner. See [HMVC].

Resulting
Context

Views are free to evolve as dictated by new requirements for Presentation

layer without affecting high-level workflow of the use case.

 Extensions of main use case pertaining to the presentation options are

handled at a proper layer of abstraction.

 Views become coupled to the Model.

Automated testing

 Interactions between parts of the triad are more complicated which in turn

complicates the task of writing automated tests. This is the price to pay for

the benefits described in sections Separation of responsibilities and

Common code isolation section below.

Separation of responsibilities

 View gets responsibility to get data for display from the Model and to

convert it into form suitable for presentation. As a result, View and Model

completely hide the protocol used to feed the View with data and to

deliver data entered by user in the View back to the Model from the

Controller.

Common code isolation

 The way in which responsibilities are distributed between parts makes

Controller fully independent from the types of domain objects that are

manipulated by the use case scenario. This allows extracting Controller

classes that are common for many interaction patterns.

Example For one of the examples of using ACTIVE VIEW to satisfy needs of reusing

common Controller please refer to MODEL AS SERVICES FAÇADE pattern

description.

The following example shows how we can enable smooth evolution of

domain model and implementation of low-level use case extensions

related to presentation of domain objects by separation of high-level use

case workflow using ACTIVE VIEW pattern.

288

Applied MVC Patterns

 16

 Suppose we have use case for our new Human Resource (HR)

Management system given below:

 Assign an employee to the project

 Actor action System response

HR Manager specifies a skill set

necessary for a project and

requests a matching employee

from the system.

The system presents employees

who match the specified skill set

and not engaged in other projects.

System presents for every

employee the following

information:

Temperament,

Leadership skills,

Communication skills.

HR Manager makes a decision to

assign an employee to the project.

HR Manager considers

temperament, team playing

abilities, leadership skills, and

communication skills. HR

Manager specifies a project name

and confirms the assignment.

The system confirms that the

employee has been assigned to the

project.

 Let’s assume that we have that use case already implemented and our

system allows basic selection and assigning employees to the projects.

Our HR department continuously works on improving the process of team

building, so we feel that in the future the system will have to provide

more sophisticated scenarios of assigning people to the projects and that

would be the most likely direction of the system evolution.

Let’s simulate this kind of evolution by stating new requirement for the

system; for example, let’s assume that in new version the Project Manager

has to be able to select employees using history their past achievements in

addition to factors listed in the use case.

Note that the basic workflow of employee assignment is the same

sequence of specifying the criteria for selection of an employee, making

the decision and confirming the assignment. This high-level scenario is

not changed. What was changed is the way how “HR Manager makes a

decision”. New version of system affects the way HR Manager makes a

decision by providing more information.

New requirement causes changes in domain classes (very likely) and in

the way it is presented on the screen, (new fields are added).

The high-level workflow described above remains constant. Therefore, it

is beneficial to have this constant workflow segregated in separated

component, which is the Controller as required by MVC.

289

Applied MVC Patterns

 17

To achieve that separation we need to hide the part, which is subject for

future changes from the common controller. In our case, the variable part

is domain model and presentation logic of that model. To concentrate that

variable part in the Model and View we delegate to the View

responsibility of contacting Model to get data for display making

Controller free from knowledge about data exchange protocol between

Model and View. Model and View implement PROTECTED VARIATIONS

pattern (see [GRASP]). Controller is responsible only for sending

messages to the View and Model that these two may consider worth to

start doing data exchange. However, the particular reaction on these

messages is implementation detail of View and Model.

By moving Controller out of data exchange protocol between View and

Model Active View pattern enables evolution of domain model and

Presentation layer without touching high-level use case implementation.

Open Model

Context The user input may violate domain validation rules.

Application use cases require having several windows or views showing

the same data in different forms in online mode when changes in one view

are immediately seen in other views.

User cannot enter everything at once; therefore, the data will be

incomplete at some points of time and probably violate validation rules.

MVC assumes that Views take data from the Model; that requires keeping

incomplete data which potentially violate validation rules in the Model

Problem Wrong or inconsistent data break integrity of system if not validated prior

to using inside the system.

Delegating validation to Services layer may decrease performance.

Forces Eliminating data duplication. We would like to avoid creating copies of

data in View to be able to show partially entered data (while keeping old

valid copy in the Model). In this case showing the same data online in

several View instances requires complex synchronization between View

instances.

Solution Do not trigger validation from mutator methods of the Model. Postpone

the validation of the Model data until Controller explicitly requests it.

Resulting
Context

Model becomes a snapshot of data shown in the Views and therefore may

contain incomplete or partially entered data. Views display the data taken

from the model as is.

 Since the Model can contain invalid data (invalid from business logic

point of view) the domain objects cannot be used as Model data exposed

to the Views because domain objects are not allowed to violate validation

rules. Instead, the Model has to have some intermediate data structure that

represents projection of domain object to the Views. That data structure is

not required to conform to validation rules all the time.

290

Applied MVC Patterns

 18

Separation of responsibilities

 With OPEN MODEL we relax requirements for the data to always conform

to validation rules of an application. Therefore it is important to make

sure the invalid data are not propagated outside the triad and do not cause

errors. Who requests validation from the Model and when it is done

depends on the pattern of interaction with Services layer.

 If DISCONNECTED MODEL is used then Controller should request

validation of the data from the Model prior to feeding them to the

Services layer. Alternatively, the Model may expose special interface for

the Controller that always triggers validation before returning the data.

 If MODEL AS SERVICES FAÇADE is used then the Model is responsible for

making sure the data are valid prior to giving them to the Services layer.

Example Microsoft Excel is a good candidate for implementation of this pattern.

 When we enter some invalid value in the cell, lets say, incorrect formula

like “=()” Excel shows a message box describing the problem. When you

press OK button, Excel selects the incorrect text to let you correct the

problem. If we have two Excel windows open for the same sheet (you can

use Window/New Window menu item) Excel shows illegal content

(“=()”) in both windows. This way you can use either window to correct

the mistake. This may be useful with long data sheets that do not fit one

screen. For example, user may edit formula in one window while using

the other one to locate the dependent values required to correct the

mistake.

 One of the ways to implement the Model component for such scenario is

to store cell values in the Model. The Model should be able to store illegal

cell values. Otherwise, it will not be possible to show the same (illegal)

value in two windows, showing the same sheet.

 Functionality of “Window/New Window” menu item makes Excel

eligible for OPEN MODEL pattern since this feature allows having several

views to show the same content; and that content may not always be

correct.

7. Cross-cutting concerns

7.1 MVC triad level of abstraction

The way MVC is implemented is significantly transformed when we consider MVC

applied within the context of different application layers.

For example, implementing fancy GUI controls often require non-trivial ways of using the

GUI framework. For example, to add drag&drop features to .Net DataGrid control columns

Microsoft recommends overriding painting method of the control and use native calls to

take screen shot of a column (see MSDN library, article “Dragging and Dropping DataGrid

Columns” [D&DDGRID]). If we used MVC pattern to implement all that we would need

our Controller to intercept all mouse movements, which is quite low-level intrusion into

GUI framework code. The View needs to be done also on a quite low-level, since truly

impressive effects often are achieved by overriding low-level things such as calling native

291

Applied MVC Patterns

 19

code. The View part of MVC in GUI controls is usually coupled to GUI framework since

this is prerequisite for using low-level APIs and GUI framework internal backdoors such as

mentioned native calls.

However, the Controller that implements workflow of order submission in airline tickets

reservation system looks quite different. At this point, all low-level mouse movements and

native code calls are already encapsulated by low-level controls, so this Controller can be

implemented on a pretty high level of abstraction. This Controller talks the language of

application domain (see [UCC] for example); it can freely use quite abstract language in

the commands to Views, such as switchToReadOnlyMode, which may hide quite complex

logic in the implementation part. The View in this triad is high-level component, which

may even be fully isolated from GUI framework by set of wrappers if needed.

Although the two MVC triads shown above are implemented according to the same

paradigm of separating between data, presentation and control parts, they are very different

in nature. The first one, which handles DataGrid column drag&drop functionality, is

implemented on a low-level; the second one can be considered a high-level implementation

of a single application use case.

It is important not to mix levels of abstractions in the same MVC triad. The Controller,

which implements high-level use case workflow and handles low-level mouse movements

to interpret user gestures at the same time, is hard to support since these two things rarely

change together. It is better to delegate interpretation of mouse movements to low-level

MVC triad composing a hierarchy of controllers.

There are several strategies of separating MVC triads into some sort of hierarchy. The

following is short overview of two of them:

HIERARCHICAL MODEL-VIEW-CONTROLLER suggests chaining MVC triads making every

triad responsible for one single aspect of application, for example handling one View

instance (see [HMVC]). The pattern suggests that every MVC triad corresponds to one

View instance and application is broken according to hierarchy of View instances nested

into each other.

USE CASE CONTROLLER pattern (see [UCC]) suggests making Controller responsible for

handling use case workflow. The Controller in this case is done on a high-level and its

implementation is directly traced to use case description. This way the controllers in the

application are linked together according to use case extension and inclusion relationships.

The relationships between View instances do not have any direct effect on links between

controllers.

7.2 Handling exceptions

This chapter describes a problem, which is important to consider when we implement

MVC-based design.

The Model may throw exceptions from the methods. Handling of some of these exceptions

requires involvement of user to make a decision what to do in the situation (exceptions that

do not involve user in handling are not considered here.). Two typical reasons for this kind

of exceptions are validation errors, occurring when clients of the Model try to modify data

in the Model in the way that violates business rules and exceptions reported by Services

layer, if the Model contacts Services Layer to implement some of its responsibilities.

It is important to allocate responsibility of handling exceptions reported by Model to proper

part of the triad if the logic of handling exceptions requires interaction with user.

292

Applied MVC Patterns

 20

The problem appears when the exception is thrown by the Model as a result of a call made

by View. The View cannot handle this exception since it does not have the required

knowledge how to interact with user to solve the problem (the Controller has it).

View might simply delegate the handling to Controller but it requires dealing with the

problem of code duplication between many types of View. Even if we have an elegant

solution for that, (we may extract common code into some base class for example) this

solution introduces cyclic dependency between View and Controller, which further

complicates the design.

Ideally, our MVC design should simplify the task of making the Controller responsible for

handling exceptions as much as possible. The following sections recommend some

solutions depending on a pattern selected.

Model as Services façade, Open Model, Closed Model patterns

One of the options is not to throw any exceptions that are supposed to be handled by user

from the methods designated for Views. One of the ways to achieve that is to avoid

contacts with Services Layer from the methods that are called by Views. In this case, the

Model should have all the data ready before the Views can contact the Model. Separation

of interfaces for the Controller and for the Views may clear up the code in this case.

Active View

ACTIVE VIEW pattern also requires some solution for this problem because the View

contacts the Model directly by design in this pattern. One of the options is to disallow View

to call mutator methods on the Model. Instead, whenever the user makes any request to do

data modifications the View should forward this call to the Controller in form of event

using OBSERVER pattern. This way the contract of the View with clients (what we usually

call an interface) consists of two components – interface of the View class and set of events

it fires.

Disconnected Model

DISCONNECTED MODEL pattern eliminates the problem completely delegating the task of

talking to Services layer to the Controller.

Passive View

PASSIVE VIEW pattern also does not have this problem because all the interactions between

View and Model are happening through the Controller.

8. Acknowledgements

We would like to express my special thanks to Nelly Delessy for shepherding the paper and

providing excellent and valuable comments.

Our special thanks to Viktor Sergienko for valuable comments, which helped making the

first reshaping the paper contents from cover to cover.

293

Applied MVC Patterns

 21

In addition, we would like to thank the audience of Design Patterns seminar sponsored by

Intel, Russia, for raising issues and questions during the seminar, which helped refining the

ideas described in the paper later on.

9. References

[UCC] Ademar Aguiar, Alexandre Sousa, Alexandre Pinto, Use Case Controller,

http://hillside.net/patterns/EuroPLoP2001, EuroPLoP 2001

[FLA] Four Layer Architecture http://c2.com/cgi/wiki?FourLayerArchitecture,

http://c2.com/cgi/wiki?FourLayerArchitectureDiscussion, 2004

[FOW] Martin Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley

Professional, ISBN: 0321127420, 2002

[POSA] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. 1996

Pattern-oriented software architecture: a system of patterns. John Wiley & Sons, Inc.

[GRASP] Larman, C. 2001 Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design and the Unified Process (2nd Edition). Prentice Hall PTR,

ISBN:0130925691

[HMVC] Jason Cai, Ranjit Kapila, and Gaurav Pal, HMVC: The layered pattern for

developing strong client tiers, JavaWorld, http://www.javaworld.com/javaworld/jw-07-

2000/jw-0721-hmvc_p.html#resources

[DOCVIEW] MSDN Library,

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/vccore/html/_core_Document.2f.View_Architecture_Topics.asp, 2005

[MVP] Potel, M., MVP: Model-View-Presenter The Taligent Programming Model for C++

and Java, IBM developerWorks, http://www-128.ibm.com/developerworks/java/library/j-

mvp.html

[GOF] Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995 Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley Professional, ISBN: 0201633612

[NOTEDC] Kendall, S., Waldo, J., Wollrath, A., Wyant, G., 1994 A Note on Distributed

Computing, http://research.sun.com/techrep/1994/abstract-29.html

[AGGMVC] http://c2.com/cgi/wiki?ModelViewControllerAsAnAggregateDesignPattern

[C2ONMVC] http://c2.com/cgi/wiki?ModelViewController

[D&DDGRID] MSDN Library,

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnwinforms/html/dragdrop_datagrid.asp, 2005

[DDD] Evans, E. 2003 Domain-Driven Design: Tackling Complexity in the Heart of

Software, Addison Wesley Professional, ISBN: 0321125215

295

295. Patterns for ERP-LandscapesPatterns for ERP-Landscapes

November 2005 Page 1 of 22

Patterns for ERP-Landscapes
Florian Humplik, Peter Leitner, Wolfgang Zuser, Thomas Grechenig

Industrial Software, Vienna University of Technology

{firstname.lastname}@inso.tuwien.ac.at

Abstract

This paper presents a pattern language with the objective to design, implement and maintain
interdependent IT-systems from different vendors in the business context (so called ERP-
Landscapes).

Figure 1 summarizes the patterns presented within the paper and their interdependencies. They share
the need to cope with heterogeneity. Heterogeneity in ERP-Landscapes has been induced by the on-
going specialisation of applications in the business context (applications specializing in diverse fields
like personal accounting, legal consolidation, inventory management, cost accounting and controlling).

Sooner or later every business application has to interface with the input or output of other
applications. From that moment you have to deal with the problems associated with an ERP-
Landscape. Considering such a setting at design time will improve the adaptability of your
applications. This paper characterizes different issues, which have to be considered when developing
business applications in the context of an ERP-Landscape. The pattern language reflects a holistic
approach showing the need to integrate both business and IT domain knowledge. Emphasizing on
one aspect will decrease the over-all quality of the solution.

Figure 1: Pattern Map

01) Orchestration of
business and IT

(02) Focus on core
functions to ease
orchestration of
business objects

(04) Support
diversity if
associated with
opportunities

(03) Open
architectures

(05) Increase value
of information by
making it specific

(06) Standards to
achieve
interoperability

key principle of
interoperability

Outsourcing of
diversity

specialization

User-centric and
task-centric
processing

Support business by
tailored applications

specialized
processing

share processing
results & data

no monolithic all-
purpose application

296

Patterns for ERP-Landscapes Patterns for ERP-Landscapes

November 2005 Page 2 of 22

Audience

The intended audience are people who are involved in the design and implementation of IT-systems
within the business context. Both business people and technicians can benefit from the pattern
language. Reading of the paper requires basic knowledge of both the business and the IT-domain.
The whole paper is guided by the idea to increase understanding for people belonging to the ‘other’
domain.

Content

PATTERNS FOR ERP-LANDSCAPES.. 1
Abstract...1
Audience ...2
Content..2
Introduction...3

(01) Orchestration of business and IT ...5
(02) Focus on core functions to ease orchestration of business objects...8
(03) Open architectures ..11
(04) Support diversity only if associated with opportunities..14
(05) Standards to achieve interoperability ...16
(06) Increasing the value of information by making it specific ..18

ACKNOWLEDGEMENTS .. 20

REFFERENCES... 21

297

Patterns for ERP-LandscapesPatterns for ERP-Landscapes

November 2005 Page 3 of 22

Introduction

This paper wants to improve the process of integrating heterogeneous ICT-systems (information and
telecommunication systems) in the business context. The intended audience are people concerned
with the development and integration of software systems in the business context. The work has been
motivated by the different types of heterogeneity we have encountered within ERP-landscapes such
as:

§ heterogeneity in data providing the basis for business processes
§ heterogeneity in business processes covered by the systems
§ heterogeneity among the stakeholders and their information requirements
§ heterogeneity in opinions and assumptions of systems users
§ technical heterogeneity among server and client applications

A major competitive factor in today’s economy is optimised business processes. A prerequisite is
efficient support by ICT-systems. Thus, many companies are required either to introduce or renew
ERP-systems (enterprise resource planning systems). But first we have to clarify the terms ERP-
system and ERP-landscapes:

• ERP-system: Any software that can be perceived as a model for the enterprise or at least for
some of its aspects (processes and resources). Such software is designed to utilize or
administrate a company’s resources.

We are considering software and solutions in the following fields: finance, accounting,
enterprise planning and control inventory systems, supply chain management, CRM
(customer relation management) solutions, timekeeping systems, production management,
etc. Of course this is a broad range of applications. Hence, the definition covers almost any
kind of software used in the business context.

• ERP-Landscapes: The applicability of (business) off-the-shelf software is limited. As a result
companies find themselves running and maintaining multiple applications. This creates the
necessity to integrate the various software systems (either with automation or manual
processes). We refer to interdependent ICT-systems within a company as an ERP-landscape
emphasising the underlying principle of heterogeneity.

The inherent complexity in business processes is closely related to considerable costs. Installing an
ERP-system generally is a large budget item. However, successfully establishing an ERP-system may
increase a company’s competitiveness significantly. In contrast, failure means lost investment. Vital,
competitive companies are characterized by steady growth. The long lifecycle of an ERP-system
demands thorough consideration of post-introduction adaptations, extensions, and modifications.

In the following, we describe representative patterns in ERP-landscapes. The patterns serve as a
guideline to deal with some of the most common and most serious problems during the design phase
of ERP-systems.

Most of the considerations shaping the design of ERP-landscapes deal with some sort of system
extensibility. The extensibility of an IT-system is determined by a lot of decisions at design time.
Therefore the paper clearly focuses on architectural issues at design time.

298

Patterns for ERP-Landscapes Patterns for ERP-Landscapes

November 2005 Page 4 of 22

Figure 1 illustrates the situation software engineers typically encounter. The small red box (striped)
represents the ERP-system that more or less reflects the complexity of the socio-technical system of
an enterprise. The illustration consists of the following elements:

• Circles represent various systems. Intersection means both systems share elements.
• The distance to the circle “enterprise” illustrates how close the relation is and might be

considered as an indicator for the interdependency of any two systems.
• The thickness of a line connecting any two systems approximates frequent interaction.

Figure 2: The enterprise as a socio-technical system

Technical problems are part of day-to-day business. However, the real challenges usually result from
interactions with the various stakeholders and environments. The patterns presented in this paper
address problems in a context illustrated in Figure 1.

The pattern language has been developed based on an XML-document (using XSL and CSS). The
intention is to transform the original document into multiple formats such as HTML and PDF. We have
employed a pattern form that has been inspired by multiple authors:

• The chronology and basic structure is based on the form used by Alexander in ‘A Pattern
Language‘.

• Apart we have introduced a set of headings to ease reading and provide more structure which
has been inspired by the work of Jim Coplien.

• The section ‘related patterns‘ has been inspired by the GoF-form. That section is intended to
account for hierarchical dependencies among the patterns.

299

Patterns for ERP-LandscapesPatterns for ERP-Landscapes

November 2005 Page 5 of 22

(01) Orchestration of business and IT

Alternative name:

§ Align business with IT and vice versa

Companies introduce or renew ERP-systems to achieve some kind of improvement. But the
transformation of real-world business processes is not obvious. At the start of the project the
actual processes are documented and provide the basis for all further steps.

Context

At the beginning of a project, there are three sources of information concerning business
processes:

§ The normal experience of day-to-day business operations
§ The project team member’s experiences, e.g. from previous projects
§ The reference-models referenced within literature

The requirements defined by the customers usually reflect the current business processes.

Problem

How to discover the requirements of running efficient business processes in order to realize
the benefits of modern ICT-systems?

Forces

§ Expertise in business administration vs. expertise in ICT

Companies lacking expertise in the field of IT usually focus on their day-to-day
‘normal’ experiences during the requirements phase. Therefore the full range of
benefits offered by modern ICT-systems is not considered when generating
requirements and solutions, e.g. new types of communication, sophisticated
processing, support of business processes and user interaction, etc. The same is true
in reverse. Even well established processes have to be aligned with the requirements
of ICT-systems to work efficiently.

§ Resistance to change vs. flexibility and dynamic organisation principles

The changes associated with the introduction of ICT-systems affect the company’s
employees. Therefore their opinions and feelings (e.g. fears) have to be taken into
account. Keeping things as they are avoids possible conflicts.

§ Established and proven processes vs. optimized but newly introduced
processes

Changing well established processes is usually difficult to achieve. It is almost
impossible to question well established processes without questioning the people in
charge. It is easier to support change if the introduction of an ICT-system provides a
rational explanation.

300

Patterns for ERP-Landscapes Patterns for ERP-Landscapes

November 2005 Page 6 of 22

§ Established and proven processes vs. mature IT

Room for improvement results from deficits in IT-experience or complex chains of
responsibility rooted in a company’s organisational structure. IT-projects provide the
opportunity of transferring know-how and thus, enable the persons in charge to see
things from a different perspective. This know-how represents the key factor to use
the full advantages of IT and thus, enables a successful redesign of business
processes.

§ Usage of pre-defined processes vs. cost-intensive renewal

It is crucial for IT-experts to become familiar with a company’s specific business
processes. Common practice relies on simple records of customer needs and
subsequent transfer to an appropriate software solution. The orchestration of
customer problems and the technological opportunities are usually not fully exploited.

§ Short term gain vs. long term value

Today, almost any business is short term-oriented, e.g. on quarterly reports. Success
or failure is determined by the change in figures (either comparing two subsequent
periods or the same period in two subsequent years). However, the positive effects
rooted in process reengineering take some time to be implemented and are likely to
be discovered only after some time lags. Well-engineered processes can be expected
to be more effective than historically grown processes.

Solution

Focus on business process (re-)engineering (BPR) during the requirements phase of
the project.

The considerable costs associated with the introduction of an ERP-system justify additional
budgets during the analysis and design phase. Spending extra time in the beginning is proven
to generate additional value for the company. Questioning the processes underlying an ERP-
system may improve overall process quality and at the same time provide an opportunity to
tailor processes to the needs of IT-systems. The idea of such an approach is to question
information presented by the customer to prevent choosing suboptimal design decisions.

Resulting Context

The proposed approach ensures plurality both in ideas and involvement. Questioning
customer requirements also means taking more responsibility and therefore increases
workload for ICT-professionals. BPR is not without cost and usually does not achieve short-
term cost effectiveness. Therefore such an approach requires both additional budgets and
support of upper management.

Known uses

§ A real estate company was accustomed to manually maintain reminder lists to keep
track of landowners’ payments. Each list held one entry per property and month. If a
payment was received then the corresponding entry had to be marked with a green
checkmark.

After a new IT system had been introduced the employees kept on maintaining those
lists manually. The only improvement: the lists were generated by a computer. This
improvement saved a lot of time and costs.

301

Patterns for ERP-LandscapesPatterns for ERP-Landscapes

November 2005 Page 7 of 22

However the software could have easily provided the final list of open payments, thus
making the time consuming manual processing redundant. In the end the use of
automatically generated reminders and payment forms immediately improved the
overall performance of the business considerably.

§ In the early times of book-keeping, each payment had to be manually recorded in the
books. Today, banks offer services to facilitate that kind of processing, e.g. import of
data using e-banking or other data devices.

These services add information to digital paying-in slips, e.g. information about the
customer, invoice number, date, etc., enabling IT systems to automatically record the
payments. On the one hand the usage of such services led to more efficient business
processes. On the other hand those benefits require various modifications and
adoptions both in business organisation and thinking.

Figure 3 contains information about the customer in the last line (in the lower left
corner marked with a circle: the customer number).

Figure 3: Add information to facilitate automatic processing

Related Patterns

down:

§ [ERP-Landscapes] (03) Open architectures
§ [ERP-Landscapes] (02) Focus on core functions to ease orchestration of business

 objects

horizontal:

§ [RAPPeL] (1) Building the right things
§ [RAPPeL] (32) Envisioning
§ [RAPPeL] (30) Behavioral Requirements

302

Patterns for ERP-Landscapes Patterns for ERP-Landscapes

November 2005 Page 8 of 22

 (02) Focus on core functions to ease orchestration of business objects

Alternative names:

§ Butterfly effect
§ Domino effect

An ERP-system consists of a sequence of more or less trivial processing steps, e.g.
administrating inventory and customer data, billing etc. Coordination between these processes
is less straight-forward. It is not the number of elements (the number of processing primitives)
but the number of interdependencies that determine the complexity of such a system.

To give you an example: The Marketing department demands sales reports based on projects.
Bad news: reporting is indeed a top level system component. Therefore all ascending
processing steps will be affected, such as input of data from now on has to include some link
to a project.

So any change request bears the risk of a complete re-design of the project. Good examples
for such ‘minor’ changes are: more differentiation of information (more detailed data), support
of multiple languages, security requirements. Either of these examples is associated with
shortcoming during the requirements engineering phase.

Context

The customer provides requirements including business objects. IT-experts are responsible
for the orchestration of those business objects. Complexity is usually not apparent at first sight
particularly for the customer. Slight changes in the specification of a single business object
may add up considerably more complexity in the orchestration of the business objects.

Problem

How does the ICT-expert cope with inherent complexity of ERP-systems?

Forces

§ Simplicity vs. complexity

Keeping an ERP-system simple requires balancing usability issues (for example
efficient interfacing, quick processing) with support for the full range of an enterprises’
business processes.

Supporting only a subset of business processes may be the key factor to support a
business processes efficiently. The underlying principle is to perform some pre-
processing tasks outside the system and integrate those results (for example resource
planning in a spreadsheet document). Therefore you can focus on the core functions
of the system.

303

Patterns for ERP-LandscapesPatterns for ERP-Landscapes

November 2005 Page 9 of 22

§ Abstraction and generic solutions vs. reduced adaptability and/or extensibility

Focusing on core functions is closely associated with more abstract solutions. The
more abstract a solution the more widely applicable it is. The considerably high
development expenses, however, must be paid in advance. Furthermore,
implementation areas where abstraction is most promising and reasonable have to be
identified, often based on limited experience.

§ Internal abstraction vs. external abstraction

Abstraction on the code level facilitates reuse and thus, improves the quality of the
code (internal abstraction). Abstraction becomes critical when it is obvious to the user.
Software is more likely to be accepted by the end-user if it provides look-and-feel of
real-world objects. Uniform and standardized user interfaces (external abstraction)
conflict – to a certain extend - with such end-user needs.

Internal abstraction facilitates maintenance of the system for the, whereas external
abstraction provides is likely to makes the system more difficult to use.

Solution

Focus on core functions to make abstraction techniques more likely to be applicable.
This holds true for any phase of the project and in any component of the system.

Have the customer agree on the top-most project objective “keep it simple”. This will shorten
time to market and provide both the customer and the ICT-experts with fast end-user
feedback. Therefore further development will be shaped by the experience gained from the
development of the core system. Carrying out a project according to that recommendation
definitely puts more effort on the requirements phase.

Resulting Context

The benefit of abstraction is the possible application in a multitude of situations. Therefore the
ICT-expert encourages organisational learning, thus steadily improving the components
quality. Building generic solutions both requires considerably more human resources on the
senior level and considerably increases the overall complexity of the project. The higher
development costs have to be paid in advance therefore putting even more pressure on the
organisation (for example, the need to follow-up projects increases the project’s over-all risk).

Implementation

Business objects and their persistence requirements have to be defined. Those objects can be
used as the basis for a MVC (Model view controller) approach as building blocks for reports
and user interfaces.

Using abstraction techniques, such as XML, can turn possible threats resulting from
interdependencies into opportunities. System properties re-used across many components
may favour the application of generator frameworks or pre-processors. At this point, we
emphasise that some efforts will be suitable for prototypical applications only, e.g. skeletons
and stubs, hence the need for the integration of code is evident. The precondition for such an
approach is a clear separation between information processing and information presentation
at architectural level.

304

Patterns for ERP-Landscapes Patterns for ERP-Landscapes

November 2005 Page 10 of 22

Known uses

§ Report generators are a good example of how to separate a system’s core functions
from the presentation of information, by separating the output from the processing
core. There are a lot of systems available on the market such as MIS OnVision. Tools
like that support both read-only presentation of information and the input of data into
databases of different vendors (even combining different database systems within one
application).

§ Connectors to other systems provide the basis for separating a system’s core by
delegating non-core tasks to other applications. Almost all of the major ERP vendors
provide such connectivity. For example SAP provides connectors based on Java and
.Net. Products from ERP-vendors provide connectivity on a low architectural level.
Therefore SAP-consultants like SAPPHIR provide their own middleware products (for
example SAPPHIR SITWare) to ease integration with third party products. By
employing the full range of SAP computations it is possible to build a streamlined
enterprise planning solution on top of SAP.

§ Make use of a multidimensional database to carry out analysis and focus on the core
financial management functions within the ERP-system.

§ VXML: This standard provides a language to define the workflow with a voice
recognition application. So the core functions of the voice recognition system remain
the same. VXML introduces a new layer responsible for handling the workflow.

Related Patterns

horizontal:

§ [ERP-Landscapes] (03) Open architectures
§ [RAPPeL] (1) Building the right things
§ [RAPPeL] (32) Envisioning
§ [RAPPeL] (30) Behavioral Requirements

down:

§ [ERP-Landscapes] (05) Increased value of information by making it specific

305

Patterns for ERP-LandscapesPatterns for ERP-Landscapes

November 2005 Page 11 of 22

(03) Open architectures

Alternative names:

§ Open design

Applications cannot focus on all the aspects of a business, thus IT vendors have specialized in
particular processes, such as human resources, accounting, controlling, CRM.

Context

Such heterogeneous ICT-systems reduce a company’s dependency on ICT-suppliers at the
cost of various problems associated with synchronization and consistency issues. Therefore
the need for integration arises. In heterogeneous ICT-landscapes defining interfaces becomes
an even more critical issue.

Problem

How can long-lasting ERP-landscape architectures be designed?

Forces

§ applications specializing in certain tasks (without considering other
applications needs) vs. applications following overall-corporate needs

This problem reflects the well known problem of local optimization. In the context of a
single task, a tailored solution will be more attractive than a generic solution. But in
the corporate-wide context corporate-wide standards and homogenous interfaces may
take higher priority.

§ Tightly integrated and optimized products from single vendors vs. open
architecture

Problems may arise when depending on a single vendor. If the supplier has to file for
bankruptcy, technical support or product support are at risk. Ways to retain some
independence are to require the vendor to share both documentation and to gain
access to source code. Another approach is to define clear interfaces to replace an
existing implementation with one of another vendor (open architecture).

§ An application’s lifecycle vs. changing requirements

Usually, ERP-system projects are long running projects with an extensive
maintenance and evolution phase. Time-consuming or long-lasting projects
continuously have to adapt to changing requirements.

§ Proprietary features vs. openness

Some of these challenges can be solved at database level. But as many problems
rely on specific objectives, e.g. fast database access without synchronization, or
usage of proprietary database functions, the problem is usually solved in the
application layer.

306

Patterns for ERP-Landscapes Patterns for ERP-Landscapes

November 2005 Page 12 of 22

Solution

Use an open architecture.

Define the core functions of your application and consider both user interfaces to enter data
within your application and interfaces to import existing data sources. Within heterogeneous
ICT-systems interfaces define the bandwidth of possible integration. The higher the degree of
integration the more likely a company can reduce the number of redundant data management
tasks.

Therefore, insist that ICT-vendors implement import and export tools for wide-spread formats
such as XML; have the database schemata documented and published; have the most
important processing parameters encapsulated within the database (or ensure access to them
in any other way), and motivate ICT-vendors to provide well documented APIs to set up real-
time interaction between applications.

Open design makes various IT core-tasks even more difficult (for example consistent data
across different subsystems and data sources and handling of security and synchronization
issues).

Resulting Context

An open architecture is intended to interface with other applications. Ensuring proper and
efficient interfacing requires inside knowledge about the applications to interface with.
Therefore some kind of monitoring of third party vendors has to be established to cope with
different version and new features in an efficient way.

Known uses

§ Open Source projects like the Perl-based SQL-Ledger and the java-based Compiere
offer an API and publish the underlying database model. To interface with the
application you have to pay for the documentation of the API which is part of both
applications business model.

§ SAP supports database systems of different vendors. But it is difficult to interface on
the database level (amazing abundance of tables and relations). Therefore other third
party vendors (for example MIS ImportMaster and the SAP middleware SITWare by
SAPPHIR) provide interfacing solutions.

§ I have learned about a company that bought the SAP BW solution just to ease access
to the underlying data.

§ For example loading the SAP R3 data into SAP BW on a daily basis might not be
feasible because the whole ITL processing might exceed the timeslots available.
Because enhancing the hardware was associated with higher costs the company
opted for a redundant ITL process to load their MOLAP (multidimensional online
analytical processing) application on a daily basis.

307

Patterns for ERP-LandscapesPatterns for ERP-Landscapes

November 2005 Page 13 of 22

Related Patterns

up:

§ [ERP-Landscapes] (01) Orchestration of business and IT

horizontal:

§ [ERP-Landscapes] (02) Focus on core functions to ease orchestration of business
 objects

§ [ERP-Landscapes] (04) Support diversity if associated with opportunities

down:

§ [ERP-Landscapes] (05) Increase value of information by making it specific
§ [ERP-Landscapes] (06) Standards to achieve interoperability

308

Patterns for ERP-Landscapes Patterns for ERP-Landscapes

November 2005 Page 14 of 22

(04) Support diversity only if associated with opportunities

IT systems represent an abstract model of a real-world business organization. Therefore they
should reflect organisational structures (for example legal entities or departments). The need
for organizational differentiation arises from several causes, for example, the need to create
easily manageable organization unit, and mergers. Some issues related to mergers or
acquisitions are differences between the joining entities in pricing, invoicing and information
design.

Setting up segregated IT systems for each organisational unit is not appropriate if the same
task has to be performed in multiple systems (for example data import and export). It is vital to
keep data consistent.

Context

The majority of large companies consist of small subunits on different organizational levels,
e.g. vestiges of mergers and acquisitions. Subunits may differ in their objective, business
processes, and organizational structure.

Problem

How can the diversity of organizational subunits be incorporated into a single system?

Forces

§ Corporate identity vs. independent organizational subunits

Managers prefer homogenous organizational structures. They are easier to compare
and less complex. However, the organisational structure must reflect the most
important characteristics of each subunit to provide a reasonable basis for analysis.

§ Historical reflection vs. present business state

In a real-world situation business data has to be interpreted within the context of time
to analyse time series. If the organisational structure changes there exist two time
series. One based on the historical organisational structures the other reflecting the
current organizational situation.

In this case it helps to think of the problem in terms of two layers. On the one layer
there are real-world objects associated with costs (such as employees, machines and
accounts) and there exists more than one way of grouping them. Such logical
groupings are introduced by organisational structures such as teams, projects,
departments and legal entities.

Usually a single all-purpose logical structure (mapping) does not exist. Therefore the
grouping has to be done on a dynamic basis. EPR-systems have to consider diverse
mappings at different points in time, and diverse mappings due to different
requirements across different tasks (e.g. less detail grouping in the context of
budgeting).

309

Patterns for ERP-LandscapesPatterns for ERP-Landscapes

November 2005 Page 15 of 22

§ The winner takes it all

Usually, people prefer to accomplish tasks the way they have been used to by using
tools they are familiar with. However mergers or acquisitions usually follow the rule
that the less powerful company simply has to adapt.

Solution

Build parallel hierarchies and de-couple objects from logical groups.

Separate the objects to be grouped from their logical grouping. Economic processes are
inherently dynamic. Therefore parallel hierarchies simultaneously provide different logical
groupings.

Resulting Context

Application of parallel hierarchy techniques produce overlapping hierarchies that can easily
lead to multiple computations. The most imminent drawback is increased complexity.

Implementation

The database must allow for storing hierarchical structures representing the logical groups of
arbitrary building blocks. The final business logic operates on the hierarchical structures.
Attributes may for interpreting elements differently according to various contexts.

Known uses

§ The principle of separating between hierarchies and objects is the underlying concept
of multidimensional databases, such as the Alea MOLAP-database of MIS AG.
Imagine the field of accounting. Financial statements are composed of accounts which
have to reflect different accounting standards (such as local GAAP and US-GAAP).
Therefore maintain two parallel hierarchies one for local GAAP and one for US-GAAP.
As both hierarchies are basically composed of the same base elements you need
some method to account for adjustments. Figure 4 gives some basic understanding of
how to bridge between local GAAP and US-GAAP.

Figure 4: Parallel hierarchies and bridging between different GAAPs

Related Patterns

horizontal:

§ [ERP-Landscapes] (03) Open architectures

310

Patterns for ERP-Landscapes Patterns for ERP-Landscapes

November 2005 Page 16 of 22

 (05) Standards to achieve interoperability

Heterogeneous ICT-landscapes requires interfaces for interconnection, import and export.

Context

The market share of multinational IT companies has introduced the phenomenon of a high
number of de-facto standards, such as PDF, RTF, XLS. They exist in parallel to the official
standards like those issued by ANSI. It is crucial to select the appropriate (de-facto)
standards.

Problem

Which interfaces should be used and provided?

Forces

§ Full support for formats and full connectivity vs. selected support and
economic development

Full connectivity becomes more difficult when the products of multiple ICT-suppliers
are maintained. The number of supported vendors imposes enormous maintenance
costs.

§ Open and extensible architecture vs. proprietary products

An open architecture grants access to your implementations. Therefore your
competitors are entitled to develop extensions to your products or even develop
substitutes for (parts of) your application. An open architecture can be integrated in
landscapes, whereas proprietary systems require adaptations of the landscape itself.

§ Standards might become obsolete

Supporting widespread applications (for example Lotus 123) is risky. If new
technologies emerge, then it will be difficult to identify tomorrow’s standards.
Additional challenges will arise if you have to support new technologies in the very
early stage of their life-cycle.

§ People issues vs. best practice

To set up a standard industry proponents have to agree on rules and to adapt their
own products according to that rules which is a costly issue. Therefore and due to
strategic issues it is difficult to get supported by all the industry-leading companies.

§ Version 1.x vs. version 1.y

There is no support of a certain format. Usually only a certain range of versions are
supported. Therefore interoperability is closely related to the management of ICT-
infrastructure.

311

Patterns for ERP-LandscapesPatterns for ERP-Landscapes

November 2005 Page 17 of 22

Solution

Use and provide interfaces which implement standards or de-facto standards.

Many of today’s development environments offer off-the-shelf tools or controls that support the
transformation of databases or data into a multitude of formats. Special attention has to be
paid on topics like restricted scope of applicability of certain formats, limited availability of a
suitable formats, scalability issues or difficulties due to different versions of formats.

Resulting Context

If you have decided to support certain standards then certain managerial tasks are ahead.
Updates of applications within heterogeneous ICT-Landscapes become an even more crucial
topic the orchestration of different application has to cover versions of import and export
formats.

Implementation

Keep in mind different domains require different standards. For example within the domain
finance and controlling MS Excel plays a dominant role. It is common practice for major
vendors to facilitate migration into and out of their competitor’s products. For example MS
Excel supports the import of Lotus 1-2-3 documents and vice versa. So by supporting either
MS Excel format or Lotus 1-2-3 you support both formats because both worlds provide import
faculties for the competitor’s product. Therefore clever selection among predominant formats
allows for a wide coverage, due to various import facilities provided by market leaders’
products.

Known uses

§ TurboCASH provides for the import of a proprietary format, a wide spreadsheet format
and XML-format. Apart reports can be exported using various formats, such as TXT,
RFT, CSV, XLS, WMF, and HTML. Different formats are used according to the
context.

§ NOLA provides for CSV export. CSV provides easy import and export supported by a
wide range of applications.

Related Patterns

up:

§ [ERP-Landscapes] (02) Focus on core functions to ease orchestration of business
 objects

§ [ERP-Landscapes] (03) Open architectures

312

Patterns for ERP-Landscapes Patterns for ERP-Landscapes

November 2005 Page 18 of 22

(06) Increasing the value of information by making it specific

Alternative name:

§ Tailored fits best

An ERP-system is usually built upon at least one database system. But the available
information can be combined in a million ways. Apart from that there another million of
compression levels available (for example grouping of information by summing it up).

Context

The definition of system requirements reveals different user groups with diverse information
needs. The typically long lifetime of an ERP-system may also cause future changes in
information needs.

Problem

How to cope with information needs of different stakeholders?

Forces

§ Information flood vs. information deficiency

IT can easily flood the user with information. Compacting information reduces the
amount of data, yet may ignore some necessary details for specific users. It is
somehow an art to determine the appropriate detail-level of information to solve
specific tasks.

§ Predefined selection vs. user-defined selection

Selecting predefined information for user groups and task routines increases the
efficiency in solving the tasks, yet decreases individual search possibilities for solving
related tasks. User-defined selection of detail level data empowers the user but may
also increase the overall search effort (time consuming and therefore costly task).

Solution

Put the customer in charge and design access to information.

By employing report engines with a drag-and-drop like interface the customer is empowered to
adapt information presentation to changing needs. The first step to manage diverse
information needs is to identify the different groups. Next, balance the company security
policies with the information needs of any single group. As a general rule, access to
information should be denied. Only after a request has been approved should access be
granted. Moreover the access should only be granted at a certain detail level.

Resulting Context

Administrating information access is likely to be underestimated. Putting the customer in
charge is a nice thing but only works if accompanied with training. Sometimes vendors do not
prefer such an approach because customers become more independent and former revenues
for adapting the system disappear.

313

Patterns for ERP-LandscapesPatterns for ERP-Landscapes

November 2005 Page 19 of 22

It remains difficult to manage role-centric information needs. Job profiles (roles) provide a
good basis for restricted access. For example the finance department requires a compressed
view for external communication but detailed access for internal reporting. Therefore simple
job-based restrictions are not flexible enough. The requirement for the user to interactively
switch between different aggregation levels on the application layer is obvious.

Implementation

Parameterisation has to provide for the appropriate tools to meet the requirements. The
objective may also be realised on an architectural level. Providing separate applications
specialized in specific information aspects, e.g. personnel accounting, thus provides detailed
information and exports the aggregated information into the main system.

Typical information systems use a single database and basically rely on a single type of
processing. In consequence, the need for creation of a superior layer arises which uses the
same information but presents it in a user-centric way.

Known uses

§ Compiere: Offers a wide range of possibilities to the customize reports (such as fading
in and fading out of columns or grouping) as seen in Figure 5 Customizing Reports.

Figure 5: Customizing Reports

§ In Europe the salary of employees is usually considered to be critical information.
Therefore this information is usually presented on a highly aggregated level.

§ Multidimensional databases are best suited for any sort of reporting on an aggregated
level. Such systems are based on dimensions and attach hierarchical structures with
information. For example the dimension salary may introduce aggregate levels like
total, total per department or per employee. Systems like MIS Alea provide access
control based on hierarchy levels. So you can build one single report (using a
reporting tool like MIS OnVision) and manage the appropriate aggregation level of
information by setting the appropriate access right based an the dimension’s
hierarchy.

Related Patterns

up:

§ [ERP-Landscapes] (03) Open architectures

314

Patterns for ERP-Landscapes Patterns for ERP-Landscapes

November 2005 Page 20 of 22

Acknowledgements
Special thanks to our shepard Kristian Elof Sørensen. In addition, the authors received many valuable
inputs during the workshops at VikingPLOP2005 - in particular Linda Rising, Cecilia Haskins and Allan
Kelly. The paper has been shaped by the inputs of those people. Special thanks for the deep
involvement of Cecilia Haskins who spent a lot of time discussing various topics and supported the
final editing of the paper.

315

Patterns for ERP-LandscapesPatterns for ERP-Landscapes

November 2005 Page 21 of 22

REFFERENCES

[01] Timeless Way of Building; Alexander, C.; 1979; [Pattern roots]

[02] A Pattern Language: Towns, Buildings, Construction; Alexander C., Ishikawa S.,

Silverstein M.; 1977; [Pattern roots]

[03] Software Patterns; Coplien J.; 2000; Bell Laboratories, The Hillside Group;

http://users.rcn.com/jcoplien/Patterns/WhitePaper/ [overview patterns]

[04] Design Patterns; Gamma, Helm, Johnson, Vlissides; 1995; Addison-Wesley;

[GOF, object orientation and patterns]

[05] Pattern in der Praxis; Keller W.; 1999; VAA-Fachtagung im März 1999 in Köln;

www.gdv-online.de/vaa/vaafe_html/tagung1/pattprax.pdf [patterns]

[06] Using Pattern Languages for Object-Oriented Programs; 1987; Beck K.,

Cunningham W.; OOPSLA’87;

http://uk.builder.com/whitepapers/0,39026692,60006877p-39000929q,00.htm;

[patterns, OO]

[07] RAPPeL: A Requirements Analysis Process Pattern Language for Object

Oriented Development; Whitenack B. G.; 1994; [patterns for requirements

analysis]

[08] Pattern-basierte Modellierung von Geschäftsprozessen; Förster A.; 2002;

Universität Paderborn Fachbereich Informatik, Diplomarbeit 2002;

www.upb.de/cs/ag-engels/Papers/ 2002/Diplomarbeit_Foerster2002.pdf;

[patterns for business processes according to ISO 9000]

[09] Objektorientierte Geschäftsprozessmodellierung mit der UML; 2003;

Oesterreich B., Weiss C., Schroder C., Weilkiens T., Lernhard A.; 1. Aufl.,

Verlag dpunkt-Verl., Heidelberg [modelling of business processes, UML]

[10] Geschäftsprozessanalyse - ereignisgesteuerte Prozessketten und

objektorientierte Geschäftsprozessmodellierung für betriebswirtschaftliche

Standardsoftware; Staud J. L.; 2001; 2., überarb. und erw. Aufl., Verlag Springer

[EPK (event-driven process chains), SAP]

316

Patterns for ERP-Landscapes Patterns for ERP-Landscapes

November 2005 Page 22 of 22

[11] Business Process Reengineering – Strategien zur Produktivitätssteigerung –

Konzepte und praktische Erfahrungen; 1995; Zeitschrift für Betriebswirtschaft,

Ergänzungsheft 2/95Schriftleitung: Albach H.; [production planning, productivity]

[12] The Core Competence of the Corporation; Prahalad, C., K., Hamel, G.; 1990;

Harvard Business Review, Vol. 90, no. 3, May-June (1990), pp. 79-91; [core

competence]

[13] Fearless Change; Rising, L., Manna, L., 2004; Addison-Wesley; [patterns how

to cope with change]

[14] The Patterns Handbook: Techniques, Strategies, and Applications; Rising, L.

(ed.); 1998; Cambridge University Press; [introduction patterns]

317

317. Patterns of The Mature Customer

Patterns of

THE MATURE CUSTOMER

Author:

Susanne Hørby Christensen

Buddinge Hovedgade 159,1

DK-2860 Søborg

Denmark

Tlf: +45 3966 7484

E-mail: susanne@itu.dk

Student at

IT-University of Copenhagen

Rued Langgaardsvej 7

DK-2300 København S

Abstract

Software development organizations are urged to be more mature in their work routines.

But to accomplish success with software development the customer should also

accomplish some level of maturity.

I present some patterns that facilitate maturity for customers of software systems.

318

Patterns of The Mature Customer

Susanne Hørby Christensen Patterns of The Mature Customer - 2 -

Content

Interfaces between Roles Define clear communication interfaces between you, your

colleagues and the supplier organization.

Prioritized Requirements Make visual summaries of your requirements and be active

and realistic in prioritizing your requirements together

with your supplier.

One Place for Information Make communication transparent to all stake holders so

that the progress of the project visible to everybody.

User Narratives Be attentive to rumors and stories from all levels in your

organization, use them properly and do not forget to give

feedback.

Incremental Releases Let the future users examine the releases continuously at

regularly intervals.

Change Request Control Allowing change is necessary - but it is important to map

these change requests to the priorities.

Introduction

Background

Ideally two organizations signing an IT-project contract should have the same goal and

vision for their future work and cooperation. This is however often not the case and

consequently mistakes and misunderstandings will occur between the involved parties.

The customer differs from the supplier by having interests in many other things than IT-

systems. The customer focuses on completely different products, and uses IT as a tool -

and tools are expected to be user friendly and run without errors.

The reasons for procuring an IT system are similar whether the customer belongs to the

public sector, the food industry or designs wear. The organization might be aware of the

importance of this new system, but except for the problem-solving part, they are not

interested at all. In Denmark there is growing demand for more mature customers, as it

has been found in projects conducted by the Ministry of Science, which work with these

issues. [7]

The supplier on the other hand, knows the technology, but might not know very much

about the customer business area or the processes used in the customer’s organization.

Therefore it is very important that the customer is able to provide relevant information

about their business area and their process to the supplier.

To prevent problems and misunderstandings happening in IT-projects, we want mature

customer and supplier organizations. But what characterizes maturity? Patterns of the

319

Patterns of The Mature Customer

Susanne Hørby Christensen Patterns of The Mature Customer - 3 -

Mature Customer aim to give a description of some of the important characteristics for

the customer and hopefully these patterns will evolve further for years to come.

The Patterns

The patterns aim at customers procuring an IT system, which involves development. It

is expected that the project involves several persons in both organizations, and the

person addressed "you" in the patterns is the project manager at the customer site.

The patterns should provide a toolbox for software customers. Do not expect a complete

language, but some central patterns for how a mature customer will act.

The structure of the patterns is based on the Alexandrian form [2]: Name, context,

delimiter, problem, forces, solution, more about the solution, delimiter, resulting context

and potentially diagrams.

Sources for the patterns

Inspiration for the patterns comes from interviews and from literature.

Interviews

I am not a senior project manager, but I interact with a wide variety of experienced

people, and from these conversations I have conducted the pattern mining for my

Patterns of The Mature Customer.

I held a workshop (15th March 2005), with 6 participants: 2 suppliers and 4 customers.

The suppliers were Gertrud Bjørnvig (TietoEnator) who works with patterns at a daily

basis and Thomas Christensen (Nordija) who have had several customers in the public

sector. The customers were Lotte Mossin (former DSB Informatic now TietoEnator),

who was the project manager of IT-procurements, Jens Chr. Hauge (Agency for

Governmental Management) who has been involved as Principal Consultant in

integrating several governmental IT-systems, Jens Petersen (Ringsted Municipality) IT-

Manager and Sten Mogensen (Ministry of Science, Technology and Innovation) who

currently is involved in a project about defining the mature customer in IT-projects. The

workshop provided great input for the development of the patterns and was followed up

by another workshop in August, where most of the same people took the opportunity to

provide me with their feedback. [7].

Literature

For my patterns I found Neil Harrison and James Coplien's "Organizational Patterns of

Agile Software Development" [3] a good source of inspiration. The book gives a good

description of how to build a supplier-organization - i.e. a software developing

organization. They also describe the relationship with the customer, but always from the

supplier's point of view. I also made use of Mary Lynn Mann and Linda Rising´s book:

"Fearless Change - Patterns for Introducing New Ideas" [5]. The latter book describes

320

Patterns of The Mature Customer

Susanne Hørby Christensen Patterns of The Mature Customer - 4 -

the introduction of new ideas in a broader sense. Apart from these two newer books, I

derived great inspiration from reading Alexander’s books when I started to uncover the

ideas of patterns [1] [2].

When trying to map and summarise the ideas from these books from a customer's point

of view, I came across a couple of missing links, e.g. with respect to meeting the

demand set by the discussion about the customer's responsibility to ensure success of

procuring IT systems.

I believe that "Organizational Patterns of Agile System Development" [3] is a powerful

resource for an organization - and it also suggests some ideas for how two organizations

merge. But a customer/supplier relationship might only last for a short period of time

where the management team in one organization does not have the power to lead a

change management project including both organizations.

321

Patterns of The Mature Customer

Susanne Hørby Christensen Patterns of The Mature Customer - 5 -

Interfaces between Roles

... you are at the beginning of an IT project. You know your own organization, but is the

communication path clear to everybody?

Communication might get fuzzy when an IT-project starts to evolve.

You are responsible for the outcome of the project. On the one hand you would like to

be informed about everything that is going on - on the other hand you want your staff to

work independently and determined.

If the communication path is not clear to everybody, questions concerning the project

might circulate for too long before they finally make their way to the right person. If

people can not get answers to their questions they start guessing, and you will loose

track of your own organization as well as the supplier's organization.

Therefore:

Define clear communication interfaces between you, your colleagues and the

supplier organization.

It is important that everybody with a question finds the answer with no run-around! The

roles for a project should be well defined, so that e.g. a development team in the

supplier organization can easily find the technical coordinator in your organization in

case of technical questions.

When people across the organizations get the answers they need when they need them,

they will feel appreciated and they will be more self-confident, which will show in their

daily work.

The communication interfaces could consists of several persons, e.g. the project

manager (you), the technical coordinator, the requirements coordinator, the quality

coordinator and the steering committee. The size of the roles depends on the size of the

project, i.e. in small projects one person might have more than one role and in larger

projects there might be several persons attached to one role (with one primary

responsible).

The communication flow could be supported by a web-application as well as

professional communicators who could review documents and transform them such that

they become readable to all stake holders.

322

Patterns of The Mature Customer

Susanne Hørby Christensen Patterns of The Mature Customer - 6 -

When people throughout the organization know who are responsible for different issues,

it will calm down tensions. But be aware that if the communication chart is too rigid, it

could lead to a stifling bureaucracy where those who want to appear important will

make sure that as much info as possible will go through their office irrespective of

whether this is sensible or not.

It can be perfectly fine if the developers and quality assurance staff contacts super users

in your organization directly and vice versa, but be attentive to the possibility that

trouble in the communication might occur. E.g. if there is a lot of communication

between customer super users and suppliers developers, you might lose track of what is

happening, and if misunderstandings occur it will cause difficulties for you. Therefore it

is important to keep contact to the entire project.

Of course it should be possible for super users in your organization to maintain a

dialogue with development and quality assurance in the supplier organization, but be

aware that the communication is controlled in such a way that you are not exposed to

misunderstandings. This is helped by ONE PLACE FOR COMMUNICATION (to be found

later in this paper).

This pattern is closely related to the organization patterns: COMMUNITY OF TRUST,

MERCENARY ANALYST, ENGAGE CUSTOMERS, GATEKEEPER AND SHAPING CIRCULATION

REALMS [3].

The diagram below shows the idea. Be aware that the number of roles/shareholders

might vary according to the size and type of the project.

Supplier organization Customer organization

Project manager

Super user

Users

Project manager

Development

Quality Assurance

323

Patterns of The Mature Customer

Susanne Hørby Christensen Patterns of The Mature Customer - 7 -

Prioritized Requirements

... you have applied INTERFACES BETWEEN ROLES and you are about to plan the project

with the supplier.

When the development of your system starts, you risk the supplier starting to

implement features that block more important features or that features are

implemented in a completely different way than expected.

As a customer you want to have the best solution for the amount of money/resources

you have dedicated.

Often you have an idea of what the future system should be like, but it is not always the

way it turns out to be.

Sometimes systems focus on features of minor importance and sometimes systems turn

out to be even better than expected by the customer.

On the hand you should tell the supplier all about your expectations and expect to have

a solution fulfilling these. On the other hand you should be open-minded to the

supplier's point of view - they might see other constellations that you cannot see

because you are too deeply involved in the old systems.

It is crucial that you are in control of the processes in your organization and that you

trust, that the supplier is control of their processes.

Therefore:

Make visual summaries of your requirements.

When you are active from the beginning, it will be easier to take a though decision later

on. Be open to ideas but keep track of the core features. It is a good idea to make visual

summaries of the requirements. Such summaries are very valuable later in the process,

where changes of the request/suggestion might occur. These summaries help the

developers to understand exactly what they should implement and the dialog with the

supplier help you to acquire realistic expectations, e.g. there is a Danish research project

showing remarkable increase in understanding for the user's situation and thereby better

user interfaces, when the developers have user scenarios in addition to technical

descriptions [6].

All the way through the project it is important to keep in mind that the system is

influenced by any business problems you might have and that - you cannot expect a

system to deal with your business problems if your business is a mess.

324

Patterns of The Mature Customer

Susanne Hørby Christensen Patterns of The Mature Customer - 8 -

When applying PRIORITIZED REQUIREMENTS you demonstrate your determination

towards being a mature customer who is open, active and responsible. You will get a

deeper understanding of the development aspects of the project, and your attitude would

probably make the flow of communication easier. You should however be aware of the

integrity of keeping everybody involved, but make sure you do not step over the

suppliers limit by being too deeply involved. This may cause offense and challenge the

important COMMUNITY OF TRUST [3].

This pattern could be supported by a supplier using the organizational pattern IMPLIED

REQUIREMENTS that help your understanding of the requirements. IMPLIED

REQUIREMENTS gives chunks of functionality a common name that makes more sense

than traditional requirements. [3]

325

Patterns of The Mature Customer

Susanne Hørby Christensen Patterns of The Mature Customer - 9 -

One Place for Information

... system development has started and people from your organization talk about the

project and some even talk with the supplier organization.

E-mails, printed documents, verbal communication may result in

misunderstandings that can destroy the faith to build trust between organizations.

It is important to have a constant flow of information between organizations as well as

within organizations. But when a developer suddenly starts working from the

description in an old document or rumors spread far and wide, people become insecure

and dissatisfied about the direction.

Therefore:

Make communication transparent to all stake holders so that the progress of the

project visible to everybody by having a central official place for project

information.

When there is one place, where all information is collected and readily available, you

have a better chance of avoiding misunderstandings and rumors. This place should be

easily accessed by stake holders in the project - both in the customer and the supplier

organization.

Preferably it should be a place on the web or intranet where all documents are available

in all versions, the newest one being the default. Of course it can be difficult to maintain

a system with all details, but at least it should be possible to find all documentation,

decisions made and the plans for the future. This could be coupled with an awarding

system encouraging people to pay attention to details.

The system could be provided by the supplier and therefore be included when

PRIORITIZED REQUIREMENTS is implemented.

This pattern could be helped by a GATEKEEPER [3], who is the information agent on the

supplier's side.

The diagram illustrates a customer interface to ONE PLACE FOR INFORMATION, where the

gray area could be the entrance, and the rest is subfolders. The dotted lines indicate

326

Patterns of The Mature Customer

Susanne Hørby Christensen Patterns of The Mature Customer - 10 -

which subfolders might be hidden to the customer. All relevant information should of

course be visible, but too much information could stifle the intent.

Planning

Specifications

Quality Assurance

Management

Contracts

...

Technical area

Design

Use cases

...

Test reports

Unit test

...

327

Patterns of The Mature Customer

Susanne Hørby Christensen Patterns of The Mature Customer - 11 -

User Narratives

... you are in the beginning of an IT project and you hear stories and rumors from the

future users

Missing important contributions of personal knowledge from the users can result

in a bad base for your system.

Your employees/colleagues will be the future users of the system. Often a new system

should help them do their job in a smarter/faster way and include some new features

that the users have been missing for a while. Expectations of the system will often have

been discussed prior to the implementation of the system.

These discussions are crucial for you. They tell you how the new system will be

perceived - are the users frightened that it will reduce the number of employees or do

they expect the system to help them do a good job, so that the company can expand and

perhaps hire more employees? There will be rumors to kill and nuggets of gold to be

discovered. The issues will be discussed in the canteen and similar places, but can be

hard to hold of for the management team.

You will hear all sorts of comments and stories. Some of these stories have great

importance for the project but it is difficult to conserve them.

You might hear something from a future user that seems unimportant but at a later

stage, it could be crucial to you (or somebody else within the project) to be able to find

this particular story. The opposite could also be the case, where a story at first seems

extremely important but later turns out to be irrelevant.

Therefore:

Be attentive to rumors and stories from all levels in your organization, use them

properly and do not forget to give feedback.

Meet the future users in face-to-face interviews or workshops, where these stories are

encouraged. And be aware of stories that pop up during your day-to-day work.

Make sure that you are open towards these stories when they arise - otherwise your

employees will soon stop telling you which things pop up in their minds.

The information flow from the future users towards the developers depends on the

number persons involved.

When you ask for stories you should be clear about the purpose. You might engage

some employees and it is crucial that you give them feedback. Tell them how you used

their ideas or explain why you did not, and make sure that the people are aware of the

possibility that their ideas might not be used.

328

Patterns of The Mature Customer

Susanne Hørby Christensen Patterns of The Mature Customer - 12 -

If it is a small system, with just a handful of end users, interviews and direct

communication between end users and developers will be logical. But in huge systems

with many end users it would be necessary to make a plan for this communication. It

would be important to implement ONE PLACE FOR INFORMATION to ensure that the

people involved can follow their ideas throughout the entire project. The USER

NARRATIVES help you to avoid risks seen by your employees, but also to see

germinating troubles and thereby be able to avoid these rumors before they become

reality.

It is important to evaluate input and give feedback continuously, otherwise skepticism

will grow and ruin the COMMUNITY OF TRUST build within your organization.

329

Patterns of The Mature Customer

Susanne Hørby Christensen Patterns of The Mature Customer - 13 -

Incremental Releases

... the supplier has started implementing the solution for you.

The project might miss the path. Features that are necessary can be difficult and

expensive to fit in afterwards.

There are many stories about customers who order a system and unfortunately get

exactly what they asked for - perhaps several months/years after signing the contract.

Fortunately this is not seen as often as in the past, but still expensive surprises can

occur. You want to follow the project closely but you do not want to waste resources by

being too involved.

Therefore:

Let the future users examine the releases continuously at regularly intervals.

To prevent disastrous results it is very important that the future users get their hands on

the product and try it while the developers observe them.

Such sessions can enlighten the developers about how the users will use the system in

practice and it will be possible to discover if the developers misunderstood the intent of

the requirements.

These releases should be planned and incorporated as milestones and be demanded in

correlation to release of money. It is crucial that the customer has PRIORITIZED

REQUIREMENTS.

This is an aspect from the agile world, but it is perfectly possible to fit it in to other

types of projects as well.

Sometimes it might be difficult to test a single feature because it depends on other

features which are not yet fully implemented. Instead of delaying the entire

examination, it could be a good idea to let the future users comment on mock-ups of

planned user interfaces. This could catch some of the problems early.

This pattern is closely related to ENGAGE CUSTOMERS and BUILD PROTOTYPES, as well

as with INCREMENTAL INTEGRATION, ENGAGE QUALITY ASSURANCE AND APPLICATION

DESIGN IS BOUNDED BY TEST DESIGN [3]

It is important that the persons responsible for accept of such releases should be

included in INTERFACES BETWEEN ROLES.

330

Patterns of The Mature Customer

Susanne Hørby Christensen Patterns of The Mature Customer - 14 -

The illustration shows a mock-up which might be OK from a technical point of view,

but logically the user might want a slightly different structure - and maybe some

additional fields and buttons.

Add person 1 of 2

Name:

E-mail:

Address:

Country:

 Exit Menu

Add person 2 of 2

Zip:

Web:

Phone:

City:

 Exit Menu

331

Patterns of The Mature Customer

Susanne Hørby Christensen Patterns of The Mature Customer - 15 -

Change Request Control

... there have been some suggested changes in the original requirements

For several reasons changes to the original requirements occur. This process can

be fatal if not properly managed.

Change requests can come from the supplier organization as well as from your steering

committee or as a suggestion from the future users. It could also be the result of a new

law that influences your business.

Major changes can disturb the entire project if you simply accept it without careful

planning of what to do now. Such disturbances will be fatal for the spirit within the

organizations.

Therefore:

Allowing change is necessary - but it is important to map these change requests to

the priorities.

You should set up a change process in partnership with the supplier organization. Every

time a change suggestion occurs, it should be examined by users, technical staff,

management as well as the supplier's ditto. This should lead to a risk analysis in order to

determine the risk of including or excluding the change, and be followed by a decision;

to reject the change, to implement it as quickly as possible or to fit it into an update later

on. The risk includes impacts towards cost, schedule as well as quality.

You would compare this against your PRIORITIZED REQUIREMENTS and see if it has the

substance to bring it to the supplier.

This is very similar to FEEDBACK BEFORE CHANGE, an unpublished pattern by Cecilia

Haskins that considers the importance of feedback from the supplier prior to acceptance

of change requests. [4].

And like PRIORITIZED REQUIREMENTS it is closely related to the common names

achieved by IMPLIED REQUIREMENTS [3]

332

Patterns of The Mature Customer

Susanne Hørby Christensen Patterns of The Mature Customer - 16 -

Acknowledgement

I am grateful to Neil Harrison for shepherding these patterns in spring 2005 - it was a

hard but good learning process.

Thanks to the people in Business Workshop at Viking PLoP 2005 for their careful

reviews and valuable ideas: Allan Kelly, Cecilia Haskins, Florian Humplik, Jesper

Christensen, Juha Pärssinen, Kristian Sørensen, Linda Rising, Mauri Myllyaho, Michael

van Hilst, Pavel Hruby, and Rebecca Rikner.

Thanks to the participants of the workshops held in Denmark, where I got many ideas

for central patterns and interesting feedback: Gertrud Bjørnvig, Lotte Mossin, Jens Chr.

Hauge, Jens Petersen, Sten Mogensen, and Thomas Christensen.

Finally I want to thank my friend, Anne Scott, for reviewing the document.

References:
[1] Alexander, Christopher. (1979). The Timeless Way of Building. New York, Oxford

University Press.

[2] Alexander, Christopher. (1977). A Pattern Language. New York, Oxford University

Press.

[3] Coplien, James & Neil Harrison. (2004). Organizational Patterns of Agile Software

Development. Pearson Prentice Hall. ISBN: 0-13-146740-9.

[4] Haskin, Cecilia.

[5] Manns, Mary Lynn & Linda Rising. 2004. Fearless Change - Patterns for

Introducing New Ideas. Addison-Wesley. ISBN: 0201741571

[6] Strøm, Georg (2005) 'Undgå misforståelser i softwareudvikling', Computerworld,

Copenhagen, 2 December, p. 18.

[7] Two workshops. One held at TietoEnator A/S 15th March 2005, with focus on

customer-supplier relationship. Participants were: Gertrud Bjørnvig (TietoEnator), Lotte

Mossin (TietoEnator), Thomas Christensen (Nordija), Jens Petersen (Ringsted

Kommune), Sten Mogensen (Ministry of Science, Technology and Innovation), Jens

Chr. Hauge (Agency for Governmental Management) and I. The second one held at IT-

University of Copenhagen 23rd August 2005, where the draft patterns where discussed

among other subjects. Participants were Thomas Christensen (Nordija), Jens Petersen

(Ringsted Kommune), Sten Mogensen (Ministry of Science, Technology and

Innovation), Jens Chr. Hauge (Agency for Governmental Management) and I. So in

both workshops both suppliers and customers were present, to ensure that the

parameters were discussed in a proper way.

333

333. Privilege Separation - A security Pattern

Page 1

Privilege Separation
A Security Pattern

Dan Forsberg, <dan.forsberg@hut.fi>

Helsinki University of Technology;
Nokia Research Center

Abstract

When Privilege Separation pattern is used it divides one functional element into
smaller functional elements with different privileges and restricted interfaces. The
intent is to separate privileges of functional entities and thus restrict the area where
the functional entity has rights to act. When properly and wisely applied makes the
system more secure, modular, and easier to analyze by dividing an entity into
multiple entities.

CONTEXT

Server software programming in many times requires special privileges for doing
certain operations like binding the server into a service ports, accessing files with
confidential information like passwords, and managing cryptographical operations
like data signing and encryption with confidential session keys.

PROBLEM

The problem that this pattern solves is how to minimize the effects of vulnerable
exploited code (like buffer overflows).

FORCES

There exists a system with multiple functionalities and valuable information and only
part of the system functionalities need to access this information. Unintended
leakage of the information must not happen between functional elements.

A system needs to access secure information (continuously), which means that
some kind of access control to the information must be implemented. This pattern
becomes useful if the whole system does not need the information as it is, but a
derivation of it (like authentication result, handle to a socket/file descriptor, etc.).

On the other hand if this pattern is not used at all the system modularity does not
exist and probability for security vulnerabilities increases. A bad example would be
a server that needs high privileges for a small amount of time to do a small task, but
the whole server runs all its lifetime with high privileges.

When dividing the system into smaller systems, the complexity of the combined
system increases. As a result of the division into multiple entities the interfaces
between the entities must be specified. The more interfaces, the more work is
needed. In both of these cases a balance between complexity and sound security
need to be found.

334

Privilege Separation - A security Pattern

Page 2

SOLUTION

Normally modularity is based on functional aspects. Privilege separation pattern
brings additional modularity based on different privileges. In addition to using this
pattern the least privilege security principle should be applied to the resulted divided
entities for providing a full solution to the problem.

A - External Entity

B - Server Entity

C - Privileged Entity

Case I

Case II Interface X

Service

Figure 1 An example of privilege separation pattern structure

Figure 1 illustrates a simple structure of the privilege separation pattern. External
Entity (A) uses a service which consists of a combination of the Server Entity (B)
and the Privileged Entity (C). Server Entity and the Privileged Entity co-operate
together via interface X for serving the External Entity.

Privileged entity has access privileges to sensitive or valuable resources. When
applying this pattern the service entity is divided into two entities with separated
privileges: server entity and privileged entity. The privileged entity holds privileges
to access valuable resources and the server entity communicates with it.

The privileged entity derives information and/or resources for the usage of the
server entity. In Case II this information can be a result of processing between the
External Entity and the Privileged Entity, like authentication result from SIM card or
a file descriptor from operating system to a user space program. In Case II the
external entity communicates with the server entity. The privileged entity provides
information like checking if the supplied password was correct according to a
passwd file in the system.

Depending on the resources that the privileged entity provides, the interface to the
service consumer entity can be through the server entity (Case I, see Figure 2) or
through the privileged entity (Case II, see Figure 3).

External entity Server entity Privileged entity

Request service

Provide sensitive information

Provide service

Request service

Figure 2 Case I

335

Privilege Separation - A security Pattern

Page 3

External entity Server entity Privileged entity

Request service

Provide sensitive information

Provide service

Figure 3 Case II

If the pattern is recursively (see Figure 4) applied too many times, the system
becomes cumbersome and complicated to manage. An example would be a system
that implements different access control lists (ACL) for each and every file,
application, and resources. Using the same access rights for multiple files (access
rights group) is thus used to make the system more manageable.

 Interface

Service

Server Entity

Server Entity

Privileged Entity

 Interface

 Interface

Privileged Entity

.

.

.

Server EntityServer entity

Privileged Entity
Privileged Entity

Server Entity

 Interface

Server Entity

 Interface

Privileged EntityServer Entity

Figure 4 Simple example of the recursive nature of the Privilege Separation pattern

RESULTING CONTEXT

As a result the systems privileges are divided and only part of the system is
permitted to access privileged information. If wisely applied vulnerable code in one
entity does not break the security of the other entities or at least makes it harder to
exploit the code vulnerabilities.

336

Privilege Separation - A security Pattern

Page 4

KNOWN USES

• OpenSSH privilege separation [1], [2] is an example where the SSH server was
divided into two functional entities for better security. Also vsftpd uses

privilege separation to limit the effect of programming errors [3].

• When designing network architecture isolating long-term security credentials
into separate servers in the network architecture to better protect them. This
separate server would then have an interface to other selected network
interfaces that are eligible to contact the server. Examples include isolated
databases with access control like passwd file and programs/libraries that can
access it and a HLR register in telecommunications systems architectures.

• When managing and using security credentials. Caging security credentials with
hardware approaches, like SIM cards in mobile phones.

• It is important to restrict the rights of an executing process in an Operating
System. Patterns like File Access Control, Controlled Virtual Address Space,
and Controlled Execution Environment [4] are tools when providing privilege
separation, which helps minimizing the scope of security threats for network
servers. An extreme example of privilege separation is chroot(1)(“change
system root”) system capability in Unix systems. It provides strong process
isolation and actually implements also the patterns listed above.

• Applying this pattern for the software design and development tools, especially to the
graphical user interfaces, could mean that the developer would be able to separate
privileges by painting areas of code with mouse or selecting files. Then the compiler
together with the target system could provide different privileges to these areas. This
seems to be a novel idea. A target system could be an operating system for example.
Separation could be a combination of processes and files. On the other hand the
compiler and OS kernel could support privilege changing for a process or thread by
inserting code in the compilation phase into the executable binary. This inserted code
would then automatically change the privileges of the process/thread. How to select the
privileges is out of the scope of this paper. A configuration file could be used for
example.

Related Security Patterns

Single Access Point security pattern creates a single interface for communication
with external entities. After our privilege separation pattern has been used Single
Access Point security pattern can be used for the communication between resulting
entities. However, the divided entity may have other interfaces towards the external
entities, which thus breaks the Single Access Point security pattern model.

Applying Layered Security pattern makes the system to have multiple levels of
security checks. When Privilege Separation pattern is applied it may provide or
create another security layer, which fulfills the goal of the Layered Security pattern.
On the other hand the same layer may be used multiple times (for example file
access rights), even if the Privilege Separation pattern is used.

Reference Monitor security pattern [4] can be applied to the privileged entity on our
pattern. It defines a process that intercepts all requests for resources and checks if

337

Privilege Separation - A security Pattern

Page 5

the requests are authorized or not. When applying Privilege Separation pattern the
privileged entity becomes a reference monitor for the valuable information, in our
example case the server entity (see Figure 1). The Authenticator security pattern [5]
can also be applied to the privileged entity if the origin of the request needs to be
authenticated.

Related Principles

Least privileges security principle should be applied to the resulting entities after the
Privilege Separation pattern has been applied. Privilege Separation pattern
supports the defense in depth security principle, since it creates new entities and
separates their privileges.

Acknowledgements

We would like to thank Eduardo Fernandez for kindly sheperding this paper through
and VikingPLoP´05 conference participants for giving very valuable feedback for a
pattern writer newbie.

References

[1] Niels Provos, Peter Honeyman; “Preventing Privilege Escalation”; 12th USENIX
Security Symposium Proceedings, 2003; URL:
http://www.usenix.org/publications/library/proceedings/sec03/tech/provos_et_al.html

[2] David Brumley and Dawn Song; “Privtrans: Automatically Partitioning Programs for
Privilege Separation”; 13th USENIX Security Symposium Proceedings 2004; URL:
http://www.usenix.org/publications/library/proceedings/sec04/tech/brumley.html

[3] Chris Evans, “Probably the most secure and fastest FTP server for UNIX-like
systems”, URL: http://vsftpd.beasts.org/

[4] E.B.Fernandez, "Patterns for operating systems access control", Procs. of PLoP
2002, http://jerry.cs.uiuc.edu/~plop/plop2002/proceedings.html

[5] E.B.Fernandez and J.C.Sinibaldi, "More patterns for operating systems access
control", Procs. EuroPLoP'03, 381-398, http://hillside.net/europlop/europlop2003/

339

339. Patterns for Software Release Versioning

Patterns for Software Release Versioning

Klaus Marquardt
Email: pattern@kmarquardt.de

How to version software releases may be an afterthought during development, but
they have all the potential to make your life miserable once the software is in
production.

This paper covers techniques to identify a particular version, policies to determine
version compatibility, and release update strategies. It aims to help the project
participants responsible for releases. The affected roles are software architect,
release manager, project lead, and product manager. In small projects these roles
may be covered by one or two persons.

Introduction
While the software is planned and designed, you think of plans and processes,
specifications and delivery dates, architecture and middleware, test and
integration, deployment and installation. Versioning releases is often treated as an
afterthought. Sure, software is versioned, so what is the point?

There are two points: complexity in size, and in time. All but the smallest systems
are a combination of distinct programs or libraries, software developed by
different teams and eventually running on different machines. The interoperation
of all this code needs to be assured. Over time, the installed base of a software
may become significant, and each installation needs to be maintained. Bugs are
detected and fixed, new features developed, and the installed base becomes
inhomogeneous.

You now enter the domain of not just version identification, but of version
interoperation and release management. Which programs can be installed together
to function properly, and how is the compatibility checked? And some time more
upstream, what is the right granule and time for software items to release?

Luckily, most software systems can survive without deep thoughts on versioning.
Implicit and tacit knowledge can bring you so far, but adding just a little more
complexity can break your system and requires urgent and careful action. This
collection of patterns aims to make the versioning issues explicit, prepare you for
the foreseeable, and help you decide what amount of thought to spend when.

Roadmap
The patterns in this collection have relations to the outside world. Release
versioning is virtually pointless without the ability to re-construct any version of
the installed base. Configuration management patterns [Berczuk] describe some of
the essential development practices and processes.

Especially for patch releases and partial releases, many more policies and
practices are documented, e.g. in [Hohmann]. However, these are based on
combinations of patterns from this collection.

340

Patterns for Software Release Versioning

The kind and purpose of the software release is covered by the alternative patterns
FUNCTIONAL RELEASE, PATCH RELEASE, and TEST RELEASE.

Different policies of version numbers all base on NUMBER IDENTIFIES RELEASE:
MAJOR AND MINOR VERSION NUMBER, BUILD NUMBER, and their combination X-Y-Z-
BUILD NUMBER. For the public image, numbers are often replaced or complemented
by a MARKETING NAME.

Release versions are also used for compatibility checking, either explicitly or
implicitly. The common policies are MAJOR VERSION COMPATIBILITY, WHITE LIST
CHECK, and BLACK LIST CHECK.

Patterns for finding the right granularity for individually versioned items are
thumbnailed in an appendix.

Further patterns in the domain of distribution and installation need to link with
these release versioning patterns. Distribution comprises shrinkware, downloads,
and auto installation via internet or radio or digital TV. Installation may require
user confirmation and interaction, or take place silently.

Acknowledgements
Thanks to Neil Harrison for shepherded this pattern collection to VikingPLoP, to
all workshop participants at VikingPLoP 2005 for their feedback, and to the
VikingPLoP community, especially to Juha and Sami, for a great venue.

References
Berczuk Stephen Berczuk, Software Configuration Management Patterns:

Effective Teamwork, Practical Integration. Addison-Wesley 2002
Hohmann Luke Hohmann, Beyond Software Architecture: Creating and

Sustaining Winning Solutions. Addison-Wesley 2003
Kelly Allan Kelly, Business Strategy Patterns for Selling Knowledge with

Products and Services. To appear in: Proceedings of VikingPLoP 2005

Patch
Release

Test
ReleaseFunctional Release

Build
Number

X-Y-Z-Build
Number

Major and Minor
Version Number

Number Identifies
Release

Marketing
Name

White List
Check

Black List
Check

Major Version
Compatibility

341

Patterns for Software Release Versioning

Forces

Solution

Improved

Consider

Functional Release

Consider a company developing a software product.

What status of the software should be delivered to the customer?

Preparing a working software baseline for release requires effort in testing,
packaging, marketing, and distribution, but releasing software is the key business
of most software companies.

Premature shipping distracts users and may risk a vendors business, but late
shipment diminishes the value for the customer and the return on investment.

Therefore, deliver a new software release when a major functional gain has been
achieved.

Finding the balance between the costs associated to a new release, and the
revenues at stake when deferring a release and thus costs, is an art in itself. It
requires a combination of market knowledge, and financial controlling. The
development team members contribute their knowledge of the time and effort it
takes to finalize a release for shipment.

Major achievements become available to the customer.

Premature releases that would increase the cost of ownership over the revenues
expected, can be avoided by a cost analysis.

Functional releases need identification. When a combination of numbers is used,
increase the numbers to express the amount of novelty. An increase of a major
version number indicates not only major improvements, but typically implies
incompatibility to past releases.

For marketing purposes, consider using a Marketing Name to improve the mental
identification of the new release.

The business model of the company may combine software releases with further
opportunities to sell services or consultancy [Kelly].

342

Patterns for Software Release Versioning

Forces

Solution

Improved

Consider

Service Pack
also known as: Patch Release

Consider a versioned product that applies MARKETING NAME.

How do you distribute updates that solve problems of a current software release,
and identify the distributed versions?

You need to distribute corrections, fixes, and features that are overdue, but
marketing fixes is different from marketing new products.

Associations with a software release shall be positive, but admitting bugs in a
previous version is painful.

You need a way of identification that is quickly graspable, but that is not confused
with new key versions and products.

Therefore, bundle several updates into a Service Pack that can be installed with
the previous version of the software. Identify each Service Pack by a number, as
there might be several of them necessary over the software’s lifetime.

The (minor) version numbers of the updated software items need not be visible to
external customers. However, document the Service Packs so that the
development team can make the mapping and reconstruct the entire source on
demand.

Service packs are often bundles that comprise the updated functionality of more
than one minor version. Subsequent Service Packs should not require one another,
but each should include all updates of the previously released Service Packs.

Since you have an interest that your customers install the Service Packs, make the
entire process of distribution and installation as painless as possible. Give the
Service Pack for free, using multiple distribution channels such as CD or internet
download. Do not acquire consumer data that they might not want to give you.
Announce each new Service Pack visibly through all channels of customer
relationship management.

Service Packs are an elegant way to fix problems on the client’s side.

Your reputation can change for the better, as you actually do care for the installed
base.

You need to maintain distinct branches of development to separate fixes (Service
Packs) from new features for future releases.

To avoid unnecessary installation, the software release should visibly display not
only its version but also the latest installed Service Pack.

Patch Releases and Service Packs follow the same considerations and processes,
but can have varying granularity. For a terminology, typical Service Packs are
large and contain several different patches.

343

Patterns for Software Release Versioning

Forces

Solution

Improved

Consider

Test Release

Consider a company developing a software product.

How can you ensure that the product meets the user’s expectations?

Developing software is expensive, but shipping software that does not meet the
markets needs means spending even more money.

Releasing software is expensive, but only released software has the potential to be
evaluated for usability and appropriate functionality.

Therefore, prepare a small number of subsequent test releases to a limited
number of test users.

Ensure that a test release, just as any other release, can be identified. It is common
to use a zero as number, or to name the releases as alpha or beta.

For early test releases, you may want to track where they are tested and used, and
prevent unnoticed installation.

Collect feedback for each test release. Only publish a subsequent test release after
the feedback has been included into the software development. Make sure that a
part of the test users stay in the test release distribution list, so that you have a
consistent feedback on your ability to react.

Functional releases for a broad audience are thoroughly tested.

Market acceptance and financial success is more likely.

Even test releases are actual releases that are visible to some of your key
customers. They are worth some marketing as they contribute to the public image
of the final software product.

For a numbering scheme, consider using X-Y-Z-BUILD NUMBER with a Z
component of zero. Complement this with a MARKETING NAME such as “Alpha 2” to
adjust expectations about stability – and the influence that feedback can have.

344

Patterns for Software Release Versioning

Forces

Solution

Improved

Consider

Number Identifies Release

Consider a software product or component release.

All users need a means to refer to a particular release. How do you identify that
release?

Selecting names can be cool, just as your project name is, but a sense of humor
seldom scales for different (team) cultures.

Each release is created at a particular date, but exposing the date may induce an
impression of staleness, even if an unchanged version means quality.

Any number may do, but you need a sense of which version is newer than
another.

Therefore, identify the release by a unique version number. Increase the number
with every release.

Make sure that each release gets its own number, and that numbers are not reused.
Do not slip even in exceptional circumstances, like one time creation for your
very special customer, or a trade show presentation. Also ensure that even test and
trial releases are versioned – every release that might possibly leave the privacy of
the development team.

Make this software version number visible on the shipping media and in the
software itself. The software should support an API function to retrieve its version
number.

Each release is uniquely identified without confusion.

Each release found in some place can be referenced and reconstructed in source
code.

The version information does not exhibit purpose or contents, thus diminishing
the potential that users take offense.

From knowing the official release number, your development environment should
enable you to re-create the entire sources. Patterns on software configuration
management are available for your support [Berczuk].

Plain numbers are boring. They cannot serve for marketing purposes.

Combine this with MARKETING NAMES and create a one-to-one relation between the
version number, and the combination of MARKETING NAME and SERVICE PACK.

BUILD NUMBERS are a way to distinguish releases for tests and trials from those
releases available to the public.

345

Patterns for Software Release Versioning

Forces

Solution

Improved

Consider

Major and Minor Version Number

Consider a software product or component release.

A single number to identify a release version can serve as a reference and
identification. However, how could you convey hints on key features or
compatibility?

You need a way of identification that is quickly graspable, but that still conveys a
hint of information.

Any number may do, but you need a sense of which version is newer than
another.

You want to signal major achievements, but the product still remains the same,
covering the same users’ needs.

You want to signal minor advances and corrections, but this shall have a different
scope than major achievements.

Therefore, identify all versioned items with a major and a minor version number.
Use positive integers for both.

Increase the minor version number with each release, except when you increase
the major number in which case the minor number starts with 0.1 Increase the
major number with major achievements, or to indicate incompatibility.

The major and minor version number strategy is a tricky beast despite its
popularity. It evokes associations with respect to compatibility and advances that
may not hold. It is never totally clear when to change a major version number, and
what implications this has.

When using this numbering scheme, it is tempting to abuse it as a marketing
vehicle. Mixing these will cause confusion, so decide whether you focus on
marketing aspects, or on compatibility. Technically, it is best applied when you
are serious about compatibility and do not need to market the software directly,
such as in embedded systems where the software is just among other ingrediences.

The numbers you use are more expressive now.

Using the major and minor version numbering scheme is mostly linked with the
MAJOR NUMBER COMPATIBILITY. Beware that compatibility needs to be checked, and
that the amount of possible combinations grows with the square of minor version
numbers.

The assumed expression is by convention only, and cannot be extrapolated into
the future.

For alternatives to express technical and marketing aspects, see X-Y-Z-BUILD
NUMBER and MARKETING NAME.

1 Hence the proverb: “never buy a version dot-0!”

346

Patterns for Software Release Versioning

Forces

Solution

Improved

Consider

Build Number

Consider a versioned product that applies MARKETING NAME.

How do you reference the status of the internal development?

You need to identify a software version, but that identification is not related to
features or their marketing.

You distribute versions of the software for testing and trials, but only a few of
these will become official releases.

The version identification shall be visible to the end user for reference, but that
identification shall not transport any expectation whatsoever.

Therefore, maintain a numerical build number and store this number within the
software itself. This Build Number is kept in addition to a MARKETING NAME or a
MAJOR AND MINOR VERSION NUMBER. In a system consisting of multiple versioned
software items, each has its own Build Number.

Make this build number meaningless and visible. Meaningless implies that you
will not consider this information in a compatibility check, though it will appear
in a Bill Of Material [Berczuk]. Visible means that any user of the software can
see it and reference it in a mail or during a phone call.

Test and trial versions may have a life beyond your expectation, and distribute
themselves in unexpected places. Maintain a database with the Build Numbers
that left the development team, and document their release status.

Build Numbers reference a snapshot of the development process, without any
implications beyond that the software has been build.

This reference can be exhibited and exchanged in any situation.

Creating a build number adds to the complexity of your tool suite.

BUILD NUMBERS are most effective when created automatically. The build process
should include incrementing that number and linking or packaging it with the
software. A new number can be given anytime and should not be based on quality
criteria beyond that the build is a complete one. To ensure it does not transport
expectations, use a number that is not related to a date.

347

Patterns for Software Release Versioning

Forces

Solution

Improved

Consider

X-Y-Z-Build Number

This is a variant to and combination of MAJOR AND MINOR VERSION NUMBER, BUILD
NUMBER, and MARKETING NAME.

A major-minor version number evokes associations about features and
compatibility. However, how could you actually convey this information?

You need a way of identification that is quickly graspable, but that still conveys a
hint of information.

Any number may do, but you need a sense of which version is newer than
another.

You want to signal major achievements, but the product still remains the same,
covering the same users’ needs.

You want to signal minor advances and corrections, but this shall have a different
scope than major achievements.

Therefore, identify all versioned items with a major and a minor version number,
plus a patch level and a build number. Use positive integers for all four parts.

Increase the minor version number with each release that enhances functionality,
except when you increase the major number in which case the minor number
starts with 0. Increase the major number with major achievements, or to indicate
incompatibility.

Increase the patch level when you indicate full compatibility and identical
functionality, but a change due to bug fixes. Use the build number as a technical
reference to your configuration management system.

The numbers you use are more expressive now.

X-Y-Z-BUILD NUMBER can support both marketing and technical needs, and thus
replace or complement a MARKETING NAME.

Using the major and minor version numbering scheme is mostly linked with the
MAJOR NUMBER COMPATIBILITY. Beware that compatibility needs to be checked, and
that the amount of possible combinations grows with the square of minor version
numbers.

The assumed expression is by convention only, and cannot be extrapolated into
the future.

348

Patterns for Software Release Versioning

Improved

Consider

Forces

Solution

Marketing Name

Consider a versioned product.

A release with a mere version number is boring, it may even evoke negative
associations. How can you brand a release for marketing and give positive hints to
potential customers?

You need a way of identification that is quickly graspable, but that still conveys a
hint of information.

Associations with a software release shall be positive, but a major-minor
combination is not creating trust.

You want to signal major achievements, but marketing is not interested to signal
minor advances or corrections.

Therefore, use a marketing name for shippable versions. This can be an integer
number indicating your long history (“10g”), or relating to your intended shipping
date (“Windows 1995”). Make sure that each marketing name has a match into an
actual software version.

Finding brilliant marketing names is an art which software engineers are typically
not good at. Continuity, novelity, or advancements are not expressed in the same
wording and domain as base line numbers and compatibility concerns.

To match one view into the other, a simple technical number is sufficient, such as
a BUILD NUMBER. The match should not use a MAJOR AND MINOR VERSION NUMBER as
this is more complex than necessary and transports information that somebody
needs to put in – and neither marketing nor development is interested.

Names can be more expressive than numbers.

The domains of technical issues and marketing issues are separated.

You need a mapping between both domains.

Mixing a marketing name with a numerical identification can create a mess, when
users expect features or compatibility based on the numbers, that the actual
software does not provide.

Combine the MARKETING NAME for major advances with a different strategy to
release bug fixes and corrections, like SERVICE PACKS.

Note that the MARKETING NAME does not need to match the project name, even
though the project name may be known to the public prior to the shipping date.

349

Patterns for Software Release Versioning

Forces

Solution

Improved

Consider

Major Version Compatibility

Consider a system of several components.

Which combination of versioned items can you consider compatible?

You cannot assume that any combination of software interoperates smoothly, but
users implicitly expect compatibility of updates and new versions.

Similar versions can cooperate, but major differences in features will limit the
compatibility.

You can determine the compatibility during development, but a run time check
increases the chances to identify conflicts.

The compatibility of different software items better be stated explicitly, but the
number of possible combinations grows non linear.

You want to be able to incrementally update particular software portions, but you
need to test all combinations that can occur.

Therefore, use the MAJOR AND MINOR VERSION NUMBERS for compatibility checking.
Assume all versions of the same major version number compatible, regardless of
their minor version.

While this assumption is easy to check by the installed software components, it is
hard to achieve during development. All possible combinations must be tested, at
least in a pair wise approach. Except where legally required, you do not need to
test triangle and more complex settings, as their failure probability is very low.

The compatibility check is technically easy and can happen at run time.

The decision on compatibility is easy to understand and matches the users’
expectations.

Compatibility matches to similar features, bug fix releases are considered
compatible.

There is no guarantee that only thoroughly tested combinations of software
become operational.

The decision about compatibility is typically not based on thorough testing of all
combinations, but on implicit assumption.

The MAJOR VERSION COMPATIBILITY strategy does not scale for very many minor
releases, especially when a large number of items is involved. It is often combined
with a strategy to limit the number of minor releases to less than a hand full.

350

Patterns for Software Release Versioning

Forces

Solution

Improved

Consider

White List Check
also known as: Positive Check

Consider a system of several components

How can you check for version compatibility, when you cannot rely on the
implicit understanding of a MAJOR VERSION COMPATIBILITY?

You cannot assume that any combination of software interoperates smoothly, but
users implicitly expect compatibility of updates and new versions.

Similar versions can cooperate, but major differences in features will limit the
compatibility.

You can determine the compatibility during development, but a run time check
increases the chances to identify conflicts.

The compatibility of different software items better be stated explicitly, but the
number of possible combinations grows non linear.

You want to be able to incrementally update particular software portions, but you
need to test all combinations that can occur.

Therefore, maintain a list that includes tested combinations of different items.
Check whether the actual versions are listed as compatible. Reject interoperation
when the combination is not listed.

The POSITIVE CHECK strategy comes with the understanding that every combination
that is not explicitly mentioned as compatible, is assumed to be incompatible. This
emphasizes the importance of testing and verification and prevents unintended
slips in the release procedure.

The information which versions cooperate can be maintained outside the software
and have independent distribution channels. In systems where some parts are
movable or exchangeable, the allowance information might not include the actual
combinations although they have been tested already. Thus, an update channel for
the allowance data is as important as the distribution of the software itself. If fraud
prevention is essential, the allowance information needs to be encoded.

The compatibility check is technically easy and can happen at run time.

Only thoroughly tested combinations of software can become operational.

The release process is not bound to the development but to QA.

Installations done by end users have a higher risk to refuse operation.

A second type of data needs to be distributed.

351

Patterns for Software Release Versioning

Forces

Solution

Improved

Consider

Black List Check
also known as: Negative Check

Consider a system of several components

How do you conveniently check for version compatibility, when you are still in
your testing phase?

You can assume that most combination of software interoperate, but you need a
way to exclude those combinations that you know to be incompatible.

You can determine the compatibility during development, but a run time check
increases the chances to identify conflicts.

You want to be able to incrementally update particular software portions, but you
need to test all combinations that can occur.

The compatibility of different software items better be stated explicitly, but for
just trying something in your own environment you avoid significant
administrative overhead.

Therefore, assume compatibility, and define those cases where you know that
versions do not interoperate. List these failure cases in a negative list, and check
for their appearance.

The NEGATIVE CHECK strategy comes with the understanding that every
combination that is not explicitly mentioned as incompatible, is assumed to be
compatible. This reduces the importance of formal testing and verification and
enables an informal release procedure by the developers.

The compatibility check is technically easy and can happen at run time.

Software to be tested can quickly become operational.

Software known to be erroneous in combination, can be excluded from operation.

There is no guarantee that only thoroughly tested combinations of software
become operational.

Installations done by end users have a higher risk to malfunction, possibly even
unnoticed.

As the NEGATIVE CHECK strategy can lead to unexpected behavior when not
carefully controlled, depending on the usage in the field it needs to be replaced by
a more strict checking strategy.

352

Patterns for Software Release Versioning

Appendix: Patterns for the Granularity of Versioned Items

Package Version
How do you avoid to drown in a large number of versions, and enable effective
checking?

Version each package as a whole. Limit the number of visible and checkable
version numbers to about a dozen or less.

This pattern is common practice with components and plug-ins.

Data Version
Consider a system containing many different components that interoperate via
data exchange. How do you enable effective compatibility checking?

Version the data structures that are shared between different software portions.
Assume that all relevant behavioral aspects are expressed in the data itself.

This pattern is common practice in database centric host systems, and XML based
enterprise systems.

Item Version
Consider many different devices from different vendors and of different versions.
All these devices need to interoperate at a basic level. How do they know what to
expect from each other?

Version each single item of exchange individually.

This pattern is common practice in widely used networks, such as messages in
telecommunication protocols.

	1. Table of Contents
	3. Introduction
	5. Shepherding Award
	7. Acknowledgements
	11. Pattern language for sharing Systems Engineering "best results"
	17. Two Simple Patterns to Support the Development of Reliable Embedded Systems
	27. Architecturally sensitive Usability Patterns
	47. A Pattern Language for Supporting Wireless Communication Between End-Points
	61. A System of Patterns for Concurrent request Processing Servers
	95. A Pattern Language for Standardization Work
	103. Factory and Disposal Methods - A Complementary and Symmetric Pair of Patterns
	115. The Good, the Bad, and the Koyaanisqatsi - Consideration of Some Patterns for Value Objects
	123. Factory and Disposal Methods - A Complementary and Symmetric Pair of Patterns
	135. Transformational Patterns for the Improvement of Safety Properties in architectural Specifications
	153. Two sets of Patterns about Group Communication and Dynamics
	169. Analysis Patterns Specifications: Filling the Gaps
	183. A Pattern Language for Participants of Standardization Work
	197. Patterns for Documenting Frameworks - Part 1
	209. Patterns of Argument Passing
	235. Business strategy patterns for sustainable knowledge based comp
	261. Load Balancing and High Availability Patterns
	273. Applied MVC Patterns
	295. Patterns for ERP-Landscapes
	317. Patterns of The Mature Customer
	333. Privilege Separation - A security Pattern
	339. Patterns for Software Release Versioning

